Handedness in Plasmonics: Electrical Engineer's Perspective

Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)

Abstract

In this article, the concepts of handedness and negative material parameters are analyzed at a general and qualitative level. Three different usages of handedness in metamaterials and electromagnetics are distinguished: left-handedness as characterization of double-negative materials, handedness of the polarization of a plane wave, and chirality in the structure of matter. The symmetry of the treatment between left and right is discussed from the point of view of the three uses of the handedness. It is essential to distinguish the helicity of the spatial shape of the field vector as opposed to the temporal behavior of the field at a given position in space. Negative refraction and backward-wave characteristics are discussed in the case when structural chirality of the medium splits the wave numbers of the eigenwaves. Finally, negative refraction is connected with anisotropic and bi-anisotropic materials.

Keywords

Permeability Microwave Anisotropy Carboxyl Refraction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lapine, M.: The age of metamaterials (Editorial). Metamaterials 1, 1 (2007) doi: 10.1016/j.metamat.2007.02.006CrossRefGoogle Scholar
  2. 2.
    Boltasseva, A., Shalaev, V.M.: Fabrication of optical negative-index metamaterials: Recent advances and outlook. Metamaterials 2, 1–17 (2008) doi: 10.1016/j.metamat.2008.03.004CrossRefGoogle Scholar
  3. 3.
    Sihvola, A.: Electromagnetic emergence in metamaterials. Deconstruction of terminology of complex media. In: Zouhdi, S., Sihvola, A., Arsalane, M. (eds.) Advances in Electro magnetics of Complex Media and Metamaterials, pp. 1–17. NATO Science Series: II: Mathematics, Physics, and Chemistry, 89, Kluwer, Dordrecht (2003)Google Scholar
  4. 4.
    Sihvola, A., Lindell, I.: On the three different denotations of handedness in wave-material interaction. Proceedings of the International Symposium on Electromagnetic Theory (URSI), pp. 84–86, May 23–27, 2004, Pisa, ItalyGoogle Scholar
  5. 5.
    Sihvola, A.: Metamaterials in electromagnetics. Metamaterials 1, 2–17 (2007) doi: 10.1016/ j.metamat.2007.02.003CrossRefGoogle Scholar
  6. 6.
    Veselago, V.G.: The electrodynamics of substances with simultaneously negative values of ε and μ. Soviet Physics Uspekhi 10(4), 509–514 (1968). (Translation form the original Russian article, Uspekhi Fizicheskii Nauk 92, 517–526 (1967))CrossRefGoogle Scholar
  7. 7.
    Bohren, C.F., Huffman, D.R.: Absorption and Scattering of Light by Small Particles. Wiley, New York (1983)Google Scholar
  8. 8.
    Federal Standard 1037C, Telecommunications. Glossary of Telecommunication Terms, August 7, 1996Google Scholar
  9. 9.
  10. 10.
    Lindell, I.V., Sihvola, A.H., Tretyakov, S.A., Viitanen, A.J.: Electromagnetic Waves in Chiral and Bi-isotropic Media, Artech House, Norwood, MA (1994)Google Scholar
  11. 11.
    Lee, T.D., Yang, C.N.: Question of parity conservation in weak interactions. Physical Review 104(1), 254–258 (1956)CrossRefGoogle Scholar
  12. 12.
    Hegstrom, R.A., Kondepundi, D.K.: The handedness of the universe. Scientific American 262, 108–115 (January 1990)CrossRefGoogle Scholar
  13. 13.
    Tretyakov, S.A., Maslovski, S.I., Nefedov, I.S., Viitanen, A.J., Belov, P.A., Sanmartin, A.: Artificial Tellegen particle. Electromagnetics 23(8), 665–680 (2003)CrossRefGoogle Scholar
  14. 14.
    Ghosh, A., Sheridon, N.K., Fischer, P.: Janus particles with coupled electric and magnetic moments make a disordered magneto-electric medium. arXiv.org > cond-mat > arXiv: 0708.1126v1Google Scholar
  15. 15.
    Lindell, I.V.: Methods for Electromagnetic Field Analysis. Oxford University Press/IEEE Press, Oxford (1992, 1995)Google Scholar
  16. 16.
    Engheta, N., Ziolkowski, R.W.: Metamaterials. Physics and Engineering Explorations. IEEE Press/Wiley, New York (2006)Google Scholar
  17. 17.
    Tretyakov, S., Nefedov, I., Sihvola, A., Maslovski, S., Simovski, C.: Waves and energy in chiral nihility. Journal of Electromagnetic Waves and Applications 17(5), 695–706 (2003)CrossRefGoogle Scholar
  18. 18.
    Enoch, S., Tayeb, G., Sabouroux, P., Guérin, N., Vincent, P.: A metamaterial for directive emission. Physical Review Letters 89, 213902 (2002)CrossRefGoogle Scholar
  19. 19.
    Engheta, N.: Metactronics: Optical circuits and information processing in nanoworlds. Proc. META'08, NATO Advanced Research Workshop, 7–10 May 2008, p. 533, Marrakech, MoroccoGoogle Scholar
  20. 20.
    Klyne, W.: Carboxyl and aromatic chromophores: optical rotatory dispersion and circular dichroism studies. Proceedings of the Royal Society (London), Series A, 297, 66–78 (1967)CrossRefGoogle Scholar
  21. 21.
    Serdyukov, A., Semchenko, I., Tretyakov, S., Sihvola, A.: Electromagnetics of Bi-anisotropic Materials: Theory and Applications. Gordon and Breach, Amsterdam (2001)Google Scholar
  22. 22.
    Lindell, I.V., Sihvola, A.H.: Negative-definite media, a class of bi-anisotropic metamaterials. Microwave and Optical Technology Letters 48(3), 602–606 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Department of Radio Science and EngineeringHelsinki University of TechnologyFinland
  2. 2.LGEP — Supélec, Plateau de MoulonGif-sur-YvetteFrance

Personalised recommendations