Protein Misfolding and Axonal Protection in Neurodegenerative Diseases

  • Haruhisa Inoue
  • Takayuki Kondo
  • Ling Lin
  • Sha Mi
  • Ole Isacson
  • Ryosuke Takahashi
Part of the Focus on Structural Biology book series (FOSB, volume 7)


Genetically engineered mouse model studies show that neuronal dysfunction caused by protein aggregation/misfolding are reversible, indicating that injured neurons are alive even under disease states. Protein misfolding/aggregation in axons and distal dominant axonal degeneration are observed in a subgroup of degenerative diseases and in certain experimental conditions. Moreover, therapeutic approaches towards axonal protection are effective in neurodegenerative disease mouse models; (a) axonal regeneration, (b) anti-Wallerian degeneration, (c) autophagy enhancement, and (d) stabilization of microtubules. These studies demonstrate that axonal protection/functional repair of axons can be general therapeutic interventions for neurodegenerative diseases.


Amyotrophic Lateral Sclerosis Amyotrophic Lateral Sclerosis Patient Axonal Regeneration Axonal Degeneration Neuronal Dysfunction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Palop JJ, Chin J, Mucke L (2006) A network dysfunction perspective on neurodegenerative diseases. Nature 443:768–773PubMedCrossRefGoogle Scholar
  2. 2.
    Yamamoto A, Lucas JJ, Hen R (2000) Reversal of neuropathology and motor dysfunction in a conditional model of Huntington’s disease. Cell 101:57–66PubMedCrossRefGoogle Scholar
  3. 3.
    Orr HT, Zoghbi HY. (2000) Reversing neurodegeneration: a promise unfolds. Cell 101:1–4PubMedCrossRefGoogle Scholar
  4. 4.
    Wang J, Wang C-E, Orr A, Tydlacka S, Li S-H, Li X-J (2008) Impaired ubiquitin – proteasome system activity in the synapses of Huntington’s disease mice. J Cell Biol 180:1177–1189PubMedCrossRefGoogle Scholar
  5. 5.
    Eberhardt O,Coelln RV, Kugler S, Lindenau J, Rathke-Hartlieb S, Gerhardt E, Haid S, Isenmann S, Gravel C, Srinivasan A et al. (2000) Protection by synergistic effects of adenovirus-mediated X chromosome-linked inhibitor of apoptosis and glial cell line-derived neurotrophic factor gene transfer in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease. J Neurosci 20:9126–9134PubMedGoogle Scholar
  6. 6.
    Vila M, Jackson-Lewis V, Vukosavic S, Djaldetti R, Liberatore G, Offen D, Korsmeyer SJ, Przedborski S (2001) Bax ablation prevents dopaminergic neurodegeneration in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. Proc Natl Acad Sci USA 98:2837–2842PubMedCrossRefGoogle Scholar
  7. 7.
    Inoue H, Tsukita K, Iwasato T, Suzuki Y, Tomioka M, Tateno M, Nagao M, Kawata A, Saido TC, Miura M et al. (2003) The crucial role of caspase-9 in the disease progression of a transgenic ALS mouse model. EMBO J 22:6665–6674PubMedCrossRefGoogle Scholar
  8. 8.
    Gould TW, Buss RR, Vinsant S, Prevette D, Sun W, Knudson CM, Milligan CE, Oppenheim (2006) Complete dissociation of motor neuron death from motor dysfunction by Bax deletion in a mouse model of ALS. J Neurosci 26:8774–8786PubMedCrossRefGoogle Scholar
  9. 9.
    Fischer LR, Glass JD (2007) Axonal degeneration in motor neuron disease. Neurodegener Dis 4:431–442PubMedCrossRefGoogle Scholar
  10. 10.
    Sagot Y, Vejsada R, Kato A (1997) Clinical and molecular aspects of motoneurone diseases: animal models, neurotrophic factors and Bcl-2 oncoprotein. Trends Pharmacol Sci 18:330–337PubMedGoogle Scholar
  11. 11.
    Finn JT, Weil M, Archer F, Siman R, Srinivasan A, Raff MC (2000) Evidence that Wallerian degeneration and localized axon degeneration induced by local neurotrophin deprivation do not involve caspases. J Neurosci 20:1333–1341PubMedGoogle Scholar
  12. 12.
    Orimo S, Uchihara T, Nakamura A, Mori F, Kakita A, Wakabayashi K, Takahashi H (2008) Axonal α-synuclein aggregates herald centripetal degeneration of cardiac sympathetic nerve in Parkinson’s disease. Brain 131:642–650PubMedCrossRefGoogle Scholar
  13. 13.
    Bradley WG, Good P, Rasool CG, Adelman LS (1983) Morphometric and biochemical studies of peripheral nerves in amyotrophic lateral sclerosis. Ann Neurol 14:267–277PubMedCrossRefGoogle Scholar
  14. 14.
    Fischer LR, Culver DG, Tennant P, Davis AA, Wang M, Castellano-Sanchez A, Khan J, Polak MA, Glass JD (2004) Amyotrophic lateral sclerosis is a distal axonopathy: evidence in mice and man. Exp Neurol 185:232–240PubMedCrossRefGoogle Scholar
  15. 15.
    Kanai K, Kuwabara S, Misawa S, Tamura N, Ogawara K, Nakata M, Sawai S, Hattori T, Bostock H (2006) Altered axonal excitability properties in amyotrophic lateral sclerosis: impaired potassium channel function related to disease stage. Brain 129:953–962PubMedCrossRefGoogle Scholar
  16. 16.
    Vucic S, Kiernan MC (2006) Axonal excitability properties in amyotrophic lateral sclerosis. Clin Neurophysiol 117:1458–1466PubMedCrossRefGoogle Scholar
  17. 17.
    Nakata M, Kuwabara S, Kanai K, Misawa S, Tamura N, Sawai S, Hattori T, Bostock H (2006) Distal excitability changes in motor axons in amyotrophic lateral sclerosis. Clin Neurophysiol 117:1444–1448PubMedCrossRefGoogle Scholar
  18. 18.
    Pasinelli P, Brown RH (2006) Molecular biology of amyotrophic lateral sclerosis: insights from genetics. Nat Rev Neurosci 7:710–723PubMedCrossRefGoogle Scholar
  19. 19.
    Coleman M (2005) Axon degeneration mechanisms: commonality amid diversity. Nat Rev Neurosci 6:889–898PubMedCrossRefGoogle Scholar
  20. 20.
    Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, Yokoyama M, Mishima K, Saito I, Okano H et al. (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441:885–889PubMedCrossRefGoogle Scholar
  21. 21.
    Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, Ueno T, Koike M, Uchiyama Y, Kominami E et al. (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441:880–884PubMedCrossRefGoogle Scholar
  22. 22.
    Komatsu M, Wang QJ, Holstein GR, Friedrich VL Jr, Iwata J, Kominami E, Chait BT, Tanaka K, Yue Z. (2007) Essential role for autophagy protein Atg7 in the maintenance of axonal homeostasis and the prevention of axonal degeneration. Proc Natl Acad Sci USA 104:14489–14494PubMedCrossRefGoogle Scholar
  23. 23.
    Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451:1069–1075PubMedCrossRefGoogle Scholar
  24. 24.
    Komatsu M, Waguri S, Koike M, Sou Y, Ueno T, Hara T, Mizushima N, Iwata J, Ezaki J, Murata S et al. (2007) Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 131:1149–1163PubMedCrossRefGoogle Scholar
  25. 25.
    Matsuda S, Miura E, Matsuda K, Kakegawa W, Kohda K, Watanabe M, Yuzaki M (2008) Accumulation of AMPA receptors in autophagosomes in neuronal axons lacking adaptor protein AP-4. Neuron 57:730–745PubMedCrossRefGoogle Scholar
  26. 26.
    Inoue H, Lin L, Lee X, Shao Z, Mendes S, Snodgrass-Belt P, Sweigard H, Engber T, Pepinsky B, Yang L et al. (2007) Inhibition of the leucine-rich repeat protein LINGO-1 enhances survival, structure, and function of dopaminergic neurons in Parkinson’s disease models. Proc Natl Acad Sci USA 104:14430–14435PubMedCrossRefGoogle Scholar
  27. 27.
    Bandtlow C, Dechant G (2004) From cell death to neuronal regeneration, effects of the p75 neurotrophin receptor depend on interactions with partner subunits. Sci STKE 235:pe24Google Scholar
  28. 28.
    Mi S, Sandrock A, Miller RH (2008) LINGO-1 and its role in CNS repair. Int J Biochem Cell Biol 40:1971–1978PubMedCrossRefGoogle Scholar
  29. 29.
    Wang J, So K-F, McCoy JM, Pepinsky RB, Mi S, Relton JK (2006) LINGO-1 antagonist promotes functional recovery and axonal sprouting after spinal cord injury. Mol Cell Neurosci 33:311–320PubMedCrossRefGoogle Scholar
  30. 30.
    Trifunovski A, Josephson A, Ringman A, Brene S, Spenger C, Olson L (2004) Neuronal activity-induced regulation of Lingo-1. Neuroreport 15:2397–2400PubMedCrossRefGoogle Scholar
  31. 31.
    Araki T, Sasaki Y, Milbrandt J (2004) Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science 305:1010–1013PubMedCrossRefGoogle Scholar
  32. 32.
    Sajadi A, Schneider BL, Aebischer P (2004) WldS-mediated protection of dopaminergic fibers in an animal model of Parkinson disease. Curr Biol 14:326–330PubMedGoogle Scholar
  33. 33.
    Mi W, Beirowski B, Gillingwater TH, Adalbert R, Wagner D, Grumme D, Osaka H, Conforti L, Arnhold S, Addicks K et al. (2005) The slow Wallerian degeneration gene, WldS, inhibits axonal spheroid pathology in gracile axonal dystrophy mice. Brain 128:405–416PubMedCrossRefGoogle Scholar
  34. 34.
    Fischer LR, Culver DG, Davis AA, Tennant P, Wang M, Coleman M, Asress S, Adalbert R, Alexander GM, Glass JD (2005) The WldS gene modestly prolongs survival in the SOD1G93A fALS mouse. Neurobiol Dis 19:293–300PubMedCrossRefGoogle Scholar
  35. 35.
    Vande Velde C, Garcia ML, Yin X, Trapp BD, Cleveland DW (2004) The neuroprotective factor WldS does not attenuate mutant SOD1-mediated motor neuron disease. Neuromolecular Med 5:193–204PubMedCrossRefGoogle Scholar
  36. 36.
    Ravikumar B, Vacher C, Berger Z, Davies JE, Luo S, Oroz LG, Scaravilli F, Easton DF, Duden R, O’Kane CJ et al. (2004) Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet 36:585–595PubMedCrossRefGoogle Scholar
  37. 37.
    Sarkar S, Perlstein EO, Imarisio S, Pineau S, Cordenier A, Maglathlin RL, Webster JA, Lewis TA, O’Kane CJ, Schreiber SL et al. (2007) Small molecules enhance autophagy and reduce toxicity in Huntington’s disease models. Nat Chem Biol 3:331–338PubMedCrossRefGoogle Scholar
  38. 38.
    Ehninger D, Han S, Shilyansky C, Zhou Y, Li W, Kwiatkowski DJ, Ramesh V, Silva AJ (2008) Reversal of learning deficits in a $Tsc2+/-$ mouse model of tuberous sclerosis. Nat Med. 14:843–848PubMedCrossRefGoogle Scholar
  39. 39.
    Zhang B, Maiti A, Shively S, Lakhani F, McDonald-Jones G, Bruce J, Lee E B, Xie S X, Joyce S, Li C et al. (2005) Microtubule-binding drugs offset tau sequestration by stabilizing microtubules and reversing fast axonal transport deficits in a tauopathy model. Proc Natl Acad Sci USA 102:227–231PubMedCrossRefGoogle Scholar
  40. 40.
    Yamashita T, Tohyama M (2003) The p75 receptor acts as a displacement factor that release Rho from Rho-GDI. Nat Neurosci. 6:461–467PubMedGoogle Scholar
  41. 41.
    Hasegawa Y, Yamagishi S, Fujitani M, Yamashita T (2004) p75 neurotrophin receptor signaling in the nervous system. Biotechnol Annu Rev.10:123–149PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Haruhisa Inoue
    • 1
  • Takayuki Kondo
  • Ling Lin
  • Sha Mi
  • Ole Isacson
  • Ryosuke Takahashi
  1. 1.Department of NeurologyKyoto University Graduate School of MedicineSakyo-kuJapan

Personalised recommendations