Skip to main content

Functional and Evolutionary Analysis of the Pi2/9 Locus in Rice

  • Conference paper
Advances in Genetics, Genomics and Control of Rice Blast Disease
  • 2490 Accesses

Abstract

The Pi2/9 locus has been extensively used for effective resistance to the devastating rice blast disease caused by the fungus Magnaporthe oryza in rice breeding program for long time. This locus has been found to harbor at least 6 resistance genes [Pi9, Pi2, Piz-t, Piz, Pigm(t), and Pi40(t)], which confer broad-spectrum resistance against different sets of M. oryzae isolates. We have successfully characterized three of them (Pi9, Pi2, and Piz-t) using multi-faceted approaches. All the three genes encode proteins with a nucleotide-binding site (NBS) and leucine-rich repeat (LRR) domain and belong to a member of a gene cluster comprising of multiple gene members in each resistant cultivar. All the three resistance genes share extreme sequence similarity to each other while the LRR domains possess most of their sequence variants. Strikingly, the total eight amino acid differences that distinguish the Pi2 from the Piz-t were exclusively confined within three consecutive LRRs, indicating that the LRR domain plays a major role in determination of their resistance specificities. Intra- and inter-haplotype analysis of the Pi2/9 locus from 5 different rice haplotypes revealed that an obvious orthologous relationship had been maintained at the Pi2/9 locus among haplotypes. The paralogues, contrariwise, show significant sequence divergence within each haplotype. However, the finding that all the NBS-LRR homologues at the Pi2/9 locus utilize the same intron phase 2 suggested that the Pi2/9 locus might be evolved from a progenitor locus that was consisted of a single NBS-LRR gene with the same intron phase. The cloning of the three resistance genes and evolutionary analysis of the Pi2/9 locus provided insight into the understanding of the mechanism underlying the broad-spectrum resistance and its evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amante-Bordeos, A., Sitch, L. A., Nelson, R., Damacio, R. D., Oliva, N. P. Aswidinnoor, H. & Leung, H. (1992). Transfer of bacterial blight and blast resistance from the tetraploid wild rice Oryza minuta to cultivated rice, Oryza sativa. Theor Appl Gene, 84: 345–354.

    Google Scholar 

  • Bai, J., Pennill, L. A., Ning, J., et al. (2002). Diversity in nucleotide binding site-leucine-rich repeat genes in cereals. Genome Res, 12: 1871–1884.

    Article  PubMed  CAS  Google Scholar 

  • Bryan, G. T., Wu, K. S., Farrall, L., Jia, Y., Hershey, H. P., McAdams, S. A., Faulk, K. N., Donaldson, G. K., Tarchini, R. & Valent, B. (2000). A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta. Plant Cell, 12: 2033–2045.

    Article  PubMed  CAS  Google Scholar 

  • Carvalho, A. B. & Clark AG (1999). Intron size and natural selection. Nature, 401: 344

    Article  PubMed  CAS  Google Scholar 

  • Chen, X., Shang, J., Chen, D., et al. (2006). A B-lectin receptor kinase gene conferring rice blast resistance. Plant J, 46: 794–804.

    Article  PubMed  CAS  Google Scholar 

  • Hammond-Kosack, K. E. & Jones, J. D. G (1997). Plant disease resistance genes. Annu Rev Plant Physiol Plant Mol Biol, 48: 575–607.

    Article  PubMed  CAS  Google Scholar 

  • Comeron, J. M. & Kreitman, M. (2000). Population, evolutionary and genomic consequences of interference selection. Genetics, 156: 1175–1190

    PubMed  CAS  Google Scholar 

  • Da Cunha, L., Sreerekha, M. V. & Mackey, D. (2007). Defense suppression by virulence effectors of bacterial phytopathogens. Curr Opin Plant Biol, 10: 349–357.

    Article  PubMed  Google Scholar 

  • Dai, L.Y., Liu, X.L., Xiao, Y.H., & Wang, G.L. (2007). Recent advances in cloning and characterization of disease resistance genes in rice. J Integr Plant Biol, 49:112–119.

    Article  CAS  Google Scholar 

  • Deng, Y., Zhu, X. & He, Z. (2006). Genetic characterization and fine mapping of the blast resistance locus Pigm(t) tightly linked to Pi2 and Pi9 in a broad-spectrum resistant Chinese Variety. Theor. Appl. Genet, 113: 705–713.

    Article  PubMed  CAS  Google Scholar 

  • Duret. L., Mouchiroud, D. & Gautier, C. (1995). Statistical analysis of vertebrate sequences reveals that long genes are scarce in GC-rich isochores. J. Mol Evol, 40: 308–317.

    Article  PubMed  CAS  Google Scholar 

  • Hammond-Kosack, K. E. & Jones, J. D. G (1997). Plant disease resistance genes. Annu. Rev. Plant Physiol. Plant Mol Biol, 48: 575–607.

    Article  PubMed  CAS  Google Scholar 

  • Hayashi, K., Hashimoto, N., Daigen, M. & Ashikawa, I. (2004). Development of PCR-based SNP markers for rice blast resistance genes at the Piz locus. Theor Appl Gene, 108: 1212–1220.

    Article  CAS  Google Scholar 

  • Jeung, J. U., Kim, B. R., Cho, Y. C., Han, S. S., Moon, H. P., Lee, Y. T. & Jena, K. K. (2007). A novel gene, Pi40(t) linked to the DNA markers derived from NBS-LRR motifs confers broad spectrum of blast resistance in rice. Theor Appl Genet, 115: 1163–1177.

    Article  PubMed  CAS  Google Scholar 

  • Kato, H., Imbe, T., Tsunematsu, H. & Fukuta, Y. (2004). Developing rice blast differential lines and evaluating partial resistance for the breeding of durable rice varieties in the tropics. IRRI Limited Proc Series, 10: 31–44.

    Google Scholar 

  • Kiyosawa, S. (1967). Establishment of differential varieties for pathogenicity test of rice blast fungus. Rice Genet Newsl, 1: 95–97.

    Google Scholar 

  • Lin, F., Chen, S., Que, Z., Wang, L., Liu, X. & Pan, Q. (2007). The blast resistance gene Pi37 encodes a nucleotide binding site-leucine-rich repeat protein and is a member of a resistance gene cluster on rice chromosome 1. Genetics, 177: 1871–1880.

    Article  PubMed  CAS  Google Scholar 

  • Liu, G., Lu, G., Zeng, L. & Wang, G.L. (2002). Two broad-spectrum blast resistance genes, Pi9(t) and Pi2(t), are physically linked on rice chromosome 6. Mol Genet Genomics, 267: 472–480.

    Article  PubMed  CAS  Google Scholar 

  • Liu, X., Lin, F., Wang, L. & Pan, Q. (2007). The in silico map-based cloning of Pi36, a rice coiled-coil-nucleotide-binding site-leucine-rich repeat gene that confers race-specific resistance to the blast fungus. Genetics, 176: 2541–2549.

    Article  PubMed  CAS  Google Scholar 

  • Mackill, D. J. & Bonman, J. M. (1992). Inheritance of blast resistance in near-isogenic lines of rice. Phytopathology, 82: 746–749.

    Article  Google Scholar 

  • Meyers, B. C., Kozik, A., Griego, A., Kuang, H. & Richelmore, R. W. (2003). Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell 15: 809–834.

    Article  PubMed  CAS  Google Scholar 

  • Nagai, K., Fujimake, H. & Yokoo, M. (1970). Breeding of a rice variety Tordie 1 with multi-racial resistance to leaf blast. Jpn J Breed, 20: 7–14.

    Google Scholar 

  • Pan, Q., Wendel, J, & Fluhr, R. (2000). Divergent evolution of plant NBS-LRR resistance gene homologues in dicot and cereal genome. J Mol Evol, 50: 203–213.

    PubMed  CAS  Google Scholar 

  • Qu, S., Liu, G., Zhou, B., Bellizzi, M., Zeng, L., Dai, L., Han, B. & Wang, G.L. (2006). The broad-spectrum blast resistance gene Pi9 encodes an NBS-LRR protein and is a member of the multiple family in rice. Genetics, 172: 1901–1914.

    Article  PubMed  CAS  Google Scholar 

  • Talbot, N. J. (2003). On the trail of a cereal killer: exploring the biology of Magnaporthe grisea. Annu Rev Microbiol, 57: 177–202.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Z. X., Yano, M., Yamanouchi, U., Iwamoto, M., Monna, L., Hayasaka, H., Katayose, Y. & Sasaki, T. (1999). The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes. Plant J, 19: 55–64.

    Article  PubMed  Google Scholar 

  • Zhou, B., Qu, S., Liu, G., Dolan, M., Sakai, H., Lu, G., Bellizzi, M. & Wang, G. L. (2006). The eight amino-acid difference within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea. Mol. Plant-Microbe Interact, 19: 1216–1228.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, B., Dolan, M., Sakai, H. & Wang, G. L. (2007). The Genomic dynamics and evolutionary mechanism of the Pi2/9 locus in rice. Mol Plant-Microbe Interact, 20: 63–71.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this paper

Cite this paper

Wang, GL., Zhou, B. (2009). Functional and Evolutionary Analysis of the Pi2/9 Locus in Rice. In: Wang, GL., Valent, B. (eds) Advances in Genetics, Genomics and Control of Rice Blast Disease. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9500-9_13

Download citation

Publish with us

Policies and ethics