Intrinsic Disorder in Proteins Associated with Neurodegenerative Diseases

  • Vladimir N. Uversky
Part of the Focus on Structural Biology book series (FOSB, volume 7)


Neurodegenerative diseases constitute a set of pathological conditions originating from the slow, irreversible and systemic cell loss within the various regions of the brain and/or the spinal cord. Depending on the affected region, the outcomes of the neurodegeneration are very broad, starting from the problems with movements and ending with dementia. Neurodegenerative diseases are proteinopathies associated with misbehavior and disarrangement of a specific protein, affecting its processing, functioning, and/or folding. Many proteins associated with human neurodegenerative diseases are intrinsically disordered; i.e., they lack stable tertiary and/or secondary structure under physiological conditions in vitro. The major goal of this chapter is to uncover intriguing interconnections between intrinsic disorder and human neurodegenerative diseases.


Multiple System Atrophy Dementia With Lewy Body Spinal Muscular Atrophy Prion Disease Intrinsic Disorder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dunker AK, Lawson JD, Brown CJ, Williams RM, Romero P, Oh JS, Oldfield CJ, Campen AM, Ratliff CM, Hipps KW et al (2001) Intrinsically disordered protein. J Mol Graph Model 19(1):26–59.PubMedCrossRefGoogle Scholar
  2. 2.
    Schweers O, Schonbrunn-Hanebeck E, Marx A, Mandelkow E (1994) Structural studies of tau protein and Alzheimer paired helical filaments show no evidence for beta-structure. J Biol Chem 269(39):24290–24297.PubMedGoogle Scholar
  3. 3.
    Weinreb PH, Zhen W, Poon AW, Conway KA, Lansbury PT, Jr. (1996) NACP, a protein implicated in Alzheimer’s disease and learning, is natively unfolded. Biochemistry 35(43):13709–13715.PubMedCrossRefGoogle Scholar
  4. 4.
    Wright PE, Dyson HJ (1999) Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J Mol Biol 293(2):321–331.PubMedCrossRefGoogle Scholar
  5. 5.
    Daughdrill GW, Pielak GJ, Uversky VN, Cortese MS, Dunker AK (2005) Natively disordered proteins. In: Buchner J, Kiefhaber T (eds.) Handbook of Protein Folding. Wiley-VCH, Verlag GmbH & Co. KGaA, Weinheim, Germany. 271–353.Google Scholar
  6. 6.
    Fink AL (2005) Natively unfolded proteins. Curr Opin Struct Biol 15(1):35–41.PubMedCrossRefGoogle Scholar
  7. 7.
    Uversky VN (2003) Protein folding revisited. A polypeptide chain at the folding-misfolding-nonfolding cross-roads: which way to go? Cell Mol Life Sci 60(9):1852–1871.PubMedCrossRefGoogle Scholar
  8. 8.
    Uversky VN, Ptitsyn OB (1994) “Partly folded” state, a new equilibrium state of protein molecules: four-state guanidinium chloride-induced unfolding of beta-lactamase at low temperature. Biochemistry 33(10):2782–2791.PubMedCrossRefGoogle Scholar
  9. 9.
    Uversky VN, Ptitsyn OB (1996) Further evidence on the equilibrium “pre-molten globule state”: four-state guanidinium chloride-induced unfolding of carbonic anhydrase B at low temperature. J Mol Biol 255(1):215–228.PubMedCrossRefGoogle Scholar
  10. 10.
    Ringe D, Petsko GA (1986) Study of protein dynamics by X-ray diffraction. Meth Enzymol 131:389–433.PubMedCrossRefGoogle Scholar
  11. 11.
    Dyson HJ, Wright PE (2002) Insights into the structure and dynamics of unfolded proteins from nuclear magnetic resonance. Adv Protein Chem 62:311–340.PubMedCrossRefGoogle Scholar
  12. 12.
    Bracken C, Iakoucheva LM, Romero PR, Dunker AK (2004) Combining prediction, computation and experiment for the characterization of protein disorder. Curr Opin Struct Biol 14(5):570–576.PubMedCrossRefGoogle Scholar
  13. 13.
    Dyson HJ, Wright PE (2004) Unfolded proteins and protein folding studied by NMR. Chem Rev 104(8):3607–3622.PubMedCrossRefGoogle Scholar
  14. 14.
    Dyson HJ, Wright PE (2005) Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol 6(3):197–208.PubMedCrossRefGoogle Scholar
  15. 15.
    Dyson HJ, Wright PE (2005) Elucidation of the protein folding landscape by NMR. Meth Enzymol 394:299–321.PubMedCrossRefGoogle Scholar
  16. 16.
    Fasman GD (1996) Circular dichroism and the conformational analysis of biomolecules. Plenum Press, New York.Google Scholar
  17. 17.
    Adler AJ, Greenfield NJ, Fasman GD (1973) Circular dichroism and optical rotatory dispersion of proteins and polypeptides. Meth Enzymol 27:675–735.PubMedCrossRefGoogle Scholar
  18. 18.
    Provencher SW, Glockner J (1981) Estimation of globular protein secondary structure from circular dichroism. Biochemistry 20(1):33–37.PubMedCrossRefGoogle Scholar
  19. 19.
    Woody RW (1995) Circular dichroism. Meth Enzymol 246:34–71.PubMedCrossRefGoogle Scholar
  20. 20.
    Uversky VN, Gillespie JR, Fink AL (2000) Why are “natively unfolded” proteins unstructured under physiologic conditions? Proteins 41(3):415–427.PubMedCrossRefGoogle Scholar
  21. 21.
    Smyth E, Syme CD, Blanch EW, Hecht L, Vasak M, Barron LD (2001) Solution structure of native proteins with irregular folds from Raman optical activity. Biopolymers 58(2):138–151.PubMedCrossRefGoogle Scholar
  22. 22.
    Uversky VN (1999) A multiparametric approach to studies of self-organization of globular proteins. Biochemistry (Mosc) 64(3):250–266.Google Scholar
  23. 23.
    Receveur-Brechot V, Bourhis JM, Uversky VN, Canard B, Longhi S (2006) Assessing protein disorder and induced folding. Proteins 62(1):24–45.PubMedCrossRefGoogle Scholar
  24. 24.
    Markus G (1965) Protein substrate conformation and proteolysis. Proc Natl Acad Sci U S A 54:253–258.PubMedCrossRefGoogle Scholar
  25. 25.
    Mikhalyi E (1978) Application of proteolytic enzymes to protein structure studies. CRC Press, Boca RatonGoogle Scholar
  26. 26.
    Hubbard SJ, Eisenmenger F, Thornton JM (1994) Modeling studies of the change in conformation required for cleavage of limited proteolytic sites. Protein Sci 3:757–768.PubMedGoogle Scholar
  27. 27.
    Fontana A, de Laureto PP, de Filippis V, Scaramella E, Zambonin M (1997) Probing the partly folded states of proteins by limited proteolysis. Fold Des 2:R17–R26.PubMedCrossRefGoogle Scholar
  28. 28.
    Fontana A, de Laureto PP, Spolaore B, Frare E, Picotti P, Zambonin M (2004) Probing protein structure by limited proteolysis. Acta Biochim Pol 51(2):299–321.PubMedGoogle Scholar
  29. 29.
    Iakoucheva LM, Kimzey AL, Masselon CD, Smith RD, Dunker AK, Ackerman EJ (2001) Aberrant mobility phenomena of the DNA repair protein XPA. Protein Sci 10:1353–1362.PubMedCrossRefGoogle Scholar
  30. 30.
    Tompa P (2002) Intrinsically unstructured proteins. Trends Biochem Sci 27(10):527–533.PubMedCrossRefGoogle Scholar
  31. 31.
    Privalov PL (1979) Stability of proteins: small globular proteins. Adv Protein Chem 33:167–241.PubMedCrossRefGoogle Scholar
  32. 32.
    Ptitsyn O (1995) Molten globule and protein folding. Adv Protein Chem 47:83–229.PubMedCrossRefGoogle Scholar
  33. 33.
    Ptitsyn OB, Uversky VN (1994) The molten globule is a third thermodynamical state of protein molecules. FEBS Lett 341:15–18.PubMedCrossRefGoogle Scholar
  34. 34.
    Uversky VN, Ptitsyn OB (1996) All-or-none solvent-induced transitions between native, molten globule and unfolded states in globular proteins. Fold Des 1(2):117–122.PubMedCrossRefGoogle Scholar
  35. 35.
    Westhof E, Altschuh D, Moras D, Bloomer AC, Mondragon A, Klug A, Van Regenmortel MH (1984) Correlation between segmental mobility and the location of antigenic determinants in proteins. Nature 311(5982):123–126.PubMedCrossRefGoogle Scholar
  36. 36.
    Berzofsky JA (1985) Intrinsic and extrinsic factors in protein antigenic structure. Science 229(4717):932–940.PubMedCrossRefGoogle Scholar
  37. 37.
    Kaltashov IA, Mohimen A (2005) Estimates of protein surface areas in solution by electrospray ionization mass spectrometry. Anal Chem 77(16):5370–5379.PubMedCrossRefGoogle Scholar
  38. 38.
    Uversky VN (2002) Natively unfolded proteins: a point where biology waits for physics. Protein Sci 11(4):739–756.PubMedCrossRefGoogle Scholar
  39. 39.
    Romero P, Obradovic Z, Li X, Garner EC, Brown CJ, Dunker AK (2001) Sequence complexity of disordered protein. Proteins 42(1):38–48.PubMedCrossRefGoogle Scholar
  40. 40.
    Williams RM, Obradovic Z, Mathura V, Braun W, Garner EC, Young J, Takayama S, Brown CJ, Dunker AK (2001) The protein non-folding problem: amino acid determinants of intrinsic order and disorder. Pac Symp Biocomput:89–100.Google Scholar
  41. 41.
    Radivojac P, Iakoucheva LM, Oldfield CJ, Obradovic Z, Uversky VN, Dunker AK (2007) Intrinsic disorder and functional proteomics. Biophys J 92(5):1439–1456.PubMedCrossRefGoogle Scholar
  42. 42.
    Li X, Romero P, Rani M, Dunker AK, Obradovic Z (1999) Predicting protein disorder for N-, C-, and internal regions. Genome Inform Ser Workshop Genome Inform 10:30–40.PubMedGoogle Scholar
  43. 43.
    Liu J, Rost B (2003) NORSp: Predictions of long regions without regular secondary structure. Nucleic Acids Res 31(13):3833–3835.PubMedCrossRefGoogle Scholar
  44. 44.
    Linding R, Jensen LJ, Diella F, Bork P, Gibson TJ, Russell RB (2003) Protein disorder prediction: implications for structural proteomics. Structure 11(11):1453–1459.PubMedCrossRefGoogle Scholar
  45. 45.
    Linding R, Russell RB, Neduva V, Gibson TJ (2003) GlobPlot: exploring protein sequences for globularity and disorder. Nucleic Acids Res 31(13):3701–3708.PubMedCrossRefGoogle Scholar
  46. 46.
    Prilusky J, Felder CE, Zeev-Ben-Mordehai T, Rydberg EH, Man O, Beckmann JS, Silman I, Sussman JL (2005) FoldIndex: a simple tool to predict whether a given protein sequence is intrinsically unfolded. Bioinformatics 21(16):3435–3438.PubMedCrossRefGoogle Scholar
  47. 47.
    Dosztanyi Z, Csizmok V, Tompa P, Simon I (2005) IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics 21(16):3433–3434.PubMedCrossRefGoogle Scholar
  48. 48.
    Jones DT, Ward JJ (2003) Prediction of disordered regions in proteins from position specific score matrices. Proteins 53 (Suppl 6):573–578.PubMedCrossRefGoogle Scholar
  49. 49.
    Ward JJ, McGuffin LJ, Bryson K, Buxton BF, Jones DT (2004) The DISOPRED server for the prediction of protein disorder. Bioinformatics 20(13):2138–2139.PubMedCrossRefGoogle Scholar
  50. 50.
    Ward JJ, Sodhi JS, McGuffin LJ, Buxton BF, Jones DT (2004) Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J Mol Biol 337(3):635–645.PubMedCrossRefGoogle Scholar
  51. 51.
    Dunker AK, Obradovic Z, Romero P, Garner EC, Brown CJ (2000) Intrinsic protein disorder in complete genomes. Genome Inform Ser Workshop Genome Inform 11:161–171.PubMedGoogle Scholar
  52. 52.
    Oldfield CJ, Cheng Y, Cortese MS, Brown CJ, Uversky VN, Dunker AK (2005) Comparing and combining predictors of mostly disordered proteins. Biochemistry 44(6):1989–2000.PubMedCrossRefGoogle Scholar
  53. 53.
    Dunker AK, Brown CJ, Lawson JD, Iakoucheva LM, Obradovic Z (2002) Intrinsic disorder and protein function. Biochemistry 41(21):6573–6582.PubMedCrossRefGoogle Scholar
  54. 54.
    Dunker AK, Brown CJ, Obradovic Z (2002) Identification and functions of usefully disordered proteins. Adv Protein Chem 62:25–49.PubMedCrossRefGoogle Scholar
  55. 55.
    Dunker AK, Cortese MS, Romero P, Iakoucheva LM, Uversky VN (2005) Flexible nets. The roles of intrinsic disorder in protein interaction networks. FEBS J 272(20):5129–5148.PubMedCrossRefGoogle Scholar
  56. 56.
    Dunker AK, Garner E, Guilliot S, Romero P, Albrecht K, Hart J, Obradovic Z, Kissinger C, Villafranca JE (1998) Protein disorder and the evolution of molecular recognition: theory, predictions and observations. Pac Symp Biocomput:473–484.Google Scholar
  57. 57.
    Dunker AK, Obradovic Z (2001) The protein trinity–linking function and disorder. Nat Biotechnol 19(9):805–806.PubMedCrossRefGoogle Scholar
  58. 58.
    Tompa P (2005) The interplay between structure and function in intrinsically unstructured proteins. FEBS Lett 579(15):3346–3354.PubMedCrossRefGoogle Scholar
  59. 59.
    Tompa P, Csermely P (2004) The role of structural disorder in the function of RNA and protein chaperones. FASEB J 18(11):1169–1175.PubMedCrossRefGoogle Scholar
  60. 60.
    Tompa P, Szasz C, Buday L (2005) Structural disorder throws new light on moonlighting. Trends Biochem Sci 30(9):484–489.PubMedCrossRefGoogle Scholar
  61. 61.
    Uversky VN (2002) What does it mean to be natively unfolded? Eur J Biochem 269(1):2–12.PubMedCrossRefGoogle Scholar
  62. 62.
    Xie H, Vucetic S, Iakoucheva LM, Oldfield CJ, Dunker AK, Uversky VN, Obradovic Z (2007) Functional anthology of intrinsic disorder. 1. Biological processes and functions of proteins with long disordered regions. J Proteome Res 6(5):1882–1898.PubMedCrossRefGoogle Scholar
  63. 63.
    Vucetic S, Xie H, Iakoucheva LM, Oldfield CJ, Dunker AK, Obradovic Z, Uversky VN (2007) Functional anthology of intrinsic disorder. 2. Cellular components, domains, technical terms, developmental processes, and coding sequence diversities correlated with long disordered regions. J Proteome Res 6(5):1899–1916.PubMedCrossRefGoogle Scholar
  64. 64.
    Xie H, Vucetic S, Iakoucheva LM, Oldfield CJ, Dunker AK, Obradovic Z, Uversky VN (2007) Functional anthology of intrinsic disorder. 3. Ligands, post-translational modifications, and diseases associated with intrinsically disordered proteins. J Proteome Res 6(5):1917–1932.PubMedCrossRefGoogle Scholar
  65. 65.
    Uversky VN, Oldfield CJ, Dunker AK (2005) Showing your ID: intrinsic disorder as an ID for recognition, regulation and cell signaling. J Mol Recognit 18(5):343–384.PubMedCrossRefGoogle Scholar
  66. 66.
    Iakoucheva LM, Brown CJ, Lawson JD, Obradovic Z, Dunker AK (2002) Intrinsic disorder in cell-signaling and cancer-associated proteins. J Mol Biol 323:573–584.PubMedCrossRefGoogle Scholar
  67. 67.
    Glenner GG, Wong CW (1984) Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 120(3):885–890.PubMedCrossRefGoogle Scholar
  68. 68.
    Ueda K, Fukushima H, Masliah E, Xia Y, Iwai A, Yoshimoto M, Otero DA, Kondo J, Ihara Y, Saitoh T (1993) Molecular cloning of cDNA encoding an unrecognized component of amyloid in Alzheimer disease. Proc Natl Acad Sci U S A 90(23):11282–11286.PubMedCrossRefGoogle Scholar
  69. 69.
    Lee VM, Balin BJ, Otvos L, Jr., Trojanowski JQ (1991) A68: a major subunit of paired helical filaments and derivatized forms of normal Tau. Science 251(4994):675–678.PubMedCrossRefGoogle Scholar
  70. 70.
    Wisniewski KE, Dalton AJ, McLachlan C, Wen GY, Wisniewski HM (1985) Alzheimer’s disease in Down’s syndrome: clinicopathologic studies. Neurology 35(7):957–961.PubMedGoogle Scholar
  71. 71.
    Dev KK, Hofele K, Barbieri S, Buchman VL, van der Putten H (2003) Part II: alpha-synuclein and its molecular pathophysiological role in neurodegenerative disease. Neuropharmacology 45(1):14–44.PubMedCrossRefGoogle Scholar
  72. 72.
    Prusiner SB (2001) Shattuck lecture–neurodegenerative diseases and prions. N Engl J Med 344(20):1516–1526.PubMedCrossRefGoogle Scholar
  73. 73.
    Zoghbi HY, Orr HT (1999) Polyglutamine diseases: protein cleavage and aggregation. Curr Opin Neurobiol 9(5):566–570.PubMedCrossRefGoogle Scholar
  74. 74.
    Sickmeier M, Hamilton JA, LeGall T, Vacic V, Cortese MS, Tantos A, Szabo B, Tompa P, Chen J, Uversky VN et al (2007) DisProt: the database of disordered proteins. Nucleic Acids Res 35(Database issue):D786–793.Google Scholar
  75. 75.
    Vacic V, Uversky VN, Dunker AK, Lonardi S (2007) Composition Profiler: a tool for discovery and visualization of amino acid composition differences. BMC Bioinformatics 8:211.PubMedCrossRefGoogle Scholar
  76. 76.
    Hebert LE, Scherr PA, Bienias JL, Bennett DA, Evans DA (2003) Alzheimer disease in the US population: prevalence estimates using the 2000 census. Arch Neurol 60(8):1119–1122.PubMedCrossRefGoogle Scholar
  77. 77.
    Schumock GT (1998) Economic considerations in the treatment and management of Alzheimer’s disease. Am J Health Syst Pharm 55(Suppl 2):S17–S21.PubMedGoogle Scholar
  78. 78.
    Alzheimer A (1907) Über eine eigenartige Eskrankung der Nirnrinde. Allg Z Psychiatr Psych-Gerichtl 64:146–148.Google Scholar
  79. 79.
    Helmer C, Joly P, Letenneur L, Commenges D, Dartigues JF (2001) Mortality with dementia: results from a French prospective community-based cohort. Am J Epidemiol 154(7):642–648.PubMedCrossRefGoogle Scholar
  80. 80.
    Aronson MK, Ooi WL, Geva DL, Masur D, Blau A, Frishman W (1991) Dementia. Age-dependent incidence, prevalence, and mortality in the old. Arch Intern Med 151(5):989–992.PubMedCrossRefGoogle Scholar
  81. 81.
    McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s disease. Neurology 34(7):939–944.PubMedGoogle Scholar
  82. 82.
    Nussbaum RL, Ellis CE (2003) Alzheimer’s disease and Parkinson’s disease. N Engl J Med 348(14):1356–1364.PubMedCrossRefGoogle Scholar
  83. 83.
    Campion D, Dumanchin C, Hannequin D, Dubois B, Belliard S, Puel M, Thomas-Anterion C, Michon A, Martin C, Charbonnier F et al (1999) Early-onset autosomal dominant Alzheimer disease: prevalence, genetic heterogeneity, and mutation spectrum. Am J Hum Genet 65(3):664–670.PubMedCrossRefGoogle Scholar
  84. 84.
    Clark CM, Ewbank D, Lee VM-Y, Trojanowski JQ (1998) Molecular pathology of Alzheimer’s disease: neuronal cytoskeletal abnormalities. In: Growdon JH, Rossor MN (eds.) The dementias Vol 19 of Blue books of practical neurology. Butterworth–Heinemann, Boston. 285–304.Google Scholar
  85. 85.
    Van Gassen G, Annaert W, Van Broeckhoven C (2000) Binding partners of Alzheimer’s disease proteins: are they physiologically relevant? Neurobiol Dis 7(3):135–151.PubMedCrossRefGoogle Scholar
  86. 86.
    Mattson MP (2004) Pathways towards and away from Alzheimer’s disease. Nature 430(7000):631–639.PubMedCrossRefGoogle Scholar
  87. 87.
    Van Nostrand WE, Schmaier AH, Wagner SL (1992) Potential role of protease nexin-2/amyloid beta-protein precursor as a cerebral anticoagulant. Ann N Y Acad Sci 674:243–252.PubMedCrossRefGoogle Scholar
  88. 88.
    Schmaier AH, Dahl LD, Rozemuller AJ, Roos RA, Wagner SL, Chung R, Van Nostrand WE (1993) Protease nexin-2/amyloid beta protein precursor. A tight-binding inhibitor of coagulation factor IXa. J Clin Invest 92(5):2540–2545.PubMedCrossRefGoogle Scholar
  89. 89.
    Gao Y, Pimplikar SW (2001) The gamma – secretase-cleaved C-terminal fragment of amyloid precursor protein mediates signaling to the nucleus. Proc Natl Acad Sci U S A 98(26):14979–14984.PubMedCrossRefGoogle Scholar
  90. 90.
    Cao X, Sudhof TC (2004) Dissection of amyloid-beta precursor protein-dependent transcriptional transactivation. J Biol Chem 279(23):24601–24611.PubMedCrossRefGoogle Scholar
  91. 91.
    von Rotz RC, Kohli BM, Bosset J, Meier M, Suzuki T, Nitsch RM, Konietzko U (2004) The APP intracellular domain forms nuclear multiprotein complexes and regulates the transcription of its own precursor. J Cell Sci 117(Pt 19):4435–4448.CrossRefGoogle Scholar
  92. 92.
    Leissring MA, Murphy MP, Mead TR, Akbari Y, Sugarman MC, Jannatipour M, Anliker B, Muller U, Saftig P, De Strooper B et al (2002) A physiologic signaling role for the gamma – secretase-derived intracellular fragment of APP. Proc Natl Acad Sci U S A 99(7):4697–4702.PubMedCrossRefGoogle Scholar
  93. 93.
    Mesulam MM (2000) Aging, Alzheimer’s disease and dementia. In: Mesulam MM (ed.) Principles of Behavioral and Cognitive Neurology. 2 edn. Oxford University Press, Oxford. 439–510.Google Scholar
  94. 94.
    Kayed R, Head E, Thompson JL, McIntire TM, Milton SC, Cotman CW, Glabe CG (2003) Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300(5618):486–489.PubMedCrossRefGoogle Scholar
  95. 95.
    Berg L, McKeel DW, Jr., Miller JP, Storandt M, Rubin EH, Morris JC, Baty J, Coats M, Norton J, Goate AM et al (1998) Clinicopathologic studies in cognitively healthy aging and Alzheimer’s disease: relation of histologic markers to dementia severity, age, sex, and apolipoprotein E genotype. Arch Neurol 55(3):326–335.PubMedCrossRefGoogle Scholar
  96. 96.
    Price JL, Morris JC (1999) Tangles and plaques in nondemented aging and “preclinical” Alzheimer’s disease. Ann Neurol 45(3):358–368.PubMedCrossRefGoogle Scholar
  97. 97.
    Simmons LK, May PC, Tomaselli KJ, Rydel RE, Fuson KS, Brigham EF, Wright S, Lieberburg I, Becker GW, Brems DN et al (1994) Secondary structure of amyloid beta peptide correlates with neurotoxic activity in vitro. Mol Pharmacol 45(3):373–379.PubMedGoogle Scholar
  98. 98.
    Walsh DM, Klyubin I, Fadeeva JV, Rowan MJ, Selkoe DJ (2002) Amyloid-beta oligomers: their production, toxicity and therapeutic inhibition. Biochem Soc Trans 30(4):552–557.PubMedCrossRefGoogle Scholar
  99. 99.
    Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS, Rowan MJ, Selkoe DJ (2002) Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416(6880):535–539.PubMedCrossRefGoogle Scholar
  100. 100.
    Hartley DM, Walsh DM, Ye CP, Diehl T, Vasquez S, Vassilev PM, Teplow DB, Selkoe DJ (1999) Protofibrillar intermediates of amyloid beta-protein induce acute electrophysiological changes and progressive neurotoxicity in cortical neurons. J Neurosci 19(20):8876–8884.PubMedGoogle Scholar
  101. 101.
    Klein WL, Krafft GA, Finch CE (2001) Targeting small Abeta oligomers: the solution to an Alzheimer’s disease conundrum? Trends Neurosci 24(4):219–224.PubMedCrossRefGoogle Scholar
  102. 102.
    Gravina SA, Ho L, Eckman CB, Long KE, Otvos L, Jr., Younkin LH, Suzuki N, Younkin SG (1995) Amyloid beta protein (A beta) in Alzheimer’s disease brain. Biochemical and immunocytochemical analysis with antibodies specific for forms ending at A beta 40 or A beta 42(43). J Biol Chem 270(13):7013–7016.PubMedCrossRefGoogle Scholar
  103. 103.
    Hardy J (1997) Amyloid, the presenilins and Alzheimer’s disease. Trends Neurosci 20(4):154–159.PubMedCrossRefGoogle Scholar
  104. 104.
    Barrow CJ, Zagorski MG (1991) Solution structures of beta peptide and its constituent fragments: relation to amyloid deposition. Science 253(5016):179–182.PubMedCrossRefGoogle Scholar
  105. 105.
    Harper JD, Lansbury PT, Jr. (1997) Models of amyloid seeding in Alzheimer’s disease and scrapie: mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins. Annu Rev Biochem 66:385–407.PubMedCrossRefGoogle Scholar
  106. 106.
    Kirkitadze MD, Condron MM, Teplow DB (2001) Identification and characterization of key kinetic intermediates in amyloid beta-protein fibrillogenesis. J Mol Biol 312(5):1103–1119.PubMedCrossRefGoogle Scholar
  107. 107.
    Maat-Schieman M, Roos R, van Duinen S (2005) Hereditary cerebral hemorrhage with amyloidosis-Dutch type. Neuropathology 25(4):288–297.PubMedCrossRefGoogle Scholar
  108. 108.
    van Duinen SG, Castano EM, Prelli F, Bots GT, Luyendijk W, Frangione B (1987) Hereditary cerebral hemorrhage with amyloidosis in patients of Dutch origin is related to Alzheimer disease. Proc Natl Acad Sci U S A 84(16):5991–5994.PubMedCrossRefGoogle Scholar
  109. 109.
    Himmler A (1989) Structure of the bovine tau gene: alternatively spliced transcripts generate a protein family. Mol Cell Biol 9(4):1389–1396.PubMedGoogle Scholar
  110. 110.
    Himmler A, Drechsel D, Kirschner MW, Martin DW, Jr. (1989) Tau consists of a set of proteins with repeated C-terminal microtubule-binding domains and variable N-terminal domains. Mol Cell Biol 9(4):1381–1388.PubMedGoogle Scholar
  111. 111.
    Goedert M (2003) Introduction to the Tauopathies. In: Dickson DW (ed.) Neurodegeneration: the molecular pathology of dementia and movement disorders. ISN Neuropath Press, Basel. 82–85.Google Scholar
  112. 112.
    Cleveland DW, Hwo SY, Kirschner MW (1977) Purification of tau, a microtubule-associated protein that induces assembly of microtubules from purified tubulin. J Mol Biol 116(2):207–225.PubMedCrossRefGoogle Scholar
  113. 113.
    Cleveland DW, Hwo SY, Kirschner MW (1977) Physical and chemical properties of purified tau factor and the role of tau in microtubule assembly. J Mol Biol 116(2):227–247.PubMedCrossRefGoogle Scholar
  114. 114.
    Drechsel DN, Hyman AA, Cobb MH, Kirschner MW (1992) Modulation of the dynamic instability of tubulin assembly by the microtubule-associated protein tau. Mol Biol Cell 3(10):1141–1154.PubMedGoogle Scholar
  115. 115.
    Brandt R, Lee G (1993) The balance between tau protein’s microtubule growth and nucleation activities: implications for the formation of axonal microtubules. J Neurochem 61(3):997–1005.PubMedCrossRefGoogle Scholar
  116. 116.
    Brandt R, Lee G (1993) Functional organization of microtubule-associated protein tau. Identification of regions which affect microtubule growth, nucleation, and bundle formation in vitro. J Biol Chem 268(5):3414–3419.PubMedGoogle Scholar
  117. 117.
    Binder LI, Frankfurter A, Rebhun LI (1985) The distribution of tau in the mammalian central nervous system. J Cell Biol 101(4):1371–1378.PubMedCrossRefGoogle Scholar
  118. 118.
    Drubin DG, Feinstein SC, Shooter EM, Kirschner MW (1985) Nerve growth factor-induced neurite outgrowth in PC12 cells involves the coordinate induction of microtubule assembly and assembly-promoting factors. J Cell Biol 101(5 Pt 1):1799–1807.PubMedCrossRefGoogle Scholar
  119. 119.
    Khatoon S, Grundke-Iqbal I, Iqbal K (1992) Brain levels of microtubule-associated protein tau are elevated in Alzheimer’s disease: a radioimmuno-slot-blot assay for nanograms of the protein. J Neurochem 59(2):750–753.PubMedCrossRefGoogle Scholar
  120. 120.
    Crowther RA, Goedert M (2000) Abnormal tau-containing filaments in neurodegenerative diseases. J Struct Biol 130(2–3):271–279.PubMedCrossRefGoogle Scholar
  121. 121.
    Delacourte A, Buee L (1997) Normal and pathological Tau proteins as factors for microtubule assembly. Int Rev Cytol 171:167–224.PubMedCrossRefGoogle Scholar
  122. 122.
    Vulliet R, Halloran SM, Braun RK, Smith AJ, Lee G (1992) Proline-directed phosphorylation of human Tau protein. J Biol Chem 267(31):22570–22574.PubMedGoogle Scholar
  123. 123.
    Lu Q, Wood JG (1993) Functional studies of Alzheimer’s disease tau protein. J Neurosci 13(2):508–515.PubMedGoogle Scholar
  124. 124.
    Alonso AC, Grundke-Iqbal I, Iqbal K (1996) Alzheimer’s disease hyperphosphorylated tau sequesters normal tau into tangles of filaments and disassembles microtubules. Nat Med 2(7):783–787.PubMedCrossRefGoogle Scholar
  125. 125.
    Alonso AC, Zaidi T, Grundke-Iqbal I, Iqbal K (1994) Role of abnormally phosphorylated tau in the breakdown of microtubules in Alzheimer disease. Proc Natl Acad Sci U S A 91(12):5562–5566.PubMedCrossRefGoogle Scholar
  126. 126.
    Iqbal K, Zaidi T, Bancher C, Grundke-Iqbal I (1994) Alzheimer paired helical filaments. Restoration of the biological activity by dephosphorylation. FEBS Lett 349(1):104–108.PubMedCrossRefGoogle Scholar
  127. 127.
    Friedhoff P, von Bergen M, Mandelkow EM, Davies P, Mandelkow E (1998) A nucleated assembly mechanism of Alzheimer paired helical filaments. Proc Natl Acad Sci U S A 95(26):15712–15717.PubMedCrossRefGoogle Scholar
  128. 128.
    Duyckaerts C, Dickson DW (2003) Neuropathology of Alzheimer’s disease. In: Dickson DW (ed.) Neurodegeneration: the molecular pathology of dementia and movement disorders. ISN Neuropath Press, Basel. 47–65.Google Scholar
  129. 129.
    Tiraboschi P, Hansen LA, Thal LJ, Corey-Bloom J (2004) The importance of neuritic plaques and tangles to the development and evolution of AD. Neurology 62(11):1984–1989.PubMedGoogle Scholar
  130. 130.
    Feany MB, Dickson DW (1996) Neurodegenerative disorders with extensive tau pathology: a comparative study and review. Ann Neurol 40(2):139–148.PubMedCrossRefGoogle Scholar
  131. 131.
    Kenessey A, Yen SH (1993) The extent of phosphorylation of fetal tau is comparable to that of PHF-tau from Alzheimer paired helical filaments. Brain Res 629(1):40–46.PubMedCrossRefGoogle Scholar
  132. 132.
    Watanabe A, Hasegawa M, Suzuki M, Takio K, Morishima-Kawashima M, Titani K, Arai T, Kosik KS, Ihara Y (1993) In vivo phosphorylation sites in fetal and adult rat tau. J Biol Chem 268(34):25712–25717.PubMedGoogle Scholar
  133. 133.
    Billingsley ML, Kincaid RL (1997) Regulated phosphorylation and dephosphorylation of tau protein: effects on microtubule interaction, intracellular trafficking and neurodegeneration. Biochem J 323 (Pt 3):577–591.PubMedGoogle Scholar
  134. 134.
    Morishima-Kawashima M, Hasegawa M, Takio K, Suzuki M, Yoshida H, Watanabe A, Titani K, Ihara Y (1995) Hyperphosphorylation of tau in PHF. Neurobiol Aging 16(3):365–371; discussion 371–380.PubMedCrossRefGoogle Scholar
  135. 135.
    Morishima-Kawashima M, Hasegawa M, Takio K, Suzuki M, Yoshida H, Titani K, Ihara Y (1995) Proline-directed and non-proline-directed phosphorylation of PHF-tau. J Biol Chem 270(2):823–829.PubMedCrossRefGoogle Scholar
  136. 136.
    Uversky VN, Winter S, Galzitskaya OV, Kittler L, Lober G (1998) Hyperphosphorylation induces structural modification of tau-protein. FEBS Lett 439(1–2):21–25.PubMedCrossRefGoogle Scholar
  137. 137.
    Hagestedt T, Lichtenberg B, Wille H, Mandelkow EM, Mandelkow E (1989) Tau protein becomes long and stiff upon phosphorylation: correlation between paracrystalline structure and degree of phosphorylation. J Cell Biol 109(4 Pt 1):1643–1651.PubMedCrossRefGoogle Scholar
  138. 138.
    Eidenmuller J, Fath T, Hellwig A, Reed J, Sontag E, Brandt R (2000) Structural and functional implications of tau hyperphosphorylation: information from phosphorylation-mimicking mutated tau proteins. Biochemistry 39(43):13166–13175.PubMedCrossRefGoogle Scholar
  139. 139.
    von Bergen M, Barghorn S, Jeganathan S, Mandelkow EM, Mandelkow E (2006) Spectroscopic approaches to the conformation of tau protein in solution and in paired helical filaments. Neurodegener Dis 3(4–5):197–206.CrossRefGoogle Scholar
  140. 140.
    Chirita CN, Necula M, Kuret J (2003) Anionic micelles and vesicles induce tau fibrillization in vitro. J Biol Chem 278(28):25644–25650.PubMedCrossRefGoogle Scholar
  141. 141.
    Chirita CN, Congdon EE, Yin H, Kuret J (2005) Triggers of full-length tau aggregation: a role for partially folded intermediates. Biochemistry 44(15):5862–5872.PubMedCrossRefGoogle Scholar
  142. 142.
    Aronoff-Spencer E, Burns CS, Avdievich NI, Gerfen GJ, Peisach J, Antholine WE, Ball HL, Cohen FE, Prusiner SB, Millhauser GL (2000) Identification of the Cu2+ binding sites in the N-terminal domain of the prion protein by EPR and CD spectroscopy. Biochemistry 39(45):13760–13771.PubMedCrossRefGoogle Scholar
  143. 143.
    Masters CL, Harris JO, Gajdusek DC, Gibbs CJ, Jr., Bernouilli C, Asher DM (1978) Creutzfeldt-Jakob disease: patterns of worldwide occurrence and the significance of familial and sporadic clustering. Ann Neurol 5:177–188.CrossRefGoogle Scholar
  144. 144.
    Will RG, Alpers MP, Dormont D, Schonberger LB (2004) Infectious and sporadic prion diseases. In: Prusiner SB (ed.) Prion Biology and Diseases. 2 edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor. 629–671.Google Scholar
  145. 145.
    Asante EA, Linehan JM, Desbruslais M, Joiner S, Gowland I, Wood AL, Welch J, Hill AF, Lloyd SE, Wadsworth JD et al (2002) BSE prions propagate as either variant CJD-like or sporadic CJD-like prion strains in transgenic mice expressing human prion protein. EMBO J 21(23):6358–6366.PubMedCrossRefGoogle Scholar
  146. 146.
    Prusiner SB, Scott MR, DeArmond SJ, Cohen FE (1998) Prion protein biology. Cell 93(3):337–348.PubMedCrossRefGoogle Scholar
  147. 147.
    Riek R, Hornemann S, Wider G, Glockshuber R, Wuthrich K (1997) NMR characterization of the full-length recombinant murine prion protein, mPrP(23-231). FEBS Lett 413(2):282–288.PubMedCrossRefGoogle Scholar
  148. 148.
    Burns CS, Aronoff-Spencer E, Dunham CM, Lario P, Avdievich NI, Antholine WE, Olmstead MM, Vrielink A, Gerfen GJ, Peisach J et al (2002) Molecular features of the copper binding sites in the octarepeat domain of the prion protein. Biochemistry 41(12):3991–4001.PubMedCrossRefGoogle Scholar
  149. 149.
    Wildegger G, Liemann S, Glockshuber R (1999) Extremely rapid folding of the C-terminal domain of the prion protein without kinetic intermediates. Nat Struct Biol 6(6):550–553.PubMedCrossRefGoogle Scholar
  150. 150.
    Hosszu LL, Baxter NJ, Jackson GS, Power A, Clarke AR, Waltho JP, Craven CJ, Collinge J (1999) Structural mobility of the human prion protein probed by backbone hydrogen exchange. Nat Struct Biol 6(8):740–743.PubMedCrossRefGoogle Scholar
  151. 151.
    Peretz D, Williamson RA, Matsunaga Y, Serban H, Pinilla C, Bastidas RB, Rozenshteyn R, James TL, Houghten RA, Cohen FE et al (1997) A conformational transition at the N terminus of the prion protein features in formation of the scrapie isoform. J Mol Biol 273(3):614–622.PubMedCrossRefGoogle Scholar
  152. 152.
    Vanik DL, Surewicz KA, Surewicz WK (2004) Molecular basis of barriers for interspecies transmissibility of mammalian prions. Mol Cell 14(1):139–145.PubMedCrossRefGoogle Scholar
  153. 153.
    Watzlawik J, Skora L, Frense D, Griesinger C, Zweckstetter M, Schulz-Schaeffer WJ, Kramer ML (2006) Prion protein helix1 promotes aggregation but is not converted into beta-sheet. J Biol Chem 281(40):30242–30250.PubMedCrossRefGoogle Scholar
  154. 154.
    Scott M, Groth D, Foster D, Torchia M, Yang SL, DeArmond SJ, Prusiner SB (1993) Propagation of prions with artificial properties in transgenic mice expressing chimeric PrP genes. Cell 73(5):979–988.PubMedCrossRefGoogle Scholar
  155. 155.
    Telling GC, Scott M, Mastrianni J, Gabizon R, Torchia M, Cohen FE, DeArmond SJ, Prusiner SB (1995) Prion propagation in mice expressing human and chimeric PrP transgenes implicates the interaction of cellular PrP with another protein. Cell 83(1):79–90.PubMedCrossRefGoogle Scholar
  156. 156.
    Donne DG, Viles JH, Groth D, Mehlhorn I, James TL, Cohen FE, Prusiner SB, Wright PE, Dyson HJ (1997) Structure of the recombinant full-length hamster prion protein PrP(29-231): the N terminus is highly flexible. Proc Natl Acad Sci U S A 94(25):13452–13457.PubMedCrossRefGoogle Scholar
  157. 157.
    James TL, Liu H, Ulyanov NB, Farr-Jones S, Zhang H, Donne DG, Kaneko K, Groth D, Mehlhorn I, Prusiner SB et al (1997) Solution structure of a 142-residue recombinant prion protein corresponding to the infectious fragment of the scrapie isoform. Proc Natl Acad Sci U S A 94(19):10086–10091.PubMedCrossRefGoogle Scholar
  158. 158.
    Apetri AC, Surewicz WK (2002) Kinetic intermediate in the folding of human prion protein. J Biol Chem 277(47):44589–44592.PubMedCrossRefGoogle Scholar
  159. 159.
    Martins SM, Chapeaurouge A, Ferreira ST (2003) Folding intermediates of the prion protein stabilized by hydrostatic pressure and low temperature. J Biol Chem 278(50):50449–50455.PubMedCrossRefGoogle Scholar
  160. 160.
    Goedert M (1999) Filamentous nerve cell inclusions in neurodegenerative diseases: tauopathies and alpha-synucleinopathies. Philos Trans R Soc Lond B Biol Sci 354(1386):1101–1118.PubMedCrossRefGoogle Scholar
  161. 161.
    Spillantini MG, Goedert M (2000) The alpha-synucleinopathies: Parkinson’s disease, dementia with Lewy bodies, and multiple system atrophy. Ann N Y Acad Sci 920:16–27.PubMedCrossRefGoogle Scholar
  162. 162.
    Trojanowski JQ, Lee VM (2003) Parkinson’s disease and related alpha-synucleinopathies are brain amyloidoses. Ann N Y Acad Sci 991:107–110.PubMedGoogle Scholar
  163. 163.
    Galvin JE, Lee VM, Trojanowski JQ (2001) Synucleinopathies: clinical and pathological implications. Arch Neurol 58(2):186–190.PubMedCrossRefGoogle Scholar
  164. 164.
    Marti MJ, Tolosa E, Campdelacreu J (2003) Clinical overview of the synucleinopathies. Mov Disord 18 Suppl 6:S21–S27.PubMedCrossRefGoogle Scholar
  165. 165.
    Olanow CW, Tatton WG (1999) Etiology and pathogenesis of Parkinson’s disease. Annu Rev Neurosci 22:123–144.PubMedCrossRefGoogle Scholar
  166. 166.
    Forno LS (1996) Neuropathology of Parkinson’s disease. J Neuropathol Exp Neurol 55(3):259–272.PubMedCrossRefGoogle Scholar
  167. 167.
    Lewy FH (1912) Paralysis Agitans. Pathologische Anatomie. In: Lewandowski M (ed.) Handbuch der Neurologie. Springer, Berlin. 920–933.Google Scholar
  168. 168.
    Zarranz JJ, Alegre J, Gomez-Esteban JC, Lezcano E, Ros R, Ampuero I, Vidal L, Hoenicka J, Rodriguez O, Atares B et al (2004) The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol 55(2):164–173.PubMedCrossRefGoogle Scholar
  169. 169.
    Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R et al (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276(5321):2045–2047.PubMedCrossRefGoogle Scholar
  170. 170.
    Kruger R, Kuhn W, Muller T, Woitalla D, Graeber M, Kosel S, Przuntek H, Epplen JT, Schols L, Riess O (1998) Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat Genet 18(2):106–108.PubMedCrossRefGoogle Scholar
  171. 171.
    Singleton A, Gwinn-Hardy K, Sharabi Y, Li ST, Holmes C, Dendi R, Hardy J, Crawley A, Goldstein DS (2004) Association between cardiac denervation and parkinsonism caused by alpha-synuclein gene triplication. Brain 127(Pt 4):768–772.PubMedCrossRefGoogle Scholar
  172. 172.
    Singleton AB, Farrer M, Johnson J, Singleton A, Hague S, Kachergus J, Hulihan M, Peuralinna T, Dutra A, Nussbaum R et al (2003) alpha-Synuclein locus triplication causes Parkinson’s disease. Science 302(5646):841.PubMedCrossRefGoogle Scholar
  173. 173.
    Farrer M, Kachergus J, Forno L, Lincoln S, Wang DS, Hulihan M, Maraganore D, Gwinn-Hardy K, Wszolek Z, Dickson D et al (2004) Comparison of kindreds with parkinsonism and alpha-synuclein genomic multiplications. Ann Neurol 55(2):174–179.PubMedCrossRefGoogle Scholar
  174. 174.
    Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M (1997) Alpha-synuclein in Lewy bodies. Nature 388(6645):839–840.PubMedCrossRefGoogle Scholar
  175. 175.
    Spillantini MG, Crowther RA, Jakes R, Hasegawa M, Goedert M (1998) alpha-Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with lewy bodies. Proc Natl Acad Sci U S A 95(11):6469–6473.PubMedCrossRefGoogle Scholar
  176. 176.
    Masliah E, Rockenstein E, Veinbergs I, Mallory M, Hashimoto M, Takeda A, Sagara Y, Sisk A, Mucke L (2000) Dopaminergic loss and inclusion body formation in alpha-synuclein mice: implications for neurodegenerative disorders. Science 287(5456):1265–1269.PubMedCrossRefGoogle Scholar
  177. 177.
    Feany MB, Bender WW (2000) A Drosophila model of Parkinson’s disease. Nature 404(6776):394–398.PubMedCrossRefGoogle Scholar
  178. 178.
    Dickson DW (2001) Alpha-synuclein and the Lewy body disorders. Curr Opin Neurol 14(4):423–432.PubMedCrossRefGoogle Scholar
  179. 179.
    Goedert M (2001) Parkinson’s disease and other alpha-synucleinopathies. Clin Chem Lab Med 39(4):308–312.PubMedCrossRefGoogle Scholar
  180. 180.
    Goedert M (2001) Alpha-synuclein and neurodegenerative diseases. Nat Rev Neurosci 2(7):492–501.PubMedCrossRefGoogle Scholar
  181. 181.
    Uversky VN, Fink AL (2002) Biophysical properties of human alpha-synuclein and its role in Parkinson’s disease. In: Pandalai SG (ed.) Recent Research Developments in Proteins. Transworld Research Network, Kerala, India. 153–186.Google Scholar
  182. 182.
    Galpern WR, Lang AE (2006) Interface between tauopathies and synucleinopathies: a tale of two proteins. Ann Neurol 59(3):449–458.PubMedCrossRefGoogle Scholar
  183. 183.
    Kosaka K (1978) Lewy bodies in cerebral cortex, report of three cases. Acta Neuropathol (Berl) 42(2):127–134.CrossRefGoogle Scholar
  184. 184.
    Baba M, Nakajo S, Tu PH, Tomita T, Nakaya K, Lee VM, Trojanowski JQ, Iwatsubo T (1998) Aggregation of alpha-synuclein in Lewy bodies of sporadic Parkinson’s disease and dementia with Lewy bodies. Am J Pathol 152(4):879–884.PubMedGoogle Scholar
  185. 185.
    Spillantini MG, Crowther RA, Jakes R, Cairns NJ, Lantos PL, Goedert M (1998) Filamentous alpha-synuclein inclusions link multiple system atrophy with Parkinson’s disease and dementia with Lewy bodies. Neurosci Lett 251(3):205–208.PubMedCrossRefGoogle Scholar
  186. 186.
    McKeith IG, Galasko D, Kosaka K, Perry EK, Dickson DW, Hansen LA, Salmon DP, Lowe J, Mirra SS, Byrne EJ et al (1996) Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): report of the consortium on DLB international workshop. Neurology 47(5):1113–1124.PubMedGoogle Scholar
  187. 187.
    McKeith I, Mintzer J, Aarsland D, Burn D, Chiu H, Cohen-Mansfield J, Dickson D, Dubois B, Duda JE, Feldman H et al (2004) Dementia with Lewy bodies. Lancet Neurol 3(1):19–28.PubMedCrossRefGoogle Scholar
  188. 188.
    Emre M (2004) Dementia in Parkinson’s disease: cause and treatment. Curr Opin Neurol 17(4):399–404.PubMedCrossRefGoogle Scholar
  189. 189.
    Mayeux R, Denaro J, Hemenegildo N, Marder K, Tang MX, Cote LJ, Stern Y (1992) A population-based investigation of Parkinson’s disease with and without dementia. Relationship to age and gender. Arch Neurol 49(5):492–497.PubMedGoogle Scholar
  190. 190.
    Aarsland D, Andersen K, Larsen JP, Lolk A, Nielsen H, Kragh-Sorensen P (2001) Risk of dementia in Parkinson’s disease: a community-based, prospective study. Neurology 56(6):730–736.PubMedGoogle Scholar
  191. 191.
    Plato CC, Cruz MT, Kurland LT (1969) Amyotrophic lateral sclerosis-Parkinsonism dementia complex of Guam: further genetic investigations. Am J Hum Genet 21(2):133–141.PubMedGoogle Scholar
  192. 192.
    Schmitt HP, Emser W, Heimes C (1984) Familial occurrence of amyotrophic lateral sclerosis, parkinsonism, and dementia. Ann Neurol 16(6):642–648.PubMedCrossRefGoogle Scholar
  193. 193.
    Spencer PS, Nunn PB, Hugon J, Ludolph AC, Ross SM, Roy DN, Robertson RC (1987) Guam amyotrophic lateral sclerosis-parkinsonism-dementia linked to a plant excitant neurotoxin. Science 237(4814):517–522.PubMedCrossRefGoogle Scholar
  194. 194.
    Majoor-Krakauer D, Ottman R, Johnson WG, Rowland LP (1994) Familial aggregation of amyotrophic lateral sclerosis, dementia, and Parkinson’s disease: evidence of shared genetic susceptibility. Neurology 44(10):1872–1877.PubMedGoogle Scholar
  195. 195.
    den Hartogjager WA, Bethlem J (1960) The distribution of Lewy bodies in the central and autonomic nervous systems in idiopathic paralysis agitans. J Neurol Neurosurg Psychiatry 23:283–290.CrossRefGoogle Scholar
  196. 196.
    Kosaka K, Mehraein P (1979) Dementia-Parkinsonism syndrome with numerous Lewy bodies and senile plaques in cerebral cortex. Arch Psychiatr Nervenkr 226(4):241–250.PubMedCrossRefGoogle Scholar
  197. 197.
    Hague K, Lento P, Morgello S, Caro S, Kaufmann H (1997) The distribution of Lewy bodies in pure autonomic failure: autopsy findings and review of the literature. Acta Neuropathol (Berl) 94(2):192–196.CrossRefGoogle Scholar
  198. 198.
    Jackson M, Lennox G, Balsitis M, Lowe J (1995) Lewy body dysphagia. J Neurol Neurosurg Psychiatry 58(6):756–758.PubMedCrossRefGoogle Scholar
  199. 199.
    Hansen LA, Galasko D (1992) Lewy body disease. Curr Opin Neurol Neurosurg 5(6):889–894.PubMedGoogle Scholar
  200. 200.
    Arai Y, Yamazaki M, Mori O, Muramatsu H, Asano G, Katayama Y (2001) Alpha-synuclein-positive structures in cases with sporadic Alzheimer’s disease: morphology and its relationship to tau aggregation. Brain Res 888(2):287–296.PubMedCrossRefGoogle Scholar
  201. 201.
    Lippa CF, Schmidt ML, Lee VM, Trojanowski JQ (1999) Antibodies to alpha-synuclein detect Lewy bodies in many Down’s syndrome brains with Alzheimer’s disease. Ann Neurol 45(3):353–357.PubMedCrossRefGoogle Scholar
  202. 202.
    Marui W, Iseki E, Ueda K, Kosaka K (2000) Occurrence of human alpha-synuclein immunoreactive neurons with neurofibrillary tangle formation in the limbic areas of patients with Alzheimer’s disease. J Neurol Sci 174(2):81–84.PubMedCrossRefGoogle Scholar
  203. 203.
    Stefanova N, Tison F, Reindl M, Poewe W, Wenning GK (2005) Animal models of multiple system atrophy. Trends Neurosci 28(9):501–506.PubMedCrossRefGoogle Scholar
  204. 204.
    Wenning GK, Colosimo C, Geser F, Poewe W (2004) Multiple system atrophy. Lancet Neurol 3(2):93–103.PubMedCrossRefGoogle Scholar
  205. 205.
    Wenning GK, Ben-Shlomo Y, Hughes A, Daniel SE, Lees A, Quinn NP (2000) What clinical features are most useful to distinguish definite multiple system atrophy from Parkinson’s disease? J Neurol Neurosurg Psychiatry 68(4):434–440.PubMedCrossRefGoogle Scholar
  206. 206.
    Bower JH, Maraganore DM, McDonnell SK, Rocca WA (1997) Incidence of progressive supranuclear palsy and multiple system atrophy in Olmsted County, Minnesota, 1976 to 1990. Neurology 49(5):1284–1288.PubMedGoogle Scholar
  207. 207.
    Chrysostome V, Tison F, Yekhlef F, Sourgen C, Baldi I, Dartigues JF (2004) Epidemiology of multiple system atrophy: a prevalence and pilot risk factor study in Aquitaine, France. Neuroepidemiology 23(4):201–208.PubMedCrossRefGoogle Scholar
  208. 208.
    Schrag A, Ben-Shlomo Y, Quinn NP (1999) Prevalence of progressive supranuclear palsy and multiple system atrophy: a cross-sectional study. Lancet 354(9192):1771–1775.PubMedCrossRefGoogle Scholar
  209. 209.
    Daniel S (1999) The neuropathology and neurochemistry of multiple system atrophy. In: Mathias CJ, Bannister R (eds.) Autonomic Failure. Oxford University Press, Oxford.321–328.Google Scholar
  210. 210.
    Papp MI, Kahn JE, Lantos PL (1989) Glial cytoplasmic inclusions in the CNS of patients with multiple system atrophy (striatonigral degeneration, olivopontocerebellar atrophy and Shy-Drager syndrome). J Neurol Sci 94(1–3):79–100.PubMedCrossRefGoogle Scholar
  211. 211.
    Wakabayashi K, Takahashi H (2006) Cellular pathology in multiple system atrophy. Neuropathology 26(4):338–345.PubMedCrossRefGoogle Scholar
  212. 212.
    Taylor TD, Litt M, Kramer P, Pandolfo M, Angelini L, Nardocci N, Davis S, Pineda M, Hattori H, Flett PJ et al (1996) Homozygosity mapping of Hallervorden-Spatz syndrome to chromosome 20p12.3-p13. Nat Genet 14(4):479–481.PubMedCrossRefGoogle Scholar
  213. 213.
    Malandrini A, Cesaretti S, Mulinari M, Palmeri S, Fabrizi GM, Villanova M, Parrotta E, Montagnani A, Montagnani M, Anichini M et al (1996) Acanthocytosis, retinitis pigmentosa, pallidal degeneration. Report of two cases without serum lipid abnormalities. J Neurol Sci 140(1–2):129–131.PubMedCrossRefGoogle Scholar
  214. 214.
    Sugiyama H, Hainfellner JA, Schmid-Siegel B, Budka H (1993) Neuroaxonal dystrophy combined with diffuse Lewy body disease in a young adult. Clin Neuropathol 12(3):147–152.PubMedGoogle Scholar
  215. 215.
    Swaiman KF (1991) Hallervorden-Spatz syndrome and brain iron metabolism. Arch Neurol 48(12):1285–1293.PubMedGoogle Scholar
  216. 216.
    Dooling EC, Schoene WC, Richardson EP, Jr. (1974) Hallervorden-Spatz syndrome. Arch Neurol 30(1):70–83.PubMedGoogle Scholar
  217. 217.
    Jankovic J, Kirkpatrick JB, Blomquist KA, Langlais PJ, Bird ED (1985) Late-onset Hallervorden-Spatz disease presenting as familial parkinsonism. Neurology 35(2):227–234.PubMedGoogle Scholar
  218. 218.
    Zhou B, Westaway SK, Levinson B, Johnson MA, Gitschier J, Hayflick SJ (2001) A novel pantothenate kinase gene (PANK2) is defective in Hallervorden-Spatz syndrome. Nat Genet 28(4):345–349.PubMedCrossRefGoogle Scholar
  219. 219.
    Tu PH, Galvin JE, Baba M, Giasson B, Tomita T, Leight S, Nakajo S, Iwatsubo T, Trojanowski JQ, Lee VM (1998) Glial cytoplasmic inclusions in white matter oligodendrocytes of multiple system atrophy brains contain insoluble alpha-synuclein. Ann Neurol 44(3):415–422.PubMedCrossRefGoogle Scholar
  220. 220.
    Wakabayashi K, Yoshimoto M, Fukushima T, Koide R, Horikawa Y, Morita T, Takahashi H (1999) Widespread occurrence of alpha-synuclein/NACP-immunoreactive neuronal inclusions in juvenile and adult-onset Hallervorden-Spatz disease with Lewy bodies. Neuropathol Appl Neurobiol 25(5):363–368.PubMedCrossRefGoogle Scholar
  221. 221.
    Galvin JE, Giasson B, Hurtig HI, Lee VM, Trojanowski JQ (2000) Neurodegeneration with brain iron accumulation, type 1 is characterized by alpha-, beta-, and gamma-synuclein neuropathology. Am J Pathol 157(2):361–368.PubMedGoogle Scholar
  222. 222.
    Neumann M, Adler S, Schluter O, Kremmer E, Benecke R, Kretzschmar HA (2000) Alpha-synuclein accumulation in a case of neurodegeneration with brain iron accumulation type 1 (NBIA-1, formerly Hallervorden-Spatz syndrome) with widespread cortical and brainstem-type Lewy bodies. Acta Neuropathol (Berl) 100(5):568–574.CrossRefGoogle Scholar
  223. 223.
    Uversky VN (2003) A protein-chameleon: conformational plasticity of alpha-synuclein, a disordered protein involved in neurodegenerative disorders. J Biomol Struct Dyn 21(2):211–234.PubMedGoogle Scholar
  224. 224.
    Morar AS, Olteanu A, Young GB, Pielak GJ (2001) Solvent-induced collapse of alpha-synuclein and acid-denatured cytochrome c. Protein Sci 10(11):2195–2199.PubMedCrossRefGoogle Scholar
  225. 225.
    Eliezer D, Kutluay E, Bussell R, Jr., Browne G (2001) Conformational properties of alpha-synuclein in its free and lipid-associated states. J Mol Biol 307(4):1061–1073.PubMedCrossRefGoogle Scholar
  226. 226.
    Syme CD, Blanch EW, Holt C, Jakes R, Goedert M, Hecht L, Barron LD (2002) A Raman optical activity study of rheomorphism in caseins, synucleins and tau. New insight into the structure and behaviour of natively unfolded proteins. Eur J Biochem 269(1):148–156.PubMedCrossRefGoogle Scholar
  227. 227.
    Fulton AB (1982) How crowded is the cytoplasm? Cell 30(2):345–347.PubMedCrossRefGoogle Scholar
  228. 228.
    Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN (1982) Living with water stress: evolution of osmolyte systems. Science 217(4566):1214–1222.PubMedCrossRefGoogle Scholar
  229. 229.
    McNulty BC, Young GB, Pielak GJ (2006) Macromolecular crowding in the Escherichia coli periplasm maintains alpha-synuclein disorder. J Mol Biol 355(5):893–897.PubMedCrossRefGoogle Scholar
  230. 230.
    Serber Z, Dotsch V (2001) In-cell NMR spectroscopy. Biochemistry 40(48):14317–14323.PubMedCrossRefGoogle Scholar
  231. 231.
    Serber Z, Ledwidge R, Miller SM, Dotsch V (2001) Evaluation of parameters critical to observing proteins inside living Escherichia coli by in-cell NMR spectroscopy. J Am Chem Soc 123(37):8895–8901.PubMedCrossRefGoogle Scholar
  232. 232.
    Dedmon MM, Patel CN, Young GB, Pielak GJ (2002) FlgM gains structure in living cells. Proc Natl Acad Sci U S A 99(20):12681–12684.PubMedCrossRefGoogle Scholar
  233. 233.
    Clayton DF, George JM (1999) Synucleins in synaptic plasticity and neurodegenerative disorders. J Neurosci Res 58(1):120–129.PubMedCrossRefGoogle Scholar
  234. 234.
    Maroteaux L, Campanelli JT, Scheller RH (1988) Synuclein: a neuron-specific protein localized to the nucleus and presynaptic nerve terminal. J Neurosci 8(8):2804–2815.PubMedGoogle Scholar
  235. 235.
    Jakes R, Spillantini MG, Goedert M (1994) Identification of two distinct synucleins from human brain. FEBS Lett 345(1):27–32.PubMedCrossRefGoogle Scholar
  236. 236.
    Nakajo S, Tsukada K, Omata K, Nakamura Y, Nakaya K (1993) A new brain-specific 14-kDa protein is a phosphoprotein. Its complete amino acid sequence and evidence for phosphorylation. Eur J Biochem 217(3):1057–1063.PubMedCrossRefGoogle Scholar
  237. 237.
    Tobe T, Nakajo S, Tanaka A, Mitoya A, Omata K, Nakaya K, Tomita M, Nakamura Y (1992) Cloning and characterization of the cDNA encoding a novel brain-specific 14-kDa protein. J Neurochem 59(5):1624–1629.PubMedCrossRefGoogle Scholar
  238. 238.
    Ji H, Liu YE, Jia T, Wang M, Liu J, Xiao G, Joseph BK, Rosen C, Shi YE (1997) Identification of a breast cancer-specific gene, BCSG1, by direct differential cDNA sequencing. Cancer Res 57(4):759–764.PubMedGoogle Scholar
  239. 239.
    Ninkina NN, Alimova-Kost MV, Paterson JW, Delaney L, Cohen BB, Imreh S, Gnuchev NV, Davies AM, Buchman VL (1998) Organization, expression and polymorphism of the human persyn gene. Hum Mol Genet 7(9):1417–1424.PubMedCrossRefGoogle Scholar
  240. 240.
    Buchman VL, Hunter HJ, Pinon LG, Thompson J, Privalova EM, Ninkina NN, Davies AM (1998) Persyn, a member of the synuclein family, has a distinct pattern of expression in the developing nervous system. J Neurosci 18(22):9335–9341.PubMedGoogle Scholar
  241. 241.
    Lavedan C, Leroy E, Dehejia A, Buchholtz S, Dutra A, Nussbaum RL, Polymeropoulos MH (1998) Identification, localization and characterization of the human gamma-synuclein gene. Hum Genet 103(1):106–112.PubMedCrossRefGoogle Scholar
  242. 242.
    Lucking CB, Brice A (2000) Alpha-synuclein and Parkinson’s disease. Cell Mol Life Sci 57(13–14):1894–1908.PubMedCrossRefGoogle Scholar
  243. 243.
    Clayton DF, George JM (1998) The synucleins: a family of proteins involved in synaptic function, plasticity, neurodegeneration and disease. Trends Neurosci 21(6):249–254.PubMedCrossRefGoogle Scholar
  244. 244.
    Shibayama-Imazu T, Okahashi I, Omata K, Nakajo S, Ochiai H, Nakai Y, Hama T, Nakamura Y, Nakaya K (1993) Cell and tissue distribution and developmental change of neuron specific 14 kDa protein (phosphoneuroprotein 14). Brain Res 622(1–2):17–25.PubMedCrossRefGoogle Scholar
  245. 245.
    Nakajo S, Shioda S, Nakai Y, Nakaya K (1994) Localization of phosphoneuroprotein 14 (PNP 14) and its mRNA expression in rat brain determined by immunocytochemistry and in situ hybridization. Brain Res Mol Brain Res 27(1):81–86.PubMedCrossRefGoogle Scholar
  246. 246.
    Nakajo S, Tsukada K, Kameyama H, Furuyama Y, Nakaya K (1996) Distribution of phosphoneuroprotein 14 (PNP 14) in vertebrates: its levels as determined by enzyme immunoassay. Brain Res 741(1–2):180–184.PubMedCrossRefGoogle Scholar
  247. 247.
    Shibayama-Imazu T, Ogane K, Hasegawa Y, Nakajo S, Shioda S, Ochiai H, Nakai Y, Nakaya K (1998) Distribution of PNP 14 (beta-synuclein) in neuroendocrine tissues: localization in Sertoli cells. Mol Reprod Dev 50(2):163–169.PubMedCrossRefGoogle Scholar
  248. 248.
    Hashimoto M, Yoshimoto M, Sisk A, Hsu LJ, Sundsmo M, Kittel A, Saitoh T, Miller A, Masliah E (1997) NACP, a synaptic protein involved in Alzheimer’s disease, is differentially regulated during megakaryocyte differentiation. Biochem Biophys Res Commun 237(3):611–616.PubMedCrossRefGoogle Scholar
  249. 249.
    Ninkina NN, Privalova EM, Pinon LG, Davies AM, Buchman VL (1999) Developmentally regulated expression of persyn, a member of the synuclein family, in skin. Exp Cell Res 246(2):308–311.PubMedCrossRefGoogle Scholar
  250. 250.
    Galvin JE, Uryu K, Lee VM, Trojanowski JQ (1999) Axon pathology in Parkinson’s disease and Lewy body dementia hippocampus contains alpha-, beta-, and gamma-synuclein. Proc Natl Acad Sci U S A 96(23):13450–13455.PubMedCrossRefGoogle Scholar
  251. 251.
    Uversky VN, Li J, Souillac P, Millett IS, Doniach S, Jakes R, Goedert M, Fink AL (2002) Biophysical properties of the synucleins and their propensities to fibrillate: inhibition of alpha-synuclein assembly by beta- and gamma-synucleins. J Biol Chem 277(14):11970–11978.PubMedCrossRefGoogle Scholar
  252. 252.
    Yamin G, Munishkina LA, Karymov MA, Lyubchenko YL, Uversky VN, Fink AL (2005) Forcing the non-amyloidogenic beta-synuclein to fibrillate. Biochemistry 44 (25):9096–9107.PubMedCrossRefGoogle Scholar
  253. 253.
    Hashimoto M, Rockenstein E, Mante M, Mallory M, Masliah E (2001) beta-Synuclein inhibits alpha-synuclein aggregation: a possible role as an anti-parkinsonian factor. Neuron 32(2):213–223.PubMedCrossRefGoogle Scholar
  254. 254.
    Cummings CJ, Zoghbi HY (2000) Trinucleotide repeats: mechanisms and pathophysiology. Annu Rev Genomics Hum Genet 1:281–328.PubMedCrossRefGoogle Scholar
  255. 255.
    Cummings CJ, Zoghbi HY (2000) Fourteen and counting: unraveling trinucleotide repeat diseases. Hum Mol Genet 9(6):909–916.PubMedCrossRefGoogle Scholar
  256. 256.
    Perutz MF (1996) Glutamine repeats and inherited neurodegenerative diseases: molecular aspects. Curr Opin Struct Biol 6(6):848–858.PubMedCrossRefGoogle Scholar
  257. 257.
    Ross CA (2002) Polyglutamine pathogenesis: emergence of unifying mechanisms for Huntington’s disease and related disorders. Neuron 35(5):819–822.PubMedCrossRefGoogle Scholar
  258. 258.
    Bates G (2003) Huntingtin aggregation and toxicity in Huntington’s disease. Lancet 361(9369):1642–1644.PubMedCrossRefGoogle Scholar
  259. 259.
    Soto C (2003) Unfolding the role of protein misfolding in neurodegenerative diseases. Nat Rev Neurosci 4(1):49–60.PubMedCrossRefGoogle Scholar
  260. 260.
    Yue S, Serra HG, Zoghbi HY, Orr HT (2001) The spinocerebellar ataxia type 1 protein, ataxin-1, has RNA-binding activity that is inversely affected by the length of its polyglutamine tract. Hum Mol Genet 10(1):25–30.PubMedCrossRefGoogle Scholar
  261. 261.
    Klement IA, Skinner PJ, Kaytor MD, Yi H, Hersch SM, Clark HB, Zoghbi HY, Orr HT (1998) Ataxin-1 nuclear localization and aggregation: role in polyglutamine-induced disease in SCA1 transgenic mice. Cell 95(1):41–53.PubMedCrossRefGoogle Scholar
  262. 262.
    Gusella J, MacDonald M (2002) No post-genetics era in human disease research. Nat Rev Genet 3(1):72–79.PubMedCrossRefGoogle Scholar
  263. 263.
    McEwan IJ (2001) Structural and functional alterations in the androgen receptor in spinal bulbar muscular atrophy. Biochem Soc Trans 29(Pt 2):222–227.PubMedCrossRefGoogle Scholar
  264. 264.
    Nagafuchi S, Yanagisawa H, Ohsaki E, Shirayama T, Tadokoro K, Inoue T, Yamada M (1994) Structure and expression of the gene responsible for the triplet repeat disorder, dentatorubral and pallidoluysian atrophy (DRPLA). Nat Genet 8(2):177–182.PubMedCrossRefGoogle Scholar
  265. 265.
    Faber PW, Barnes GT, Srinidhi J, Chen J, Gusella JF, MacDonald ME (1998) Huntingtin interacts with a family of WW domain proteins. Hum Mol Genet 7(9):1463–1474.PubMedCrossRefGoogle Scholar
  266. 266.
    Boutell JM, Thomas P, Neal JW, Weston VJ, Duce J, Harper PS, Jones AL (1999) Aberrant interactions of transcriptional repressor proteins with the Huntington’s disease gene product, huntingtin. Hum Mol Genet 8(9):1647–1655.PubMedCrossRefGoogle Scholar
  267. 267.
    Steffan JS, Kazantsev A, Spasic-Boskovic O, Greenwald M, Zhu YZ, Gohler H, Wanker EE, Bates GP, Housman DE, Thompson LM (2000) The Huntington’s disease protein interacts with p53 and CREB-binding protein and represses transcription. Proc Natl Acad Sci U S A 97(12):6763–6768.PubMedCrossRefGoogle Scholar
  268. 268.
    Schaeper U, Boyd JM, Verma S, Uhlmann E, Subramanian T, Chinnadurai G (1995) Molecular cloning and characterization of a cellular phosphoprotein that interacts with a conserved C-terminal domain of adenovirus E1A involved in negative modulation of oncogenic transformation. Proc Natl Acad Sci U S A 92(23):10467–10471.PubMedCrossRefGoogle Scholar
  269. 269.
    Saudou F, Finkbeiner S, Devys D, Greenberg ME (1998) Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. Cell 95(1):55–66.PubMedCrossRefGoogle Scholar
  270. 270.
    Huang CC, Faber PW, Persichetti F, Mittal V, Vonsattel JP, MacDonald ME, Gusella JF (1998) Amyloid formation by mutant huntingtin: threshold, progressivity and recruitment of normal polyglutamine proteins. Somat Cell Mol Genet 24(4):217–233.PubMedCrossRefGoogle Scholar
  271. 271.
    Nucifora FC, Jr., Sasaki M, Peters MF, Huang H, Cooper JK, Yamada M, Takahashi H, Tsuji S, Troncoso J, Dawson VL et al (2001) Interference by huntingtin and atrophin-1 with cbp-mediated transcription leading to cellular toxicity. Science 291(5512):2423–2428.PubMedCrossRefGoogle Scholar
  272. 272.
    Kegel KB, Meloni AR, Yi Y, Kim YJ, Doyle E, Cuiffo BG, Sapp E, Wang Y, Qin ZH, Chen JD et al (2002) Huntingtin is present in the nucleus, interacts with the transcriptional corepressor C-terminal binding protein, and represses transcription. J Biol Chem 277(9):7466–7476.PubMedCrossRefGoogle Scholar
  273. 273.
    Ratovitski T, Nakamura M, D’Ambola J, Chighladze E, Liang Y, Wang W, Graham R, Hayden MR, Borchelt DR, Hirschhorn RR et al (2007) N-terminal proteolysis of full-length mutant huntingtin in an inducible PC12 cell model of Huntington’s disease. Cell Cycle 6(23):2970–2981.PubMedGoogle Scholar
  274. 274.
    Sun B, Fan W, Balciunas A, Cooper JK, Bitan G, Steavenson S, Denis PE, Young Y, Adler B, Daugherty L et al (2002) Polyglutamine repeat length-dependent proteolysis of huntingtin. Neurobiol Dis 11(1):111–122.PubMedCrossRefGoogle Scholar
  275. 275.
    Ross CA, Wood JD, Schilling G, Peters MF, Nucifora FC, Jr., Cooper JK, Sharp AH, Margolis RL, Borchelt DR (1999) Polyglutamine pathogenesis. Philos Trans R Soc Lond B Biol Sci 354(1386):1005–1011.PubMedCrossRefGoogle Scholar
  276. 276.
    Preisinger E, Jordan BM, Kazantsev A, Housman D (1999) Evidence for a recruitment and sequestration mechanism in Huntington’s disease. Philos Trans R Soc Lond B Biol Sci 354(1386):1029–1034.PubMedCrossRefGoogle Scholar
  277. 277.
    Wanker EE (2000) Protein aggregation and pathogenesis of Huntington’s disease: mechanisms and correlations. Biol Chem 381(9–10):937–942.PubMedCrossRefGoogle Scholar
  278. 278.
    McCampbell A, Taylor JP, Taye AA, Robitschek J, Li M, Walcott J, Merry D, Chai Y, Paulson H, Sobue G et al (2000) CREB-binding protein sequestration by expanded polyglutamine. Hum Mol Genet 9(14):2197–2202.PubMedCrossRefGoogle Scholar
  279. 279.
    McCampbell A, Fischbeck KH (2001) Polyglutamine and CBP: fatal attraction? Nat Med 7(5):528–530.PubMedCrossRefGoogle Scholar
  280. 280.
    Chen S, Berthelier V, Yang W, Wetzel R (2001) Polyglutamine aggregation behavior in vitro supports a recruitment mechanism of cytotoxicity. J Mol Biol 311(1):173–182.PubMedCrossRefGoogle Scholar
  281. 281.
    Chen S, Berthelier V, Hamilton JB, O’Nuallain B, Wetzel R (2002) Amyloid-like features of polyglutamine aggregates and their assembly kinetics. Biochemistry 41(23):7391–7399.PubMedCrossRefGoogle Scholar
  282. 282.
    Perutz MF, Pope BJ, Owen D, Wanker EE, Scherzinger E (2002) Aggregation of proteins with expanded glutamine and alanine repeats of the glutamine-rich and asparagine-rich domains of Sup35 and of the amyloid beta-peptide of amyloid plaques. Proc Natl Acad Sci U S A 99(8):5596–5600.PubMedCrossRefGoogle Scholar
  283. 283.
    Chow MK, Paulson HL, Bottomley SP (2004) Destabilization of a non-pathological variant of ataxin-3 results in fibrillogenesis via a partially folded intermediate: a model for misfolding in polyglutamine disease. J Mol Biol 335(1):333–341.PubMedCrossRefGoogle Scholar
  284. 284.
    Poirier MA, Li H, Macosko J, Cai S, Amzel M, Ross CA (2002) Huntingtin spheroids and protofibrils as precursors in polyglutamine fibrilization. J Biol Chem 277(43):41032–41037.PubMedCrossRefGoogle Scholar
  285. 285.
    Raychaudhuri S, Majumder P, Sarkar S, Giri K, Mukhopadhyay D, Bhattacharyya NP (2007) Huntingtin interacting protein HYPK is intrinsically unstructured. Proteins.Google Scholar
  286. 286.
    Raychaudhuri S, Sinha M, Mukhopadhyay D, Bhattacharyya NP (2008) HYPK, a Huntingtin interacting protein, reduces aggregates and apoptosis induced by N-terminal Huntingtin with 40 glutamines in Neuro2a cells and exhibits chaperone-like activity. Hum Mol Genet 17(2):240–255.PubMedCrossRefGoogle Scholar
  287. 287.
    Koide R, Ikeuchi T, Onodera O, Tanaka H, Igarashi S, Endo K, Takahashi H, Kondo R, Ishikawa A, Hayashi T et al (1994) Unstable expansion of CAG repeat in hereditary dentatorubral-pallidoluysian atrophy (DRPLA). Nat Genet 6(1):9–13.PubMedCrossRefGoogle Scholar
  288. 288.
    Margolis RL, Li SH, Young WS, Wagster MV, Stine OC, Kidwai AS, Ashworth RG, Ross CA (1996) DRPLA gene (atrophin-1) sequence and mRNA expression in human brain. Brain Res Mol Brain Res 36(2):219–226.PubMedCrossRefGoogle Scholar
  289. 289.
    Onodera O, Oyake M, Takano H, Ikeuchi T, Igarashi S, Tsuji S (1995) Molecular cloning of a full-length cDNA for dentatorubral-pallidoluysian atrophy and regional expressions of the expanded alleles in the CNS. Am J Hum Genet 57(5):1050–1060.PubMedGoogle Scholar
  290. 290.
    Loev SJ, Margolis RL, Young WS, Li SH, Schilling G, Ashworth RG, Ross CA (1995) Cloning and expression of the rat atrophin-I (DRPLA disease gene) homologue. Neurobiol Dis 2(3):129–138.PubMedCrossRefGoogle Scholar
  291. 291.
    Schmitt I, Epplen JT, Riess O (1995) Predominant neuronal expression of the gene responsible for dentatorubral-pallidoluysian atrophy (DRPLA) in rat. Hum Mol Genet 4(9):1619–1624.PubMedCrossRefGoogle Scholar
  292. 292.
    Yazawa I, Nukina N, Hashida H, Goto J, Yamada M, Kanazawa I (1995) Abnormal gene product identified in hereditary dentatorubral-pallidoluysian atrophy (DRPLA) brain. Nat Genet 10(1):99–103.PubMedCrossRefGoogle Scholar
  293. 293.
    Lavery DN, McEwan IJ (2008) Structural characterization of the native NH2-terminal transactivation domain of the human androgen receptor: a collapsed disordered conformation underlies structural plasticity and protein-induced folding. Biochemistry 47(11):3360–3369.PubMedCrossRefGoogle Scholar
  294. 294.
    Albrecht M, Golatta M, Wullner U, Lengauer T (2004) Structural and functional analysis of ataxin-2 and ataxin-3. Eur J Biochem 271(15):3155–3170.PubMedCrossRefGoogle Scholar
  295. 295.
    Albrecht M, Hoffmann D, Evert BO, Schmitt I, Wullner U, Lengauer T (2003) Structural modeling of ataxin-3 reveals distant homology to adaptins. Proteins 50(2):355–370.PubMedCrossRefGoogle Scholar
  296. 296.
    Masino L, Musi V, Menon RP, Fusi P, Kelly G, Frenkiel TA, Trottier Y, Pastore A (2003) Domain architecture of the polyglutamine protein ataxin-3: a globular domain followed by a flexible tail. FEBS Lett 549(1–3):21–25.PubMedCrossRefGoogle Scholar
  297. 297.
    Zhuchenko O, Bailey J, Bonnen P, Ashizawa T, Stockton DW, Amos C, Dobyns WB, Subramony SH, Zoghbi HY, Lee CC (1997) Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the alpha 1A-voltage-dependent calcium channel. Nat Genet 15(1):62–69.PubMedCrossRefGoogle Scholar
  298. 298.
    Kubodera T, Yokota T, Ohwada K, Ishikawa K, Miura H, Matsuoka T, Mizusawa H (2003) Proteolytic cleavage and cellular toxicity of the human alpha1A calcium channel in spinocerebellar ataxia type 6. Neurosci Lett 341(1):74–78.PubMedCrossRefGoogle Scholar
  299. 299.
    Palhan VB, Chen S, Peng GH, Tjernberg A, Gamper AM, Fan Y, Chait BT, La Spada AR, Roeder RG (2005) Polyglutamine-expanded ataxin-7 inhibits STAGA histone acetyltransferase activity to produce retinal degeneration. Proc Natl Acad Sci U S A 102(24):8472–8477.PubMedCrossRefGoogle Scholar
  300. 300.
    Nakamura K, Jeong SY, Uchihara T, Anno M, Nagashima K, Nagashima T, Ikeda S, Tsuji S, Kanazawa I (2001) SCA17, a novel autosomal dominant cerebellar ataxia caused by an expanded polyglutamine in TATA-binding protein. Hum Mol Genet 10(14):1441–1448.PubMedCrossRefGoogle Scholar
  301. 301.
    Hochheimer A, Tjian R (2003) Diversified transcription initiation complexes expand promoter selectivity and tissue-specific gene expression. Genes Dev 17(11):1309–1320.PubMedCrossRefGoogle Scholar
  302. 302.
    Burley SK (1996) The TATA box binding protein. Curr Opin Struct Biol 6(1):69–75.PubMedCrossRefGoogle Scholar
  303. 303.
    Friedman MJ, Shah AG, Fang ZH, Ward EG, Warren ST, Li S, Li XJ (2007) Polyglutamine domain modulates the TBP-TFIIB interaction: implications for its normal function and neurodegeneration. Nat Neurosci 10(12):1519–1528.PubMedCrossRefGoogle Scholar
  304. 304.
    Friedman MJ, Wang CE, Li XJ, Li S (2008) Polyglutamine expansion reduces the association of TATA-binding protein with DNA and induces DNA binding-independent neurotoxicity. J Biol Chem 283(13):8283–8290.PubMedCrossRefGoogle Scholar
  305. 305.
    Lescure A, Lutz Y, Eberhard D, Jacq X, Krol A, Grummt I, Davidson I, Chambon P, Tora L (1994) The N-terminal domain of the human TATA-binding protein plays a role in transcription from TATA-containing RNA polymerase II and III promoters. EMBO J 13(5):1166–1175.PubMedGoogle Scholar
  306. 306.
    Plant GT, Revesz T, Barnard RO, Harding AE, Gautier-Smith PC (1990) Familial cerebral amyloid angiopathy with nonneuritic amyloid plaque formation. Brain 113 (Pt 3):721–747.PubMedCrossRefGoogle Scholar
  307. 307.
    Vidal R, Frangione B, Rostagno A, Mead S, Revesz T, Plant G, Ghiso J (1999) A stop-codon mutation in the BRI gene associated with familial British dementia. Nature 399(6738):776–781.PubMedCrossRefGoogle Scholar
  308. 308.
    Ghiso JA, Holton J, Miravalle L, Calero M, Lashley T, Vidal R, Houlden H, Wood N, Neubert TA, Rostagno A et al (2001) Systemic amyloid deposits in familial British dementia. J Biol Chem 276(47):43909–43914.PubMedCrossRefGoogle Scholar
  309. 309.
    Kim SH, Wang R, Gordon DJ, Bass J, Steiner DF, Lynn DG, Thinakaran G, Meredith SC, Sisodia SS (1999) Furin mediates enhanced production of fibrillogenic ABri peptides in familial British dementia. Nat Neurosci 2(11):984–988.PubMedCrossRefGoogle Scholar
  310. 310.
    Srinivasan R, Jones EM, Liu K, Ghiso J, Marchant RE, Zagorski MG (2003) pH-dependent amyloid and protofibril formation by the ABri peptide of familial British dementia. J Mol Biol 333(5):1003–1023.PubMedCrossRefGoogle Scholar
  311. 311.
    Vidal R, Revesz T, Rostagno A, Kim E, Holton JL, Bek T, Bojsen-Moller M, Braendgaard H, Plant G, Ghiso J et al (2000) A decamer duplication in the 3 region of the BRI gene originates an amyloid peptide that is associated with dementia in a Danish kindred. Proc Natl Acad Sci U S A 97(9):4920–4925.PubMedCrossRefGoogle Scholar
  312. 312.
    Rostagno A, Tomidokoro Y, Lashley T, Ng D, Plant G, Holton J, Frangione B, Revesz T, Ghiso J (2005) Chromosome 13 dementias. Cell Mol Life Sci 62(16):1814–1825.PubMedCrossRefGoogle Scholar
  313. 313.
    Surolia I, Reddy GB, Sinha S (2006) Hierarchy and the mechanism of fibril formation in ADan peptides. J Neurochem 99(2):537–548.PubMedCrossRefGoogle Scholar
  314. 314.
    Brenner M, Johnson AB, Boespflug-Tanguy O, Rodriguez D, Goldman JE, Messing A (2001) Mutations in GFAP, encoding glial fibrillary acidic protein, are associated with Alexander disease. Nat Genet 27(1):117–120.PubMedCrossRefGoogle Scholar
  315. 315.
    Rodriguez D, Gauthier F, Bertini E, Bugiani M, Brenner M, N’Guyen S, Goizet C, Gelot A, Surtees R, Pedespan JM et al (2001) Infantile Alexander disease: spectrum of GFAP mutations and genotype-phenotype correlation. Am J Hum Genet 69(5):1134–1140.PubMedCrossRefGoogle Scholar
  316. 316.
    Borrett D, Becker LE (1985) Alexander’s disease. A disease of astrocytes. Brain 108 (Pt 2):367–385.PubMedCrossRefGoogle Scholar
  317. 317.
    Head MW, Corbin E, Goldman JE (1993) Overexpression and abnormal modification of the stress proteins alpha B-crystallin and HSP27 in Alexander disease. Am J Pathol 143(6):1743–1753.PubMedGoogle Scholar
  318. 318.
    Li R, Messing A, Goldman JE, Brenner M (2002) GFAP mutations in Alexander disease. Int J Dev Neurosci 20(3–5):259–268.PubMedCrossRefGoogle Scholar
  319. 319.
    Mignot C, Boespflug-Tanguy O, Gelot A, Dautigny A, Pham-Dinh D, Rodriguez D (2004) Alexander disease: putative mechanisms of an astrocytic encephalopathy. Cell Mol Life Sci 61(3):369–385.PubMedCrossRefGoogle Scholar
  320. 320.
    Dahl D (1976) Glial fibrillary acidic protein from bovine and rat brain. Degradation in tissues and homogenates. Biochim Biophys Acta 420(1):142–154.PubMedGoogle Scholar
  321. 321.
    Dahl D (1976) Isolation and initial characterization of glial fibrillary acidic protein from chicken, turtle, frog and fish central nervous systems. Biochim Biophys Acta 446(1):41–50.PubMedGoogle Scholar
  322. 322.
    Alpers BJ (1931) Diffuse progressive degeneration of the gray matter of the cerebrum. Arch Neurol Psychiatry 25:469–505.Google Scholar
  323. 323.
    Huttenlocher PR, Solitare GB, Adams G (1976) Infantile diffuse cerebral degeneration with hepatic cirrhosis. Arch Neurol 33(3):186–192.PubMedGoogle Scholar
  324. 324.
    Harding BN (1990) Progressive neuronal degeneration of childhood with liver disease (Alpers-Huttenlocher syndrome): a personal review. J Child Neurol 5(4):273–287.PubMedCrossRefGoogle Scholar
  325. 325.
    Harding BN, Egger J, Portmann B, Erdohazi M (1986) Progressive neuronal degeneration of childhood with liver disease. A pathological study. Brain 109 (Pt 1):181–206.PubMedCrossRefGoogle Scholar
  326. 326.
    Narkewicz MR, Sokol RJ, Beckwith B, Sondheimer J, Silverman A (1991) Liver involvement in Alpers disease. J Pediatr 119(2):260–267.PubMedCrossRefGoogle Scholar
  327. 327.
    Naviaux RK, Nguyen KV (2004) POLG mutations associated with Alpers’ syndrome and mitochondrial DNA depletion. Ann Neurol 55(5):706–712.PubMedCrossRefGoogle Scholar
  328. 328.
    Kaguni LS (2004) DNA polymerase gamma, the mitochondrial replicase. Annu Rev Biochem 73:293–320.PubMedCrossRefGoogle Scholar
  329. 329.
    Ferrari G, Lamantea E, Donati A, Filosto M, Briem E, Carrara F, Parini R, Simonati A, Santer R, Zeviani M (2005) Infantile hepatocerebral syndromes associated with mutations in the mitochondrial DNA polymerase-gammaA. Brain 128(Pt 4):723–731.PubMedCrossRefGoogle Scholar
  330. 330.
    Luoma PT, Luo N, Loscher WN, Farr CL, Horvath R, Wanschitz J, Kiechl S, Kaguni LS, Suomalainen A (2005) Functional defects due to spacer-region mutations of human mitochondrial DNA polymerase in a family with an ataxia-myopathy syndrome. Hum Mol Genet 14(14):1907–1920.PubMedCrossRefGoogle Scholar
  331. 331.
    Hayashi M, Imanaka-Yoshida K, Yoshida T, Wood M, Fearns C, Tatake RJ, Lee JD (2006) A crucial role of mitochondrial Hsp40 in preventing dilated cardiomyopathy. Nat Med 12(1):128–132.PubMedCrossRefGoogle Scholar
  332. 332.
    Nance MA, Berry SA (1992) Cockayne syndrome: review of 140 cases. Am J Med Genet 42(1):68–84.PubMedCrossRefGoogle Scholar
  333. 333.
    Friedberg EC (1996) Cockayne syndrome–a primary defect in DNA repair, transcription, both or neither? Bioessays 18(9):731–738.PubMedCrossRefGoogle Scholar
  334. 334.
    Licht CL, Stevnsner T, Bohr VA (2003) Cockayne syndrome group B cellular and biochemical functions. Am J Hum Genet 73(6):1217–1239.PubMedCrossRefGoogle Scholar
  335. 335.
    Troelstra C, van Gool A, de Wit J, Vermeulen W, Bootsma D, Hoeijmakers JH (1992) ERCC6, a member of a subfamily of putative helicases, is involved in Cockayne’s syndrome and preferential repair of active genes. Cell 71(6):939–953.PubMedCrossRefGoogle Scholar
  336. 336.
    Henning KA, Li L, Iyer N, McDaniel LD, Reagan MS, Legerski R, Schultz RA, Stefanini M, Lehmann AR, Mayne LV et al (1995) The Cockayne syndrome group A gene encodes a WD repeat protein that interacts with CSB protein and a subunit of RNA polymerase II TFIIH. Cell 82(4):555–564.PubMedCrossRefGoogle Scholar
  337. 337.
    Selzer RR, Nyaga S, Tuo J, May A, Muftuoglu M, Christiansen M, Citterio E, Brosh RM, Jr., Bohr VA (2002) Differential requirement for the ATPase domain of the Cockayne syndrome group B gene in the processing of UV-induced DNA damage and 8-oxoguanine lesions in human cells. Nucleic Acids Res 30(3):782–793.PubMedCrossRefGoogle Scholar
  338. 338.
    Melki J (1997) Spinal muscular atrophy. Curr Opin Neurol 10(5):381–385.PubMedCrossRefGoogle Scholar
  339. 339.
    Lefebvre S, Burglen L, Reboullet S, Clermont O, Burlet P, Viollet L, Benichou B, Cruaud C, Millasseau P, Zeviani M et al (1995) Identification and characterization of a spinal muscular atrophy-determining gene. Cell 80(1):155–165.PubMedCrossRefGoogle Scholar
  340. 340.
    Fischer U, Liu Q, Dreyfuss G (1997) The SMN-SIP1 complex has an essential role in spliceosomal snRNP biogenesis. Cell 90(6):1023–1029.PubMedCrossRefGoogle Scholar
  341. 341.
    Pellizzoni L, Charroux B, Dreyfuss G (1999) SMN mutants of spinal muscular atrophy patients are defective in binding to snRNP proteins. Proc Natl Acad Sci U S A 96(20):11167–11172.PubMedCrossRefGoogle Scholar
  342. 342.
    Buhler D, Raker V, Luhrmann R, Fischer U (1999) Essential role for the tudor domain of SMN in spliceosomal U snRNP assembly: implications for spinal muscular atrophy. Hum Mol Genet 8(13):2351–2357.PubMedCrossRefGoogle Scholar
  343. 343.
    Selenko P, Sprangers R, Stier G, Buhler D, Fischer U, Sattler M (2001) SMN tudor domain structure and its interaction with the Sm proteins. Nat Struct Biol 8(1):27–31.PubMedCrossRefGoogle Scholar
  344. 344.
    Brahms H, Raymackers J, Union A, de Keyser F, Meheus L, Luhrmann R (2000) The C-terminal RG dipeptide repeats of the spliceosomal Sm proteins D1 and D3 contain symmetrical dimethylarginines, which form a major B-cell epitope for anti-Sm autoantibodies. J Biol Chem 275(22):17122–17129.PubMedCrossRefGoogle Scholar
  345. 345.
    Brahms H, Meheus L, de Brabandere V, Fischer U, Luhrmann R (2001) Symmetrical dimethylation of arginine residues in spliceosomal Sm protein B/B’ and the Sm-like protein LSm4, and their interaction with the SMN protein. RNA 7(11):1531–1542.PubMedCrossRefGoogle Scholar
  346. 346.
    Friesen WJ, Massenet S, Paushkin S, Wyce A, Dreyfuss G (2001) SMN, the product of the spinal muscular atrophy gene, binds preferentially to dimethylarginine-containing protein targets. Mol Cell 7(5):1111–1117.PubMedCrossRefGoogle Scholar
  347. 347.
    Paushkin S, Gubitz AK, Massenet S, Dreyfuss G (2002) The SMN complex, an assemblyosome of ribonucleoproteins. Curr Opin Cell Biol 14(3):305–312.PubMedCrossRefGoogle Scholar
  348. 348.
    Terns MP, Terns RM (2001) Macromolecular complexes: SMN–the master assembler. Curr Biol 11(21):R862–R864.PubMedCrossRefGoogle Scholar
  349. 349.
    Sprangers R, Groves MR, Sinning I, Sattler M (2003) High-resolution X-ray and NMR structures of the SMN Tudor domain: conformational variation in the binding site for symmetrically dimethylated arginine residues. J Mol Biol 327(2):507–520.PubMedCrossRefGoogle Scholar
  350. 350.
    Sprangers R, Selenko P, Sattler M, Sinning I, Groves MR (2003) Definition of domain boundaries and crystallization of the SMN Tudor domain. Acta Crystallogr D Biol Crystallogr 59(Pt 2):366–368.PubMedCrossRefGoogle Scholar
  351. 351.
    Kerr DA, Nery JP, Traystman RJ, Chau BN, Hardwick JM (2000) Survival motor neuron protein modulates neuron-specific apoptosis. Proc Natl Acad Sci U S A 97(24):13312–13317.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Vladimir N. Uversky
    • 1
  1. 1.Center for Computational Biology and Bioinformatics Department of Biochemistry and Molecular Biology Institute for Intrinsically Disordered Protein ResearchIndiana University School of MedicineIndianapolisUSA

Personalised recommendations