Skip to main content

Optimization of Radar Absorber Structures Using Genetic Algorithms

  • Conference paper
Metamaterials and Plasmonics: Fundamentals, Modelling, Applications

Abstract

In this paper, a real-valued genetic algorithm (GA) is implemented to construct Radar Absorbing Materials RAM by searching the characteristics (thickness T, permittivityε, permeabilityμ and conductivity σ) which ensure the minimization of the reflectivity on a frequency band. The genetic algorithms used the reflectivity in fitness function to direct the research to the best configuration. Here in, we dealt with the narrowband absorbers (Salisbury screen and circuit “Analog” RAM) and the broadband absorbers (Jaumann screen). Numerical results are presented and showed the efficiency of the methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rahmat-Samii, Y., Michielssen, E.: Electromagnetic Optimization by Genetic Algorithms. Wiley, New York (1999).

    MATH  Google Scholar 

  2. Lohn, J., Crawford, J., Globus, A., Hornby, G., Kraus, W., Larchev, G., Pryor, A., Srivastava, D.: Evolvable systems for space applications. Proceedings of International Conference on Space Mission Challenges for Information Technology (2003).

    Google Scholar 

  3. Hall, J.M.: A novel, real-valued genetic algorithm for optimizing radar absorbing materials. NASA/CR-2004-212669 (2004).

    Google Scholar 

  4. Cui, S., Weile, D.S.: Robust design of absorbers using genetic algorithms and the finite element-boundary integral method. IEEE Transactions on Antennas and Propagation. Vol. 51, No. 12, pp. 3249–3258 (2003).

    Article  Google Scholar 

  5. Cui, S., Weile, D.S., Volakis, J.L.: Novel planar absorber designs using genetic algorithms. Antennas and Propagation Society International Symposium. Vol. 2B, pp. 271–274 (2005).

    Google Scholar 

  6. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading, MA (1989).

    MATH  Google Scholar 

  7. Lassouaoui, N., Ouslimani, H., Priou, A.: Genetic Algorithms for Automated Design of the Multilayer Absorbers in the X-Band and Incident Angle Range. Progress in Electromagnetics Research Symposium PIERS'08. Hangzhou (2008).

    Google Scholar 

  8. Vinoy, K. J., JHA, R. M.: Radar Absorbing Materials. Kluwer, Dordrecht (1996).

    Google Scholar 

  9. Petit, R.: Electromagnetic Waves in Radio Electricity and Optics. Masson Edition, Paris (1992).

    Google Scholar 

  10. Lassouaoui, N., Ouslimani, H., Priou, A.: Differential Theory with Genetic Algorithms in Design Periodic Absorbers. Progress in Electromagnetics Research Symposium PIERS'08. Hangzhou (2008).

    Google Scholar 

  11. Neviere, M., Popov, E.: Light Propagation in Periodic Media, Differential Theory and Design. Marcel Dekker, New York (2003).

    Google Scholar 

  12. Lassouaoui, N., Ouslimani, H., Priou, A.: Development of Genetic Algorithms and C-Method for Optimizing a Scattering by Rough Surface. European Computing Conference. Springer, Greece (2007).

    Google Scholar 

  13. Granet, G., Edee, K., Felbacq, D.: Scattering of a plane wave by rough surfaces: A new curvilinear coordinate system based approach. Progress in Electromagnetics Research, PIER. Vol. 37, pp. 235–250 (2002).

    Article  Google Scholar 

  14. Rozanov, K. N.: Ultimate thickness to bandwidth ratio of radar absorbers. IEEE Transactions on Antennas and Propagation. Vol. 48, pp. 1230–1234 (2000).

    Article  Google Scholar 

  15. Vinogradov, A. P., Lagar'kov, A. N., Sarchev, A. K., Sterlina, I. G.: Multilayer absorbing structures from composite materials. Journal of Communications Technology & Electronics. Vol. 41, pp. 142–145 (1996).

    Google Scholar 

  16. Kazantsev, Y. N., Krasnozhen, A. P., Tikhonravov, A. V.: Multilayered absorbing structures with Debye dispersion of the permittivity. Soviet Journal of Communications Technology & Electronics. Vol. 36, pp. 19–25 (1991).

    Google Scholar 

  17. Knott, E. F., Shaeffer, J. F.: Tuley, Radar Cross Section: Its Prediction, Measurement and Reduction, Artech House, Dedham, MA, pp. 413–442 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Priou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lassouaoui, N., Ouslimani, H.H., Priou, A. (2009). Optimization of Radar Absorber Structures Using Genetic Algorithms. In: Zouhdi, S., Sihvola, A., Vinogradov, A.P. (eds) Metamaterials and Plasmonics: Fundamentals, Modelling, Applications. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9407-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-9407-1_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-9406-4

  • Online ISBN: 978-1-4020-9407-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics