Skip to main content

Protein-Based Neuropathology and Molecular Classification of Human Neurodegenerative Diseases

  • Chapter
Book cover Protein Folding and Misfolding: Neurodegenerative Diseases

Part of the book series: Focus on Structural Biology ((FOSB,volume 7))

Abstract

Neurodegenerative diseases are characterized by death and progressive loss of neurons in distinct areas of the central nervous system. Classification is based on clinical presentation, anatomical regions affected, inclusion bearing cell-types and conformationally altered proteins involved in the process. In this chapter, the current molecular pathological classification of neurodegenerative diseases is reviewed by summarizing the proteins relevant for neurodegenerative diseases and their morphological types as extra- and intracellular deposits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bredesen DE, Rao RV, Mehlen P (2006) Cell death in the nervous system. Nature 443:796–802

    Article  PubMed  CAS  Google Scholar 

  2. Wishart TM, Parson SH,Gillingwater TH (2006) Synaptic vulnerability in neurodegenerative disease. J Neuropathol Exp Neurol 65:733–739

    Article  PubMed  CAS  Google Scholar 

  3. Sayre LM, Perry G, Smith MA (2008) Oxidative stress and neurotoxicity. Chem Res Toxicol 21:172–188

    Article  PubMed  Google Scholar 

  4. Mayer RJ, Tipler C, Arnold J, Laszlo L, Al-Khedhairy A, Lowe J, Landon M (1996) Endosome-lysosomes, ubiquitin and neurodegeneration. Adv Exp Med Biol 389:261–269

    PubMed  CAS  Google Scholar 

  5. Fink AL (1998) Protein aggregation: folding aggregates, inclusion bodies and amyloid. Fold Des 3:R9–R23

    Article  PubMed  CAS  Google Scholar 

  6. Dobson CM (2003) Protein folding and misfolding. Nature 426:884–890

    Article  PubMed  CAS  Google Scholar 

  7. Dickson DW (2005) Required techniques and useful molecular markers in the neuropathologic diagnosis of neurodegenerative diseases. Acta Neuropathol (Berl) 109:14–24

    Article  Google Scholar 

  8. Lee VMY, Goedert M, Trojanowski J (2001) Neurodegenerative tauopathies. Annu Rev Neurosci 24:1121–1159

    Article  PubMed  CAS  Google Scholar 

  9. Goedert M, Klug A, Crowther RA (2006) Tau protein, the paired helical filament and Alzheimer’s disease. J Alzheimers Dis 9:195–207

    PubMed  CAS  Google Scholar 

  10. de Silva R, Lashley T, Strand C, Shiarli AM, Shi J, Tian J, Bailey KL, Davies P, Bigio EH, Arima K et al. (2006) An immunohistochemical study of cases of sporadic and inherited frontotemporal lobar degeneration using 3R- and 4R-specific tau monoclonal antibodies. Acta Neuropathol (Berl) 111:329–340

    Article  Google Scholar 

  11. Goedert M, Jakes R (2005) Mutations causing neurodegenerative tauopathies. Biochim Biophys Acta 1739:240–250

    PubMed  CAS  Google Scholar 

  12. Dickson DW, Rademakers R, Hutton ML (2007) Progressive supranuclear palsy: pathology and genetics. Brain Pathol 17:74–82

    Article  PubMed  CAS  Google Scholar 

  13. Masters CL, Beyruether K (2003) Molecular pathogenesis of Alzheimer’s disease. In: Dickson D (ed) Neurodegeneration: The molecular pathology of dementia and movement disorders. ISN Neuropath Press, Basel, pp 69–73

    Google Scholar 

  14. Zetterberg H, Ruetschi U, Portelius E, Brinkmalm G, Andreasson U, Blennow K, Brinkmalm A (2008) Clinical proteomics in neurodegenerative disorders. Acta Neurol Scand 118: 1–11

    Article  PubMed  CAS  Google Scholar 

  15. Bertram L, Tanzi R (2003) Genetics of Alzheimer’s disease. In: Dickson D (ed) Neurodegeneration: The molecular pathology of dementia and movement disorders. ISN Neuropath Press, Basel, pp 40–46

    Google Scholar 

  16. Chai CK (2007) The genetics of Alzheimer’s disease. Am J Alzheimers Dis Other Demen 22:37–41

    Article  PubMed  Google Scholar 

  17. Chandra S, Fornai F, Kwon HB, Yazdani U, Atasoy D, Liu X, Hammer RE, Battaglia G, German DC, Castillo PE et al. (2004) Double-knockout mice for alpha- and beta-synucleins: effect on synaptic functions. Proc Natl Acad Sci U S A 101:14966–14971

    Article  PubMed  CAS  Google Scholar 

  18. Clayton DF, George JM (1998) The synucleins: a family of proteins involved in synaptic function, plasticity, neurodegeneration and disease. Trends Neurosci 21:249–254

    Article  PubMed  CAS  Google Scholar 

  19. Sidhu A, Wersinger C, Vernier P (2004) alpha-Synuclein regulation of the dopaminergic transporter: a possible role in the pathogenesis of Parkinson’s disease. FEBS Lett 565: 1–5

    Article  PubMed  CAS  Google Scholar 

  20. Cabin DE, Shimazu K, Murphy D, Cole NB, Gottschalk W, McIlwain KL, Orrison B, Chen A, Ellis CE, Paylor R et al. (2002) Synaptic vesicle depletion correlates with attenuated synaptic responses to prolonged repetitive stimulation in mice lacking alpha-synuclein. J Neurosci 22:8797–8807

    PubMed  CAS  Google Scholar 

  21. Sidhu A, Wersinger C, Vernier P (2004) Does alpha-synuclein modulate dopaminergic synaptic content and tone at the synapse? FASEB J 18:637–647

    Article  PubMed  CAS  Google Scholar 

  22. Wersinger C, Sidhu A (2003) Attenuation of dopamine transporter activity by alpha-synuclein. Neurosci Lett 340:189–192

    Article  PubMed  CAS  Google Scholar 

  23. Wersinger C, Sidhu A (2005) Disruption of the interaction of alpha-synuclein with microtubules enhances cell surface recruitment of the dopamine transporter. Biochemistry 44:13612–13624

    Article  PubMed  CAS  Google Scholar 

  24. Goedert M (2001) Alpha-synuclein and neurodegenerative diseases. Nat Rev Neurosci 2: 492–501

    Article  PubMed  CAS  Google Scholar 

  25. Dickson DW (2001) Alpha-synuclein and the Lewy body disorders. Curr Opin Neurol 14:423–432

    Article  PubMed  CAS  Google Scholar 

  26. Neumann M, Muller V, Kretzschmar HA, Haass C, Kahle PJ (2004) Regional distribution of proteinase K-resistant alpha-synuclein correlates with Lewy body disease stage. J Neuropathol Exp Neurol 63:1225–1235

    PubMed  CAS  Google Scholar 

  27. Campbell BC, McLean CA, Culvenor JG, Gai WP, Blumbergs PC, Jakala P, Beyreuther K, Masters CL, Li QX (2001) The solubility of alpha-synuclein in multiple system atrophy differs from that of dementia with Lewy bodies and Parkinson’s disease. J Neurochem 76:87–96

    Article  PubMed  CAS  Google Scholar 

  28. Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R et al. (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276:2045–2047

    Article  PubMed  CAS  Google Scholar 

  29. Gwinn-Hardy K, Singleton AA (2002) Familial Lewy body diseases. J Geriatr Psychiatry Neurol 15:217–223

    PubMed  Google Scholar 

  30. Gasser T (2007) Update on the genetics of Parkinson’s disease. Mov Disord 22(Suppl 17):S343–S350

    Article  Google Scholar 

  31. Prusiner SB (1998) Prions. Proc Natl Acad Sci U S A 95:13363–13383

    Article  PubMed  CAS  Google Scholar 

  32. Legname G, Baskakov IV, Nguyen HO, Riesner D, Cohen FE, DeArmond SJ, Prusiner SB (2004) Synthetic mammalian prions. Science 305:673–676

    Article  PubMed  CAS  Google Scholar 

  33. Safar J, Wille H, Itri V, Groth D, Serban H, Torchia M, Cohen FE, Prusiner SB (1998) Eight prion strains have PrP(Sc) molecules with different conformations. Nat Med 4:1157–1165

    Article  PubMed  CAS  Google Scholar 

  34. Caughey B, Baron GS (2006) Prions and their partners in crime. Nature 443:803–810

    Article  PubMed  CAS  Google Scholar 

  35. Kovacs GG, Kalev O, Gelpi E, Haberler C, Wanschitz J, Strohschneider M, Molnár MJ, László L, Budka H (2004) The prion protein in human neuromuscular diseases. J Pathol 204:241–247

    Article  PubMed  CAS  Google Scholar 

  36. Aguzzi A, Heikenwalder M (2006) Pathogenesis of prion diseases: current status and future outlook. Nat Rev Microbiol 4:765–775

    Article  PubMed  CAS  Google Scholar 

  37. Kovacs GG, Trabattoni G, Hainfellner JA, Ironside JW, Knight RS, Budka H (2002) Mutations of the prion protein gene phenotypic spectrum. J Neurol 249:1567–1582

    Article  PubMed  CAS  Google Scholar 

  38. Hill AF, Joiner S, Wadsworth JD, Sidle KC, Bell JE, Budka H, Ironside JW, Collinge J (2003) Molecular classification of sporadic Creutzfeldt-Jakob disease. . Brain 126:1333–1346

    Article  PubMed  Google Scholar 

  39. Parchi P, Giese A, Capellari S, Brown P, Schulz-Schaeffer W, Windl O, Zerr I, Budka H, Kopp N, Piccardo P et al. (1999) Classification of sporadic Creutzfeldt-Jakob disease based on molecular and phenotypic analysis of 300 subjects. Ann Neurol 46:224–233

    Article  PubMed  CAS  Google Scholar 

  40. Ayala YM, Pagani F, Baralle FE (2006) TDP43 depletion rescues aberrant CFTR exon 9 skipping. FEBS Lett 580:1339–1344

    Article  PubMed  CAS  Google Scholar 

  41. Buratti E, Dörk T, Zuccato E, Pagani F, Romano M, Baralle FE (2001) Nuclear factor TDP-43 and SR proteins promote in vitro and in vivo CFTR exon 9 skipping. EMBO J 20:1774–1784

    Article  PubMed  CAS  Google Scholar 

  42. Wang IF, Reddy NM, Shen CK (2002) Higher order arrangement of the eukaryotic nuclear bodies. Proc Natl Acad Sci U S A 99:13583–13588

    Article  PubMed  CAS  Google Scholar 

  43. Sreedharan J, Blair IP, Tripathi VB, Hu X, Vance C, Rogelj B, Ackerley S, Durnall JC, Williams KL, Buratti E et al. (2008) TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 319:1668–1672

    Article  PubMed  CAS  Google Scholar 

  44. Gitcho MA, Baloh RH, Chakraverty S, Mayo K, Norton JB, Levitch D, Hatanpaa KJ, White CL III, Bigio EH, Caselli R et al. (2008) TDP-43 A315T mutation in familial motor neuron disease. Ann Neurol 63:535–538

    Article  PubMed  CAS  Google Scholar 

  45. Cairns NJ, Bigio EH, Mackenzie IR, Neumann M, Lee VM, Hatanpaa KJ, White CL III, Schneider JA, Grinberg LT, Halliday G et al. (2007) Neuropathologic diagnostic and nosologic criteria for frontotemporal lobar degeneration: consensus of the Consortium for Frontotemporal Lobar Degeneration. Acta Neuropathol (Berl) 114:5–22

    Article  Google Scholar 

  46. Cairns NJ, Uryu K, Bigio EH, Mackenzie IR, Gearing M, Duyckaerts C, Yokoo H, Nakazato Y, Jaros E, Perry RH et al. (2004) alpha-Internexin aggregates are abundant in neuronal intermediate filament inclusion disease (NIFID) but rare in other neurodegenerative diseases. Acta Neuropathol (Berl) 108:213–223

    Article  CAS  Google Scholar 

  47. Cairns NJ, Lee VM, Trojanowski JQ (2004) The cytoskeleton in neurodegenerative diseases. J Pathol 204:438–449

    Article  PubMed  CAS  Google Scholar 

  48. Yokota O, Tsuchiya K, Terada S, Ishizu H, Uchikado H, Ikeda M, Oyanagi K, Nakano I, Murayama S, Kuroda S et al. (2008) Basophilic inclusion body disease and neuronal intermediate filament inclusion disease: a comparative clinicopathological study. Acta Neuropathol (Berl) 115:561–575

    Article  Google Scholar 

  49. Orr HT, Zoghbi HY (2007) Trinucleotide repeat disorders. Annu Rev Neurosci 30:575–621

    Article  PubMed  CAS  Google Scholar 

  50. Takao M, Benson MD, Murrell JR, Yazaki M, Piccardo P, Unverzagt FW, Davis RL, Holohan PD, Lawrence DA, Richardson R et al. (2000) Neuroserpin mutation S52R causes neuroserpin accumulation in neurons and is associated with progressive myoclonus epilepsy. J Neuropathol Exp Neurol 59:1070–1086

    PubMed  CAS  Google Scholar 

  51. Schrimpf SP, Bleiker AJ, Brecevic L, Kozlov SV, Berger P, Osterwalder T, Krueger SR, Schinzel A, Sonderegger P (1997) Human neuroserpin (PI12): cDNA cloning and chromosomal localization to 3q26. Genomics 40:55–62

    Article  PubMed  CAS  Google Scholar 

  52. Davis RL, Holohan PD, Shrimpton AE, Tatum AH, Daucher J, Collins GH, Todd R, Bradshaw C, Kent P, Feiglin D et al. (1999) Familial encephalopathy with neuroserpin inclusion bodies. Am J Pathol 155:1901–1913

    PubMed  CAS  Google Scholar 

  53. Davis RL, Shrimpton AE, Holohan PD, Bradshaw C, Feiglin D, Collins GH, Sonderegger P, Kinter J, Becker LM, Lacbawan F et al. (1999) Familial dementia caused by polymerization of mutant neuroserpin. Nature 401:376–379

    PubMed  CAS  Google Scholar 

  54. Vidal R, Delisle MB, Ghetti B (2004) Neurodegeneration caused by proteins with an aberrant carboxyl-terminus. J Neuropathol Exp Neurol 63:787–800

    PubMed  CAS  Google Scholar 

  55. Vidal R, Ghiso J, Frangione B (2000) New familial forms of cerebral amyloid and dementia. Mol Psychiatry 5:575–576

    Article  PubMed  CAS  Google Scholar 

  56. Kovacs GG, Gelpi E, Lehotzky A, Höftberger R, Erdei A, Budka H, Ovádi J (2007) The brain-specific protein TPPP/p25 in pathological protein deposits of neurodegenerative diseases. Acta Neuropathol (Berl) 113:153–161

    Article  CAS  Google Scholar 

  57. Kovacs GG, László L, Kovács J, Jensen PH, Lindersson E, Botond G, Molnár T, Perczel A, Hudecz F, Mező G et al. (2004) Natively unfolded tubulin polymerization promoting protein TPPP/p25 is a common marker of alpha-synucleinopathies. Neurobiol Dis 17:155–162

    Article  PubMed  CAS  Google Scholar 

  58. Kovacs GG, László L (2001) The message of ubiquitin immunohistochemistry in conformational neurodegenerative diseases. In: Solomon B, Taraboulos A, Katchalski-Katzir E (eds) Conformational diseases – A compendium. Bialik Institute, Jerusalem, pp 249–258.

    Google Scholar 

  59. Wooten MW, Hu X, Babu JR, Seibenhener ML, Geetha T, Paine MG, Wooten MC (2006) Signaling, polyubiquitination, trafficking, and inclusions: Sequestosome 1/p62’s role in neurodegenerative disease. J Biomed Biotechnol 2006:62079

    PubMed  Google Scholar 

  60. Kuusisto E, Kauppinen T, Alafuzoff I (2008) Use of p62/SQSTM1 antibodies for neuropathological diagnosis. Neuropathol Appl Neurobiol 34:169–180

    Article  PubMed  CAS  Google Scholar 

  61. Bancher C, Brunner C, Lassmann H, Budka H, Jellinger K, Wiche G, Seitelberger F, Grundke-Iqbal I, Iqbal K, Wisniewski HM (1989) Accumulation of abnormally phosphorylated tau precedes the formation of neurofibrillary tangles in Alzheimer’s disease. Brain Res 477:90–99

    Article  PubMed  CAS  Google Scholar 

  62. Kuusisto E, Parkkinen L, Alafuzoff I (2003) Morphogenesis of Lewy bodies: dissimilar incorporation of alpha-synuclein, ubiquitin, and p62. J Neuropathol Exp Neurol 62:1241–1253

    PubMed  CAS  Google Scholar 

  63. Mackenzie IR, Foti D, Woulfe J, Hurwitz TA (2008) Atypical frontotemporal lobar degeneration with ubiquitin-positive, TDP-43-negative neuronal inclusions. Brain 131:1282–1293

    Article  PubMed  Google Scholar 

  64. Pickering-Brown SM (2007) The complex aetiology of frontotemporal lobar degeneration. Exp Neurol 206:1–10

    Article  PubMed  Google Scholar 

  65. Neurodegeneration: Duyckaerts C, Dickson DW (2003) Neuropathology of Alzheimer’s disease. In: Dickson D (ed) Neurodegeneration: The molecular pathology of dementia and movement disorders. ISN Neuropath Press, Basel, pp 47–65

    Google Scholar 

  66. Kovacs GG, Head MW, Hegyi I, Bunn TJ, Flicker H, Hainfellner JA, McCardle L, László L, Jarius C, Ironside JW et al. (2002) Immunohistochemistry for the prion protein: comparison of different monoclonal antibodies in human prion disease subtypes. Brain Pathol 12:1–11

    PubMed  CAS  Google Scholar 

  67. Kovacs GG, Preusser M, Strohschneider M, Budka H (2005) Subcellular localization of disease-associated prion protein in the human brain. Am J Pathol 166:287–294

    PubMed  CAS  Google Scholar 

  68. Koperek O, Kovacs GG, Ritchie D, Ironside JW, Budka H, Wick G (2002) Disease-associated prion protein in vessel walls. Am J Pathol 161:1979–1984

    PubMed  CAS  Google Scholar 

  69. Kovacs GG, Head MW, Bunn T, Laszlo L, Will RG, Ironside JW (2000) Clinicopathological phenotype of codon 129 valine homozygote sporadic Creutzfeldt-Jakob disease. Neuropathol Appl Neurobiol 26:463–472

    Article  PubMed  CAS  Google Scholar 

  70. Probst A, Herzig MC, Mistl C, Ipsen S, Tolnay M (2001) Perisomatic granules (non-plaque dystrophic dendrites) of hippocampal CA1 neurons in Alzheimer’s disease and Pick’s disease: a lesion distinct from granulovacuolar degeneration. Acta Neuropathol (Berl) 102:636–644

    CAS  Google Scholar 

  71. Tolnay M, Clavaguera F (2004) Argyrophilic grain disease: a late-onset dementia with distinctive features among tauopathies. Neuropathology 24:269–283

    Article  PubMed  Google Scholar 

  72. Kovacs GG, Pittman A, Revesz T, Luk C, Lees A, Kiss E, Tariska P, Laszlo L, Molnár K, Molnar MJ et al. (2008) MAPT S305I mutation: implications for argyrophilic grain disease. Acta Neuropathol (Berl). 116:103–118

    Article  CAS  Google Scholar 

  73. Saito Y, Ruberu NN, Sawabe M, Arai T, Tanaka N, Kakuta Y, Yamanouchi H, Murayama S (2004) Staging of argyrophilic grains: an age-associated tauopathy. J Neuropathol Exp Neurol 63:911–918

    PubMed  Google Scholar 

  74. Arima K, Nakamura M, Sunohara N, Nishio T, Ogawa M, Hirai S, Kawai M, Ikeda K (1999) Immunohistochemical and ultrastructural characterization of neuritic clusters around ghost tangles in the hippocampal formation in progressive supranuclear palsy brains. Acta Neuropathol (Berl) 97:565–576

    Article  CAS  Google Scholar 

  75. Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol (Berl) 82:239–259

    Article  CAS  Google Scholar 

  76. Mirra SS, Heyman A, McKeel D, Sumi SM, Crain BJ, Brownlee LM, Vogel FS, Hughes JP, van Belle G, Berg L (1991) The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology 41:479–486

    PubMed  CAS  Google Scholar 

  77. Group W (1997) Consensus recommendations for the postmortem diagnosis of Alzheimer’s disease. The National Institute on Aging, and Reagan Institute Working Group on Diagnostic Criteria for the Neuropathological Assessment of Alzheimer’s Disease. Neurobiol Aging 18:S1–S2

    Article  Google Scholar 

  78. Pocchiari M, Puopolo M, Croes EA, Budka H, Gelpi E, Collins S, Lewis V, Sutcliffe T, Guilivi A, Delasnerie-Laupretre N et al. (2004) Predictors of survival in sporadic Creutzfeldt-Jakob disease and other human transmissible spongiform encephalopathies. Brain 127:2348–2359

    Article  PubMed  CAS  Google Scholar 

  79. Dickson DW (1999) Neuropathologic differentiation of progressive supranuclear palsy and corticobasal degeneration. J Neurol 246 Suppl 2:II6–II15

    Article  PubMed  Google Scholar 

  80. Ferrer I, Santpere G, van Leeuwen FW (2008) Argyrophilic grain disease. Brain 131:1416–1432

    Article  PubMed  Google Scholar 

  81. Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211

    Article  PubMed  Google Scholar 

  82. McKeith IG, Dickson DW, Lowe J, Emre M, O’Brien JT, Feldman H, Cummings J, Duda JE, Lippa C, Perry EK et al. (2005) Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology 65:1863–1872

    Article  PubMed  CAS  Google Scholar 

  83. Terada S, Ishizu H, Yokota O, Tsuchiya K, Nakashima H, Ishihara T, Fujita D, Ueda K, Ikeda K, Kuroda S (2003) Glial involvement in diffuse Lewy body disease. Acta Neuropathol (Berl) 105:163–169

    CAS  Google Scholar 

  84. Piao YS, Wakabayashi K, Hayashi S, Yoshimoto M, Takahashi H (2000) Aggregation of alpha-synuclein/NACP in the neuronal and glial cells in diffuse Lewy body disease: a survey of six patients. Clin Neuropathol 19:163–169

    PubMed  CAS  Google Scholar 

  85. Papp MI, Kahn JE, Lantos PL (1989) Glial cytoplasmic inclusions in the CNS of patients with multiple system atrophy (striatonigral degeneration, olivopontocerebellar atrophy and Shy-Drager syndrome). J Neurol Sci 94:79–100

    Article  PubMed  CAS  Google Scholar 

  86. Baker KG, Huang Y, McCann H, Gai WP, Jensen PH, Halliday GM (2006) P25alpha immunoreactive but alpha-synuclein immunonegative neuronal inclusions in multiple system atrophy. Acta Neuropathol (Berl) 111:193–19

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Kovacs, G.G., Budka, H. (2009). Protein-Based Neuropathology and Molecular Classification of Human Neurodegenerative Diseases. In: Ovádi, J., Orosz, F. (eds) Protein Folding and Misfolding: Neurodegenerative Diseases. Focus on Structural Biology, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9434-7_11

Download citation

Publish with us

Policies and ethics