Sensory Transduction Network of E. coli

  • Michael Y. Galperin


The genome of Escherichia coli K12 encodes at least 6 classes of sensor proteins: 30 histidine protein kinases, 5 methyl-accepting chemotaxis proteins, 23 membrane components of the sugar:phosphotransferase system (PTS), 29 proteins with diguanylate cyclase and/or c-di-GMP-specific phosphodiesterase activity and two predicted serine/threonine protein kinases. The full signal transduction network additionally includes 32 response regulators, numerous chemotaxis proteins, PTS components, adenylate cyclase, CRP, and uncharacterized c-di-GMP-responsive components. Bacterial response to environmental signals can occur on several levels: the level of individual genes and proteins (changes in gene expression, post-translational regulation), the whole-cell level (chemotaxis), and the multicellular level (biofilm formation). All signal transduction systems are energy-dependent but their energy expenditure is miniscule compared to that of the processes they regulate. A better understanding of the signal transduction mechanisms and integration of these mechanisms into the metabolic pathway model of the E. coli cell will remain major challenges for systems biology.


Metabolic Network Response Regulator Histidine Kinase Metabolic Reconstruction Output Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aizawa S-I, Zhulin IB, Marquez-Magana L et al. (2002) Chemotaxis and motility. In: Sonenshein AL, Hoch JA, Losick R (eds) Bacillus subtilis and its closest relatives: from genes to cells. ASM Press, Washington, D.C., pp. 437–452Google Scholar
  2. Amikam D, Galperin MY (2005) PilZ domain is part of the bacterial c-di-GMP binding protein. Bioinformatics 22:3–6PubMedCrossRefGoogle Scholar
  3. Blattner FR, Plunkett G, 3rd, Bloch CA et al. (1997) The complete genome sequence of Escherichia coli K-12. Science 277:1453–1474PubMedCrossRefGoogle Scholar
  4. Christen M, Christen B, Folcher M et al. (2005) Identification and characterization of a cyclic di-GMP-specific phosphodiesterase and its allosteric control by GTP. J Biol Chem 280: 30829–30837PubMedCrossRefGoogle Scholar
  5. Delgado-Nixon VM, Gonzalez G, Gilles-Gonzalez MA (2000) Dos, a heme-binding PAS protein from Escherichia coli, is a direct oxygen sensor. Biochemistry 39:2685–2691PubMedCrossRefGoogle Scholar
  6. Deutscher J, Saier MH, Jr. (2005) Ser/Thr/Tyr protein phosphorylation in bacteria – for long time neglected, now well established. J Mol Microbiol Biotechnol 9:125–131PubMedCrossRefGoogle Scholar
  7. Deutscher J, Francke C, Postma PW (2006) How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev 70:939–1031PubMedCrossRefGoogle Scholar
  8. Durfee T, Nelson R, Baldwin S et al. (2008) The complete genome sequence of Escherichia coli DH10B: Insights into the biology of a laboratory workhorse. J Bacteriol 190:2597–2606PubMedCrossRefGoogle Scholar
  9. Dyer CM, Dahlquist FW (2006) Switched or not?: the structure of unphosphorylated CheY bound to the N terminus of FliM. J Bacteriol 188:7354–7363PubMedCrossRefGoogle Scholar
  10. Galperin MY, Nikolskaya AN, Koonin EV (2001) Novel domains of the prokaryotic two-component signal transduction systems. FEMS Microbiol Lett 203:11–21PubMedCrossRefGoogle Scholar
  11. Galperin MY (2005) A census of membrane-bound and intracellular signal transduction proteins in bacteria: bacterial IQ, extroverts and introverts. BMC Microbiol 5:35PubMedCrossRefGoogle Scholar
  12. Galperin MY (2006) Structural classification of bacterial response regulators: diversity of output domains and domain combinations. J Bacteriol 188:4169–4182PubMedCrossRefGoogle Scholar
  13. Gao R, Mack TR, Stock AM (2007) Bacterial response regulators: versatile regulatory strategies from common domains. Trends Biochem Sci 32:225–234PubMedCrossRefGoogle Scholar
  14. Grebe TW, Stock JB (1999) The histidine protein kinase superfamily. Adv Microb Physiol 41: 139–227PubMedCrossRefGoogle Scholar
  15. Hagiwara D, Yamashino T, Mizuno T (2004) A genome-wide view of the Escherichia coli BasS-BasR two-component system implicated in iron-responses. Biosci Biotechnol Biochem 68:1758–1767PubMedCrossRefGoogle Scholar
  16. Hayashi K, Morooka N, Yamamoto Y et al. (2006) Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110. Mol Syst Biol 2:2006 0007Google Scholar
  17. Hayashi T, Makino K, Ohnishi M et al. (2001) Complete genome sequence of enterohemorrhagic Escherichia coli O157:H7 and genomic comparison with a laboratory strain K-12. DNA Res 8:11–22PubMedCrossRefGoogle Scholar
  18. Hengge-Aronis R (2002) Signal transduction and regulatory mechanisms involved in control of the σS (RpoS) subunit of RNA polymerase. Microbiol Mol Biol Rev 66:373–395PubMedCrossRefGoogle Scholar
  19. Inouye M, Dutta R (eds) (2003) Histidine kinases in signal transduction. Academic Press, San Diego – LondonGoogle Scholar
  20. Jenal U, Malone J (2006) Mechanisms of cyclic-di-GMP signaling in bacteria. Annu Rev Genet 40:385–407PubMedCrossRefGoogle Scholar
  21. Johnson TJ, Kariyawasam S, Wannemuehler Y et al. (2007) The genome sequence of avian pathogenic Escherichia coli strain O1:K1:H7 shares strong similarities with human extraintestinal pathogenic E. coli genomes. J Bacteriol 189:3228–3236PubMedCrossRefGoogle Scholar
  22. Kanehisa M, Araki M, Goto S et al. (2008) KEGG for linking genomes to life and the environment. Nucleic Acids Res 36:D480–484PubMedCrossRefGoogle Scholar
  23. Krin E, Sismeiro O, Danchin A et al. (2002) The regulation of Enzyme IIAGlc expression controls adenylate cyclase activity in Escherichia coli. Microbiology 148:1553–1559PubMedGoogle Scholar
  24. Muffler A, Fischer D, Altuvia S et al. (1996) The response regulator RssB controls stability of the sS subunit of RNA polymerase in Escherichia coli. EMBO J 15:1333–1339PubMedGoogle Scholar
  25. Park YH, Lee BR, Seok YJ et al. (2006) In vitro reconstitution of catabolite repression in Escherichia coli. J Biol Chem 281:6448–6454PubMedCrossRefGoogle Scholar
  26. Parkinson JS, Kofoid EC (1992) Communication modules in bacterial signaling proteins. Annu Rev Genet 26:71–112PubMedCrossRefGoogle Scholar
  27. Paul R, Weiser S, Amiot NC et al. (2004) Cell cycle-dependent dynamic localization of a bacterial response regulator with a novel di-guanylate cyclase output domain. Genes Dev 18:715–727PubMedCrossRefGoogle Scholar
  28. Perna NT, Plunkett G, 3rd, Burland V et al. (2001) Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature 409:529–533PubMedCrossRefGoogle Scholar
  29. Poon WW, Davis DE, Ha HT et al. (2000) Identification of Escherichia coli ubiB, a gene required for the first monooxygenase step in ubiquinone biosynthesis. J Bacteriol 182:5139–5146PubMedCrossRefGoogle Scholar
  30. Postma PW, Lengeler JW, Jacobson GR (1993) Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria. Microbiol Rev 57:543–594PubMedGoogle Scholar
  31. Repik A, Rebbapragada A, Johnson MS et al. (2000) PAS domain residues involved in signal transduction by the aer redox sensor of Escherichia coli. Mol Microbiol 36:806–816PubMedCrossRefGoogle Scholar
  32. Römling U, Gomelsky M, Galperin MY (2005) C-di-GMP: The dawning of a novel bacterial signalling system. Mol Microbiol 57:629–639PubMedCrossRefGoogle Scholar
  33. Ryjenkov DA, Tarutina M, Moskvin OM et al. (2005) Cyclic diguanylate is a ubiquitous signaling molecule in Bacteria: Insights into biochemistry of the GGDEF protein domain. J Bacteriol 187:1792–1798PubMedCrossRefGoogle Scholar
  34. Ryjenkov DA, Simm R, Römling U et al. (2006) The PilZ domain is a receptor for the second messenger c-di-GMP: the PilZ domain protein YcgR controls motility in enterobacteria. J Biol Chem 281:30310–30314PubMedCrossRefGoogle Scholar
  35. Schmidt AJ, Ryjenkov DA, Gomelsky M (2005) Ubiquitous protein domain EAL encodes cyclic diguanylate-specific phosphodiesterase: Enzymatically active and inactive EAL domains. J Bacteriol 187:4774–4781PubMedCrossRefGoogle Scholar
  36. Shi L, Potts M, Kennelly PJ (1998) The serine, threonine, and/or tyrosine-specific protein kinases and protein phosphatases of prokaryotic organisms: a family portrait. FEMS Microbiol Rev 22:229–253PubMedCrossRefGoogle Scholar
  37. Stewart V (2003) Nitrate- and nitrite-responsive sensors NarX and NarQ of proteobacteria. Biochem Soc Trans 31:1–10PubMedCrossRefGoogle Scholar
  38. Stock AM, Robinson VL, Goudreau PN (2000) Two-component signal transduction. Annu Rev Biochem 69:183–215PubMedCrossRefGoogle Scholar
  39. Szurmant H, Ordal GW (2004) Diversity in chemotaxis mechanisms among the bacteria and archaea. Microbiol Mol Biol Rev 68:301–319PubMedCrossRefGoogle Scholar
  40. Thomas SA, Brewster JA, Bourret RB (2008) Two variable active site residues modulate response regulator phosphoryl group stability. Mol Microbiol 69:453–465PubMedCrossRefGoogle Scholar
  41. Toro-Roman A, Wu T, Stock AM (2005) A common dimerization interface in bacterial response regulators KdpE and TorR. Protein Sci 14:3077–3088PubMedCrossRefGoogle Scholar
  42. Ulrich LE, Zhulin IB (2007) MiST: a microbial signal transduction database. Nucleic Acids Res 35:D386–D390.PubMedCrossRefGoogle Scholar
  43. Welch RA, Burland V, Plunkett G, 3rd et al. (2002) Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc Natl Acad Sci USA 99:17020–17024PubMedCrossRefGoogle Scholar
  44. Yamamoto K, Hirao K, Oshima T et al. (2005) Functional characterization in vitro of all two-component signal transduction systems from Escherichia coli. J Biol Chem 280:1448–1456PubMedCrossRefGoogle Scholar
  45. Zhou Y, Gottesman S, Hoskins JR et al. (2001) The RssB response regulator directly targets σS for degradation by ClpXP. Genes Dev 15:627–637PubMedCrossRefGoogle Scholar
  46. Zhulin IB (2001) The superfamily of chemotaxis transducers: from physiology to genomics and back. Adv Microb Physiol 45:157–198PubMedCrossRefGoogle Scholar
  47. Zogaj X, Nimtz M, Rohde M et al. (2001) The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Mol Microbiol 39:1452–1463.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.National Institutes of HealthNational Center for Biotechnology Information, National Library of MedicineBethesdaUSA

Personalised recommendations