Skip to main content

Examination of the Rice Blast Pathogen Population Diversity in Arkansas, USA – Stable or Unstable?

  • Conference paper

Abstract

Over the past 17 years, isolates of Pyricularia oryzae (= P. grisea) have been recovered from commercial rice fields in Arkansas. Annual samples have typically included 100–500 isolates recovered from 5 to 10 cultivars from 10 different counties with the majority of the isolates being recovered from neck blast samples. Isolates of P. oryzae were characterized using a number of tests including DNA fingerprinting with MGR586, mitochondrial DNA RFLPs, mating type, vegetative compatibility, and virulence. Although up to eight different MGR586 DNA fingerprint groups (A-H) have been identified among contemporary and archived isolates of P. oryzae in the U.S., only 4 MGR586 DNA fingerprint groups (groups A, B, C, and D) have been identified since monitoring the populations in Arkansas beginning in 1991. There is a complete correspondence between the four MGR586 DNA fingerprint groups (A-D) and the four distinct genetic vegetative compatibility groups (VCGs 01-04). Furthermore, all isolates belong to a single mtDNA RFLP haplotype and all isolates within a given group are of a single mating type. In addition, some yearly samples have even shown that a single haplotype often makes up the majority of the isolates within a given fingerprint group or VCG. For example, over 60% of the isolates recovered in a given season belonged to 1 of 4 distinct clones. Thus, it is evident that the rice blast pathogen population in Arkansas has remained stable over the past 17 years with regard to these four MGR586 DNA fingerprint groups. Although all 4 MGR586 groups can typically be found in the annual samples of the contemporary population, there appears to be a strong bias for group A isolates in more recent samplings (since 2000). Over 80% of the isolates recovered between 2000 and 2006 were in MGR586 group A, belonged to VCG US001, had a single mtDNA RFLP haplotype, and were a single mating type (mat1-1). The data indicate that the population is strongly influenced by host genotype. Evaluation of virulence indicates that isolates within a group are clearly more similar within a group than between groups; however, there is some virulence diversity within each of the genetic groups identified. In addition, a distinct “shift” in virulence among field isolates to overcome the Pi-ta resistance gene has occurred among MGR586 group B isolates. The immergence of this “race-shift” has occurred among field isolates in MGR586 group B and also can be generated experimentally in greenhouse selections among isolates in group B; this race shift is associated with changes in AVR-Pita.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akparobi, S. O. 2006. Correlation analysis of growth parameters of sweetpotato (Ipomoea batanas). In Proceedings of the 40th conference of the Agricultural Society of Nigeria, Asumugha G. N., Oloyede A. O., Ikeogu J. G., Ano A. O., and Herbert U. (editors) NRCRI, Umudike. 16-20 October 2006. Umudike Nigeria, pp. 666–668.

    Google Scholar 

  • Alabi, T. 2008. Personal Communication. Geo-Spatial Laboratory, IITA, Ibadan, Nigeria.

    Google Scholar 

  • Bonman, J. M. 1992. Blast Disease. In: R. K. Webster and P. S. Gunnell (eds.), Compendium of rice diseases. APS Press, Saint Paul, USA.

    Google Scholar 

  • Boza, E. J. 2005. Rice blast disease: pathogen diversity, breeding for resistance and variation in an avirulence gene (AVR-Pita). University of Arkansas, Fayetteville. PhD. Dissertation.

    Google Scholar 

  • Correll, J. C., and Gordon, T. R. 1999. Population structure in ascomycete/deuteromycete fungi: What we have learned from the case studies. In: J. J. Worral (ed.), Structure and Dynamics of Fungal Populations. Kluwer Academic Press, Dordrecht, The Netherlands.

    Google Scholar 

  • Correll, J. C., Harp, T. L., Guerber, J. C., and Lee, F. N. 2000a. Differential changes in host specificity among MGR586 DNA fingerprint groups of Pyricularia grisea. In: Tharreaud et al. (eds.), Advances in rice blast research. Kluwer Academic Publishers, The Netherlands, pp. 234–242.

    Google Scholar 

  • Correll, J. C., Harp, T. L., Guerber, J. C., Zeigler, R. S., Liu, B., Cartwright, R. D., and Lee, F. N. 2000b. Characterization of Pyricularia grisea in the United States using independent genetic and molecular markers. Phytopathology 90:1396–1404.

    Google Scholar 

  • Correll, J. C. and Lee, F. N. 2000c. Relationship of races, DNA fingerprint groups, vegetative compatibility groups, and mating type among isolates of rice blast pathogen Pyricularia grisea in Arkansas. In: R. J. Norman and C. A. Beyrouty (eds.), B. R. Wells Rice Research Studies 1999. Univ. of Arkansas Agric. Exp. Sta. Res. Ser. 476, pp. 189–200.

    Google Scholar 

  • Correll, J. C., Klittich, C. J. R., and Leslie, J. F. 1987. Nitrate nonutilizing mutants of Fusarium oxysporum and their use in vegetative compatibility tests. Phytopathology 77:1640–1646.

    Article  Google Scholar 

  • Correll, J. C., Puhalla, J. E., and Schneider, R. W. 1986. Identification of Fusarium oxysporum f.sp. apii on the basis of colony size, virulence, and vegetative compatibility. Phytopathology 76:396–400.

    Google Scholar 

  • Couch, B. C. and Kohn, L. M. 2002. A multilocus gene geneology concordant with host preference indicates segregation of a new species, Magnaporthe oryzae, from M. grisea. Mycologia 94:683–693.

    Article  CAS  Google Scholar 

  • Couch, B. C., Fudal, I, Lebrun, M. H., Tharreau, D., Valent, B., Kim, P. V., Notteghem, J. L., and Kohn, L. M. 2005. Origins of host-specific populations of the blast pathogen Magnaporthe oryzae in crop domestication with subsequent expansion of pandemic clones on rice and weeds of rice. Genetics 170:613–630.

    Article  PubMed  CAS  Google Scholar 

  • FAOSTAT, 2005. Food and Agriculture Organization of the United Nations, Production Statistics Webpage. Viewed in 27 November 2007.

    Google Scholar 

  • Greer, C. A. and Webster, R. K. 2001. Occurrence, distribution, epidemiology, cultivar reaction and management of rice blast disease in California. Plant Dis. 85:1096–1102.

    Article  CAS  Google Scholar 

  • Hamer, J. M., Farral, L., Orbach, M. J., Valent, B., and Chumley, F. G. 1989. Host species-specific conservation of a family of repeated DNA sequences in the genome of a fungal plant pathogen. Proc. Natl. Acad. Sci. USA 86:9981–9985.

    Article  PubMed  CAS  Google Scholar 

  • Hill, W. A., Hortense, D., Hahn, S. K., Mulongoy, K., and Adeyeye, S. O. 1990. Sweetpotato root and biomass production with and without nitrogen fertilization. Agronomy Journal 82: 1120–1122.

    Article  Google Scholar 

  • International Rice Research Institute (IRRI). 2002. Standard Evaluation System for Rice (SES). IRRI, Los Baños, Philippines.

    Google Scholar 

  • Jia, Y., Wang, Z., Fjellstrom, R. G., Moldenhauer, K. A. K., Azam, M. A., Correll, J., Lee, F. N., Xia, Y., and Rutger, J. N. 2004. Rice Pi-ta gene confers resistance to the major pathotypes of the rice blast fungus in the US. Phytopathology 94:296–301.

    Article  PubMed  CAS  Google Scholar 

  • Lavanya, B. and Gnanamanickam, S. S. 2000. Molecular tools for characterization of rice blast pathogen (Magnaporthe grisea) population and molecular marker-assisted breeding for disease resistance. Curr. Sci. 78:248–257.

    Google Scholar 

  • Lee, F. N. 1994. Rice breeding programs, blast epidemics and blast management in the United States. p 489–500. In: Rice Blast Disease. R. S. Zeigler, S. Leong, and P. S. Teng, (eds.), Commonw. Agric. Bur. Int. Willingford, UK.

    Google Scholar 

  • Lee, F. N. (2009) Examination of the rice blast pathogen population diversity in arkansas, USA – stable or unstable? In: G.-L. Wang and B. Valent (eds.), Advances in Genetics, Genomics and Control of Rice Blast Disease. Springer.

    Google Scholar 

  • Lee, F. N., Cartwright, R. D., Jia, Y., and Correll, J. C. 2005a. Magnaporthe grisea race shift for virulence to the major R gene, Pi-ta in Arkansas. Phytopathology 95:S175.

    Google Scholar 

  • Lee, F. N., Cartwright, R. D., Jia, Y., Correll, J. C., Moldenhauer, K. A. K., Gibbons, J. W., Boyett, V., Zhou, E., Boza, E., and Seyran, E. 2005b. A preliminary characterization of the rice blast fungus on ‘Banks’ rice. In: R. J. Norman, J.-F Meullenet, and K. A. K. Moldenhauer (eds.), B. R. Wells Rice Research Studies 2004. Univ. of Arkansas Agric. Exp. Sta. Res. Ser. 529, pp. 103–110.

    Google Scholar 

  • Lee, F. N., Cartwright, R. D., Wilson, C. E. Jr., and Moldenhauer, K. A. K. 2006. Historical use of field resistance to control rice blast disease in Arkansas. In: R. J. Norman, J.-F Meullenet, and K. A. K. Moldenhauer (eds.), B. R. Wells Rice Research Studies 2005. Univ. of Arkansas Agric. Exp. Sta. Res. Ser. 540, pp. 133–137.

    Google Scholar 

  • Leung, H. and Taga, M. 1988. Magnaporthe grisea (Pyricularia grisea), the blast fungus. Adv. Plant Pathol. 6:175–188.

    Google Scholar 

  • Levy, M., Romao, J., Marchetti, M. A., and Hamer, J. E. 1991. DNA fingerprint with a dispersed repeated sequence resolves pathotype diversity in the rice blast fungus. Plant Cell3:95–112.

    Article  PubMed  CAS  Google Scholar 

  • Ling, K. C. and Ou, S. H. 1969. Standarization of the international race numbers of Pyricularia oryzae. Phytopathology 59:339–342.

    Google Scholar 

  • Marchetti, M. A., Rush, M. C., and Hunter, W. E. 1976. Current status of rice blast in the southern United States. Plant Dis. 60:721–725.

    Google Scholar 

  • Moldenhauer, K. A. K., Lee, F. N., Norman, R. J., Helms, R. S., Wells, B. R., Dilday, R. H., Rohman, P. C., and Marchetti, M. A. 1990. Registration of ‘Katy’ rice. Crop Sci. 30:747–748.

    Google Scholar 

  • NRCRI, 1984. Annual Report of the National root Crops Research Institute for 1984. Umudike, Nigeria.

    Google Scholar 

  • Ou, S. H. 1980a. A look at worldwide rice blast disease control. Plant Dis. 64:439–445.

    Google Scholar 

  • Ou, S. H.1980b. Pathogen variability and host resistance in rice blast disease. Annu. Rev. Phytopathol. 18:167–187.

    Google Scholar 

  • Ou, S. H. 1985. Rice Diseases. 2nd edn. Commonwealth Mycological Institute. Kew, England.

    Google Scholar 

  • Purseglove, J. W. 1968. Tropical Crops: Dicotyledons. Longman, London, UK.

    Google Scholar 

  • Ross, W. J. 1997. The relationship between MGR586 DNA fingerprint groups of Pyricularia grisea and rice cultivars in Arkansas. M.S. thesis. University of Arkansas. 61pp.

    Google Scholar 

  • Rossman, A. Y., Howard, R. J., and Valent, B. 1990. Pyricularia grisea, the correct name for the rice blast fungus. Mycologia 82:509–512.

    Article  Google Scholar 

  • Sanni, L. O., Ikuomola, D. P., and Sanni, S. A. 2001. Effect of length fermentation and varieties on the qualities of sweetpotato garri. In: Root Crops: The Small Processor and Development iof Local Food Industries for Market Economy. Proceedings of the 8th Triennial Symposium of the International Society for Tuber and Root Crops-Africa Branch (ISTRC-AB), held at Ibadan, Nigeria, pp 208–212.

    Google Scholar 

  • Tewe, O. O., Biochemistry and utilization of sweetpotato (Ipomoea batatas) for animal feeding: implications for food security in Africa. In the Proceedings of the fifth triennial symposium of the International Society for Tropical Root Crops-Africa Branch. IITA, Ibadan, Nigeria, pp. 324–327.

    Google Scholar 

  • Tewe, O. O., Ojeniyi, F. E., and Abu, O. A. 2003. Sweetpotato production, utilization and marketing in Nigeria. Social Sciences Department, Centro International de la Papa (CIP), Lima, Peru. 53 p.

    Google Scholar 

  • Valent, B. and Chumley, F. G.1991. Molecular genetic analysis of the rice blast fungus, Magnaporthe grisea. Annu. Rev. Phytopathol. 29:443–467.

    Article  PubMed  CAS  Google Scholar 

  • Xia, J. Q., Correll, J. C., Lee, F. N., Rhoads, D. D., and Marchetti, M. A. 1993. DNA fingerprinting to examine variation in the Magnaporthe grisea (Pyricularia grisea) population in two rice fields in Arkansas. Phytopathology 83:1029–1035.

    Article  CAS  Google Scholar 

  • Xia, J. Q., Correll, J. C., Lee, F. N., Ross, W. J., and Rhoads, D. D. 2000. Regional population diversity of Pyricularia grisea in Arkansas and the influence of host selections. Plant Dis. 84:877–884.

    Article  Google Scholar 

  • Zeigler, R. S. 1998. Recombination in Magnaporthe grisea. Annu. Rev. Phytopathol. 36:249–275.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, E., Jia, Y., Singh, P., Correll, J. C., and Lee, F. N. 2007. Instability of the Magnaporthe oryzae avirulence gene AVR-Pita alters virulence. Fungal Genet. Biol. 44:1024–1034.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this paper

Cite this paper

Correll, J., Boza, E., Seyran, E., Cartwright, R., Jia, Y., Lee, F. (2009). Examination of the Rice Blast Pathogen Population Diversity in Arkansas, USA – Stable or Unstable?. In: Wang, GL., Valent, B. (eds) Advances in Genetics, Genomics and Control of Rice Blast Disease. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9500-9_22

Download citation

Publish with us

Policies and ethics