Skip to main content

Leveraging High-Dimensional Neuroimaging Data in Genetic Studies of Neuropsychiatric Disease

  • Chapter
  • 894 Accesses

Abstract

The current state of biomedical science is such that both the number and sophistication of methods available to investigate the genetic determinants of disease is unprecedented. For example, the introduction of high-throughput technologies such as DNA microarrays, allow researchers to comprehensively assess the human genome for single nucleotide polymorphisms that confer genetic susceptibility. Indeed, while these, and other similarly sophisticated methods, have yielded notable findings with regard to identification of risk variants in diseases such as diabetes, obesity, and glaucoma, similar studies of neuropsychiatric diseases such as schizophrenia and bipolar disorder have been somewhat less successful in producing strong findings. The reasons why this is the case are numerous, but likely refl ect the very complex genetic architecture of neuropsychiatric conditions. In this chapter, we consider an approach to addressing this complexity that involves the use of what are termed ‘endophenotypes’ (or alternatively ‘intermediate phe-notypes’) in genetic studies of neuropsychiatric disorders. Endophenotypes are biological changes, such as brain structural differences, that are thought to represent underlying molecular, physiologic, or otherwise subclinical changes resulting directly from the genetic variations that mediate susceptibility to overt clinical disease. Furthermore, neuroimaging phenotypes are, for a variety of reasons, thought to represent good candidate endophenotypes for genetic association studies of neuropsychiatric disease. Like high-dimensional genome-wide data, however, these phenotyping technologies can produce hundreds to thousands of data points or more, when all neuroanatomic regions and tissue types of interest are considered. The question then becomes, how can two or more high-dimensional data types (i.e., in this case genomic and neuroimaging) be leveraged, integrated, and analyzed in order to make valid inferences about the genetic basis of neuropsychi-atric disease? We comment on the analytic issues that arise when trying to leverage both genome-wide genetic data and neuroimaging data (e.g., problems related to multiple comparisons and false positives, as well as small sample sizes), and discuss four general approaches, each with its own set of advantages and disadvantages, that can be used in the analysis of imag-ing-genetics data. Finally, we provide a brief review of some of the recent studies that combine imaging and genetics, but note that the field, as a whole, is still very much in its infancy. We also provide suggestions for future directions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Todd JA, Walker NM, Cooper JD, et al. Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nature Genetics. 2007;39:857–864

    Article  PubMed  CAS  Google Scholar 

  2. Hakonarson H, Grant SF, Bradfield JP, et al. A genome-wide association study identifies KIAA0350 as a type 1 diabetes gene. Nature. 2007;448:591–594

    Article  PubMed  CAS  Google Scholar 

  3. Frayling TM, Timpson NJ, Weedon MN, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science (New York) 2007;316:889–894

    CAS  Google Scholar 

  4. Thorleifsson G, Magnusson KP, Sulem, P et al. Common sequence variants in the LOXL1 gene confer susceptibility to exfoliation glaucoma. Science (New York) 2007;317:1397–1400

    CAS  Google Scholar 

  5. Eeles RA, Kote-Jarai Z, Giles GG, et al. Multiple newly identified loci associated with prostate cancer susceptibility. Nature Genetics. 2008;40:316–321

    Article  PubMed  CAS  Google Scholar 

  6. Harley JB, Alarcon-Riquelme ME, Criswell LA, et al. Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci. Nature Genetics. 2008;40:204–210

    Article  PubMed  CAS  Google Scholar 

  7. Hunt KA, Zhernakova A, Turner G, et al. Newly identified genetic risk variants for celiac disease related to the immune response. Nature Genetics. 2008;40:395–402

    Article  PubMed  CAS  Google Scholar 

  8. Ridker PM, Pare G, Parker A, et al. Loci related to metabolic-syndrome pathways including LEPR, HNF1A, IL6R, and GCKR associate with plasma C-reactive protein: the women's genome health study. American Journal of Human Genetics. 2008;82:1185–1192

    Article  PubMed  CAS  Google Scholar 

  9. Tenesa A, Farrington SM, Prendergast JG, et al. Genome-wide association scan identifies a colorectal cancer susceptibility locus on 11q23 and replicates risk loci at 8q24 and 18q21. Nature Genetics. 2008;40:631–637

    Article  PubMed  CAS  Google Scholar 

  10. Thorgeirsson TE, Geller F, Sulem P, et al. A variant associated with nicotine dependence, lung cancer and peripheral arterial disease. Nature. 2008;452:638–642

    Article  PubMed  CAS  Google Scholar 

  11. Uda M, Galanello R, Sanna S, et al. Genome-wide association study shows BCL11A associated with persistent fetal hemoglobin and amelioration of the phenotype of beta-thal-assemia. Proceedings of the National Academy of Sciences of the United States of America. 2008;105:1620–1625

    Article  PubMed  CAS  Google Scholar 

  12. Zeggini E, Scott LJ, Saxena R, et al. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nature Genetics. 2008;40:638–645

    Article  PubMed  CAS  Google Scholar 

  13. WTCCC. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447:661–678

    Article  CAS  Google Scholar 

  14. Manolio TA, Brooks LD, Collins FS. A HapMap harvest of insights into the genetics of common disease. The Journal of Clinical Investigation. 2008;118:1590–1605

    Article  PubMed  CAS  Google Scholar 

  15. Lencz T, Morgan TV, Athanasiou M, et al. Converging evidence for a pseudoautosomal cytokine receptor gene locus in schizophrenia. Molecular Psychiatry. 2007;12:572–580

    Article  PubMed  CAS  Google Scholar 

  16. Shifman S, Johannesson M, Bronstein M, et al. Genome-wide association identifies a common variant in the reelin gene that increases the risk of schizophrenia only in women. PLoS Genetics. 2008;4:e28

    Article  PubMed  CAS  Google Scholar 

  17. Kirov G, Zaharieva I, Georgieva L, et al. A genome-wide association study in 574 schizophrenia trios using DNA pooling. Molecular Psychiatry. 2008 advance online publication, II March 2008 (DOI 10.1038/mp.2008.33)

    Google Scholar 

  18. Sklar P, Smoller JW, Fan J, et al. Whole-genome association study of bipolar disorder. Molecular Psychiatry. 2008;13:558–569

    Article  PubMed  CAS  Google Scholar 

  19. Baum AE, Akula N, Cabanero M, et al. A genome-wide association study implicates diacylglycerol kinase eta (DGKH) and several other genes in the etiology of bipolar disorder. Molecular Psychiatry. 2008;13:197–207

    Article  PubMed  CAS  Google Scholar 

  20. Bearden CE, Freimer NB. Endophenotypes for psychiatric disorders: ready for primetime? Trends in Genetics. 2006; 22:306–313

    Article  PubMed  CAS  Google Scholar 

  21. APA. Diagnostic and Statistical Manual of Mental Disorders. 4-Text Revision ed. Washington, DC: APA, 2000

    Google Scholar 

  22. Tan H Y, Callicott JH, Weinberger DR. Endophenotypes in schizophrenia genetics redux: is it a no brainer? Molecular Psychiatry. 2008;13:233–238

    Article  PubMed  CAS  Google Scholar 

  23. Callicott JH, Egan MF, Mattay VS, et al. Abnormal fMRI response of the dorsolateral prefrontal cortex in cognitively intact siblings of patients with schizophrenia. The American Journal of Psychiatry. 2003;160:709–719

    Article  PubMed  Google Scholar 

  24. Goldman AL, Pezawas L, Mattay VS, et al. Heritability of brain morphology related to schizophrenia: a large-scale automated magnetic resonance imaging segmentation study. Biological Psychiatry. 2008;63:475–483

    Article  PubMed  Google Scholar 

  25. Gottesman, II, Shields J. Genetic theorizing and schizophrenia. British Journal of Psychiatry. 1973;122:15–30

    Article  PubMed  CAS  Google Scholar 

  26. Toulopoulou T, Picchioni M, Rijsdijk F, et al. Substantial genetic overlap between neurocognition and schizophrenia: genetic modeling in twin samples. Archives of General Psychiatry. 2007;64:1348–1355

    Article  PubMed  Google Scholar 

  27. Braff DL, Greenwood TA, Swerdlow NR, et al. Advances in endophenotyping schizophrenia. World Psychiatry. 2008;7:11–18

    PubMed  Google Scholar 

  28. Braff D, Schork NJ, Gottesman, II. Endophenotyping schizophrenia. The American Journal of Psychiatry. 2007;164:705–707

    Article  PubMed  Google Scholar 

  29. Braff DL, Freedman R, Schork NJ, Gottesman, II. Deconstructing schizophrenia: an overview of the use of endopheno-types in order to understand a complex disorder. Schizophrenia Bulletin. 2007;33:21–32

    Article  PubMed  Google Scholar 

  30. Braff DL, Light GA. The use of neurophysiological endo-phenotypes to understand the genetic basis of schizophrenia. Dialogues in Clinical Neuroscience. 2005;7:125–135

    PubMed  Google Scholar 

  31. Flint J, Munafo MR. The endophenotype concept in psychiatric genetics. Psychological Medicine. 2007;37:163–180

    Article  PubMed  Google Scholar 

  32. Gottesman, II, Gould TD. The endophenotype concept in psychiatry: etymology and strategic intentions. The American Journal of Psychiatry. 2003;160:636–645

    Article  PubMed  Google Scholar 

  33. Fusar-Poli P, Perez J, Broome M, et al. Neurofunctional correlates of vulnerability to psychosis: a systematic review and meta-analysis. Neuroscience and Biobehavioral Reviews. 2007;31:465–484

    Article  PubMed  Google Scholar 

  34. Bartley AJ, Jones DW, Weinberger DR. Genetic variability of human brain size and cortical gyral patterns. Brain. 1997;120(Pt 2):257–269

    Article  PubMed  Google Scholar 

  35. MacDonald AW, 3rd, Carter CS. Event-related FMRI study of context processing in dorsolateral prefrontal cortex of patients with schizophrenia. Journal of Abnormal Psychology. 2003;112:689–697

    Article  PubMed  Google Scholar 

  36. Malhi GS, Lagopoulos J. Making sense of neuroimaging in psychiatry. Acta Psychiatrica Scandinavica. 2008;117:100–117

    PubMed  CAS  Google Scholar 

  37. Bloss CS, Courchesne E. MRI neuroanatomy in young girls with autism: a preliminary study. Journal of the American Academy of Child and Adolescent Psychiatry. 2007;46:515–523

    Article  PubMed  Google Scholar 

  38. Carper RA, Courchesne E. Localized enlargement of the frontal cortex in early autism. Biological Psychiatry. 2005; 57:126–133

    Article  PubMed  Google Scholar 

  39. Carper RA, Moses P, Tigue ZD, Courchesne E. Cerebral lobes in autism: early hyperplasia and abnormal age effects. NeuroImage. 2002;16:1038–1051

    Article  PubMed  Google Scholar 

  40. Courchesne E, Karns CM, Davis HR, et al. Unusual brain growth patterns in early life in patients with autistic disorder: an MRI study. Neurology. 2001;57:245–254

    PubMed  CAS  Google Scholar 

  41. Kleinhans NM, Richards T, Sterling L, et al. Abnormal functional connectivity in autism spectrum disorders during face processing. Brain. 2008;131:1000–1012

    Article  PubMed  Google Scholar 

  42. Kleinhans NM, Johnson LC, Mahurin R, et al. Increased amygdala activation to neutral faces is associated with better face memory performance. Neuroreport. 2007;18:987–991

    Article  PubMed  Google Scholar 

  43. Bailer UF, Frank GK, Henry SE, et al. Altered brain serotonin 5-HT1A receptor binding after recovery from anorexia nervosa measured by positron emission tomography and [carbonyl11C]WAY-100635. Archives of General Psychiatry. 2005;62:1032–1041

    Article  PubMed  CAS  Google Scholar 

  44. Frank GK, Kaye WH. Positron emission tomography studies in eating disorders: multireceptor brain imaging, correlates with behavior and implications for pharmacotherapy. Nuclear Medicine and Biology. 2005;32:755–761

    Article  PubMed  CAS  Google Scholar 

  45. Kaye WH, Bailer UF, Frank GK, et al. Brain imaging of serotonin after recovery from anorexia and bulimia nervosa. Physiology & Behavior. 2005;86:15–17

    Article  CAS  Google Scholar 

  46. Bertolino A, Weinberger DR. Proton magnetic resonance spectroscopy in schizophrenia. European Journal of Radiology. 1999;30:132–141

    Article  PubMed  CAS  Google Scholar 

  47. Bertolino A, Esposito G, Callicott JH, et al. Specific relationship between prefrontal neuronal N-acetylaspartate and activation of the working memory cortical network in schizophrenia. The American Journal of Psychiatry. 2000; 157:26–33

    PubMed  CAS  Google Scholar 

  48. Conturo TE, Lori NF, Cull TS, et al. Tracking neuronal fiber pathways in the living human brain. Proceedings of the National Academy of Sciences of the United States of America. 1999;96:10422–10427

    Article  PubMed  CAS  Google Scholar 

  49. Mori S, Crain BJ, Chacko VP, van Zijl PC. Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Annals of Neurology. 1999; 45:265–269

    Article  PubMed  CAS  Google Scholar 

  50. Pfefferbaum A, Rosenbloom MJ, Adalsteinsson E, Sullivan E V. Diffusion tensor imaging with quantitative fibre tracking in HIV infection and alcoholism comorbidity: synergis-tic white matter damage. Brain. 2007;130:48–64

    Article  PubMed  Google Scholar 

  51. Sullivan EV, Pfefferbaum A. Diffusion tensor imaging and aging. Neuroscience and Biobehavioral Reviews. 2006; 30:749–761

    Article  PubMed  Google Scholar 

  52. Straub RE, Weinberger DR. Schizophrenia genes — famine to feast. Biological Psychiatry. 2006;60:81–83

    Article  PubMed  Google Scholar 

  53. Meyer-Lindenberg A, Weinberger DR. Endophenotypes and genetic mechanisms of psychiatric disorders. Nature Reviews Neuroscience. 2006;7:818–827

    Article  PubMed  CAS  Google Scholar 

  54. Meyer-Lindenberg A, Nicodemus KK, Egan MF, et al. False positives in imaging genetics. NeuroImage. 2008;40:655–661

    Article  PubMed  Google Scholar 

  55. Kriegeskorte N, Goebel R, Bandettini P. Information-based functional brain mapping. Proceedings of the National Academy of Sciences of the United States of America. 2006;103:3863–3868

    Article  PubMed  CAS  Google Scholar 

  56. Balding DJ. A tutorial on statistical methods for population association studies. Nature Reviews. 2006;7:781–791

    Article  PubMed  CAS  Google Scholar 

  57. Fallin D, Cohen A, Essioux L, et al. Genetic analysis of case/control data using estimated haplotype frequencies: application to APOE locus variation and Alzheimer's disease. Genome Research. 2001;11:143–151

    Article  PubMed  CAS  Google Scholar 

  58. Li Y, Sung WK, Liu JJ. Association mapping via regularized regression analysis of single-nucleotide-polymorphism hap-lotypes in variable-sized sliding windows. American Journal of Human Genetics. 2007;80:705–715

    Article  PubMed  CAS  Google Scholar 

  59. Tang Y, Ghosal S, Roy A. Nonparametric bayesian estimation of positive false discovery rates. Biometrics. 2007;63:1126–1134

    PubMed  Google Scholar 

  60. Gadbury GL, Xiang Q, Yang L, et al. Evaluating statistical methods using plasmode data sets in the age of massive public databases: an illustration using false discovery rates. PLoS Genetics. 2008;4:e1000098

    Article  PubMed  CAS  Google Scholar 

  61. Schmidt S, Shao Y, Hauser ER, et al. Life after the screen: making sense of many P-values. Genetic Epidemiology. 2001;21 Suppl 1:S546–S551

    PubMed  Google Scholar 

  62. Cucala L. A hypothesis-free multiple scan statistic with variable window. Biometrical Journal. 2008;50:299–310

    Article  PubMed  CAS  Google Scholar 

  63. Gordon D, Hoh J, Finch SJ, et al. Two approaches for consolidating results from genome scans of complex traits: selection methods and scan statistics. Genetic Epidemiology. 2001;21 Suppl 1:S396–402

    PubMed  Google Scholar 

  64. Anderson TW. An Introduction to Multivariate Statistical Analysis. New York: Wiley, 1984

    Google Scholar 

  65. Tuncer Y, Tanik MM, Allison DB. An overview of statistical decomposition techniques applied to complex systems. Computational Statistics and Data Analysis. 2008;52:2292–2310

    Article  Google Scholar 

  66. McIntosh AR, Bookstein FL, Haxby JV, Grady CL. Spatial pattern analysis of functional brain images using partial least squares. NeuroImage. 1996;3:143–157

    Article  PubMed  CAS  Google Scholar 

  67. Tura E, Turner JA, Fallon JH, et al. Multivariate analyses suggest genetic impacts on neurocircuitry in schizophrenia. Neuroreport. 2008;19:603–607

    Article  PubMed  Google Scholar 

  68. Nandy RR, Cordes D. Novel nonparametric approach to canonical correlation analysis with applications to low CNR functional MRI data. Magnetic Resonance in Medicine. 2003;50:354–365

    Article  PubMed  Google Scholar 

  69. Nievergelt CM, Libiger O, Schork NJ. Generalized analysis of molecular variance. PLoS Genetics. 2007;3:e51

    Article  PubMed  CAS  Google Scholar 

  70. Wessel J, Schork NJ. Generalized genomic distance-based regression methodology for multilocus association analysis. American Journal of Human Genetics. 2006;79:792–806

    Article  PubMed  CAS  Google Scholar 

  71. Zapala MA, Schork NJ. Multivariate regression analysis of distance matrices for testing associations between gene expression patterns and related variables. Proceedings of the National Academy of Sciences of the United States of America. 2006; 103:19430–19435

    Article  PubMed  CAS  Google Scholar 

  72. Lu T, Pan Y, Kao SY, et al. Gene regulation and DNA damage in the ageing human brain. Nature. 2004;429:883–891

    Article  PubMed  CAS  Google Scholar 

  73. Kaye WH, Bailer UF, Bloss CS, et al. 5-HT1A receptor binding is increased after recovery from bulimia nervosa compared to control women and is associated with behavioral inhibition in both groups (submitted)

    Google Scholar 

  74. Manly B. Randomization, Bootstrap, and Monte Carlo Methods in Biology. London: Chapman & Hall, 1997

    Google Scholar 

  75. Neter J, Wasserman W, Kutner MH. Applied Linear Statistical Models. Homewood, IL: Richard D. Irwin, 1985

    Google Scholar 

  76. Strittmatter WJ, Saunders AM, Schmechel D, et al. Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proceedings of the National Academy of Sciences of the United States of America. 1993;90:1977–1981

    Article  PubMed  CAS  Google Scholar 

  77. Chen K, Reiman EM, Alexander GE, et al. Correlations between apolipoprotein E epsilon4 gene dose and whole brain atrophy rates. The American Journal of Psychiatry. 2007;164:916–921

    Article  PubMed  Google Scholar 

  78. Jak AJ, Houston WS, Nagel BJ, et al. Differential cross-sectional and longitudinal impact of APOE genotype on hippocampal volumes in nondemented older adults. Dementia and Geriatric Cognitive Disorders. 2007;23:382–389

    Article  PubMed  Google Scholar 

  79. Espeseth T, Greenwood PM, Reinvang I, et al. Interactive effects of APOE and CHRNA4 on attention and white matter volume in healthy middle-aged and older adults. Cognitive, Affective & Behavioral Neuroscience. 2006;6:31–43

    Article  Google Scholar 

  80. Pezawas L, Verchinski BA, Mattay VS, et al. The brain-derived neurotrophic factor val66met polymorphism and variation in human cortical morphology. Journal of Neuroscience. 2004;24:10099–10102

    Article  PubMed  CAS  Google Scholar 

  81. Durston S, Hulshoff Pol HE, Schnack HG, et al. Magnetic resonance imaging of boys with attention-deficit/hyperac-tivity disorder and their unaffected siblings. Journal of the American Academy of Child and Adolescent Psychiatry. 2004;43:332–340

    Article  PubMed  Google Scholar 

  82. Pezawas L, Meyer-Lindenberg A, Drabant EM, et al. 5-HTTLPR polymorphism impacts human cingulate-amygdala interactions: a genetic susceptibility mechanism for depression. Nature Neuroscience. 2005;8:828–834

    Article  PubMed  CAS  Google Scholar 

  83. Surguladze SA, Elkin A, Ecker C, et al. Genetic variation in the serotonin transporter modulates neural system-wide response to fearful faces. Genes, Brain, and Behavior. 2008

    Google Scholar 

  84. Pohjalainen T, Nagren K, Syvalahti EK, Hietala J. The dop-amine D2 receptor 5′-flanking variant, -141C Ins/Del, is not associated with reduced dopamine D2 receptor density in vivo. Pharmacogenetics. 1999;9:505–509

    PubMed  CAS  Google Scholar 

  85. Laruelle M, Gelernter J, Innis RB. D2 receptors binding potential is not affected by Taq1 polymorphism at the D2 receptor gene. Molecular Psychiatry. 1998;3:261–265

    Article  PubMed  CAS  Google Scholar 

  86. Marenco S, Steele SU, Egan MF, et al. Effect of metabotro-pic glutamate receptor 3 genotype on N-acetylaspartate measures in the dorsolateral prefrontal cortex. The American Journal of Psychiatry. 2006;163:740–742

    Article  PubMed  Google Scholar 

  87. McIntosh AM, Moorhead TW, Job D, et al. The effects of a neuregulin 1 variant on white matter density and integrity. Molecular Psychiatry. 2007

    Google Scholar 

  88. Honea RA, Meyer-Lindenberg A, Hobbs KB, et al. Is gray matter volume an intermediate phenotype for schizophrenia? A voxel-based morphometry study of patients with schizophrenia and their healthy siblings. Biological Psychiatry. 2008;63:465–474

    Article  PubMed  Google Scholar 

  89. McIntosh AM, Job DE, Moorhead WJ, et al. Genetic liability to schizophrenia or bipolar disorder and its relationship to brain structure. American Journal of Medical Genetics Part B Neuropsychiatric Genetics. 2006;141B:76–83

    Article  Google Scholar 

  90. Wobrock T, Kamer T, Roy A, et al. Reduction of the internal capsule in families affected with schizophrenia. Biological Psychiatry. 2008;63:65–71

    Article  PubMed  Google Scholar 

  91. Addington AM, Gornick MC, Shaw P, et al. Neuregulin 1 (8p12) and childhood-onset schizophrenia: susceptibility haplotypes for diagnosis and brain developmental trajectories. Molecular Psychiatry. 2007;12:195–205

    Article  PubMed  CAS  Google Scholar 

  92. Szeszko PR, Hodgkinson CA, Robinson DG, et al. DISC1 is associated with prefrontal cortical gray matter and positive symptoms in schizophrenia. 2008;79:103–110

    Google Scholar 

  93. Tan H Y, Nicodemus KK, Chen Q, et al. Genetic variation in AKT1 is linked to dopamine-associated prefrontal cortical structure and function in humans. The Journal of Clinical Investigation. 2008;118:2200–2208

    PubMed  CAS  Google Scholar 

  94. Zinkstok J, Schmitz N, van Amelsvoort T, et al. Genetic variation in COMT and PRODH is associated with brain anatomy in patients with schizophrenia. Genes, Brain, and Behavior. 2008;7:61–69

    PubMed  CAS  Google Scholar 

  95. Benedetti F, Radaelli D, Bernasconi A, et al. Clock genes beyond the clock: CLOCK genotype biases neural correlates of moral valence decision in depressed patients. Genes, Brain, and Behavior. 2008;7:20–25

    PubMed  CAS  Google Scholar 

  96. Egan MF, Goldberg TE, Kolachana BS, et al. Effect of COMT Val108/158 met genotype on frontal lobe function and risk for schizophrenia. Proceedings of the National Academy of Sciences of the United States of America. 2001;98:6917–6922

    Article  PubMed  CAS  Google Scholar 

  97. Lawrie SM, Hall J, McIntosh AM, et al. Neuroimaging and molecular genetics of schizophrenia: pathophysiological advances and therapeutic potential. British Journal of Pharmacology. 2008;153 Suppl 1:S120–S124

    Article  PubMed  CAS  Google Scholar 

  98. Liu J, Pearlson G, Windemuth A, et al. Combining fMRI and SNP data to investigate connections between brain function and genetics using parallel ICA. Human Brain Mapping. 2008 advance online publication, 10 Dec 2007 (DOI 10.1002/nbm.20508)

    Google Scholar 

  99. Straub RE, Lipska BK, Egan MF, et al. Allelic variation in GAD1 (GAD67) is associated with schizophrenia and influences cortical function and gene expression. Molecular Psychiatry. 2007;12:854–869

    Article  PubMed  CAS  Google Scholar 

  100. Lafuente A, Bernardo M, Mas S, et al. Dopamine transporter (DAT) genotype (VNTR) and phenotype in extrapyra-mi dal symptoms induced by antipsychotics. Schizophrenia Research. 2007;90:115–122

    Article  PubMed  Google Scholar 

  101. Papiol S, Molina V, Rosa A, et al. Effect of interleukin-1beta gene functional polymorphism on dorsolateral prefrontal cortex activity in schizophrenic patients. American Journal of Medical Genetics Part B Neuropsychiatric Genetics. 2007;144B:1090–1093

    Article  Google Scholar 

  102. Ho BC, Wassink TH, O'Leary DS, et al. Catechol-O-methyl transferase Val158Met gene polymorphism in schizophrenia: working memory, frontal lobe MRI morphology and frontal cerebral blood flow. Molecular Psychiatry. 2005; 10:229, 287–298

    Google Scholar 

  103. Martinez D, Gelernter J, Abi-Dargham A, et al. The variable number of tandem repeats polymorphism of the dop-amine transporter gene is not associated with significant change in dopamine transporter phenotype in humans. Neuropsychopharmacology. 2001;24:553–560

    Article  PubMed  CAS  Google Scholar 

  104. Winterer G, Konrad A, Vucurevic G, et al. Association of 5′ end neuregulin-1 (NRG1) gene variation with subcorti-cal medial frontal microstructure in humans. NeuroImage. 2008;40:712–718

    Article  PubMed  Google Scholar 

  105. Kato T, Kunugi H, Nanko S, Kato N. Association of bipolar disorder with the 5178 polymorphism in mitochondrial DNA. American Journal of Medical Genetics. 2000;96:182–186

    Article  PubMed  CAS  Google Scholar 

  106. Roffman JL, Weiss AP, Goff DC, et al. Neuroimaging-genetic paradigms: a new approach to investigate the pathophysiology and treatment of cognitive deficits in schizophrenia. Harvard Review of Psychiatry. 2006;14:78–91

    Article  PubMed  Google Scholar 

  107. Wang YX. Medical imaging in pharmaceutical clinical trials: what radiologists should know. Clinical Radiology. 2005;60:1051–1057

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bloss, C.S., Bakken, T.E., Joyner, A.H., Schork, N.J. (2009). Leveraging High-Dimensional Neuroimaging Data in Genetic Studies of Neuropsychiatric Disease. In: Ritsner, M.S. (eds) The Handbook of Neuropsychiatric Biomarkers, Endophenotypes and Genes. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9464-4_5

Download citation

Publish with us

Policies and ethics