Skip to main content

Analysis of E. coli Network

  • Chapter

Abstract

Diverse complex systems such as cells, Internet and society can be mapped into networks by simplifying each constituent as a node and their interaction as a link. Traditionally it has been considered that these networks are random, but recent series of studies show that they are far from being random and have common inhomogeneous topology through generic self-organizing process. In this chapter, we briefly introduce the network analysis methods which were re-developed in statistical physics community recently. First, we introduce basic complex network models such as Erdős-Rènyi model, small-world model, scale-free model which were developed to describe complex systems. And then, we applied these methods to biological system, such as metabolic network and protein-protein interaction network of E. coli. We measure the global and local characteristics of the network structure. Finally we briefly review recent works on biological networks especially on dynamic aspect.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albert R, Barabasi AL (2000) Topology of evolving networks: local events and universality. Phys Rev Lett 85(24):5234–7

    Article  PubMed  CAS  Google Scholar 

  • Albert R, Jeong H, Barabasi A-L (1999a) The diameter of the World Wide Web. Nature 401:130–1

    Article  CAS  Google Scholar 

  • Albert R, Jeong H, Barabasi A-L (1999b) Emergence of Scaling in Random Networks Nature 400:130

    Article  Google Scholar 

  • Albert R, Jeong H, Barabasi AL (2000) Error and attack tolerance of complex networks. Nature 406(6794):378–82

    Article  PubMed  CAS  Google Scholar 

  • Almaas E, Kovacs B, Vicsek T et al. (2004) Global organization of metabolic fluxes in the bacterium Escherichia coli. Nature 427(6977):839–43

    Article  PubMed  CAS  Google Scholar 

  • Barabasi A-L, Albert R (1999) Emergence of Scaling in Random Networks Science 286:509

    Article  PubMed  Google Scholar 

  • Barabasi A-L, Albert R, Jeong H (1999) Emergence of Scaling in Random Networks Physica A 272:173

    Article  Google Scholar 

  • Barkai N, Leibler S (1997) Robustness in simple biochemical networks. Nature 387(6636):913–7

    Article  PubMed  CAS  Google Scholar 

  • Barthelemy M, Amaral LAN (1999a) Small-World Networks: Evidence for a Crossover Picture. Phys Rev Lett 82:3180–2

    Article  CAS  Google Scholar 

  • Barthelemy M, Amaral LAN (1999b) Small-World Networks: Evidence for a Crossover Picture. Phys Rev Lett 82:3180–3183

    Article  CAS  Google Scholar 

  • Bhalla US, Iyengar R (1999) Emergent properties of networks of biological signaling pathways. Science 283(5400):381–7

    Article  PubMed  CAS  Google Scholar 

  • Bollobas B (1985) Random Graphs. Academic Press, London

    Google Scholar 

  • Butland G, Peregrin-Alvarez JM, Li J et al. (2005) Interaction network containing conserved and essential protein complexes in Escherichia coli. Nature 433(7025):531–7

    Article  PubMed  CAS  Google Scholar 

  • Cascante M, Melendez-Hevia E, Kholodenko B et al. (1995) Control analysis of transit time for free and enzyme-bound metabolites: physiological and evolutionary significance of metabolic response times. Biochem J 308(Pt 3):895–9

    PubMed  CAS  Google Scholar 

  • Covert MW, Knight EM, Reed JL et al. (2004) Integrating high-throughput and computational data elucidates bacterial networks. Nature 429(6987):92–6

    Article  PubMed  CAS  Google Scholar 

  • Dorogovtsev SN, Mendes JFF (2002) Evolution of networks. Adv Phys 51:1079–1187

    Article  Google Scholar 

  • Eisenberg D, Marcotte EM, Xenarios I et al. (2000) Protein function in the post-genomic era. Nature 405(6788):823–6

    Article  PubMed  CAS  Google Scholar 

  • Eom YH, Lee S, Jeong H (2006) Exploring local structural organization of metabolic networks using subgraph patterns. J Theor Biol 241(4):823–9

    PubMed  Google Scholar 

  • Erdős P, Rènyi A (1960) On the evolution of random graphs. Publ Math Inst Hung Acad Sci 5A:17–61

    Google Scholar 

  • Faloutsos M, Faloutsos P, Faloutsos C (1999) On power-law relationships of the internet topology. ACM SIGCOMM’99, Boston, MA

    Google Scholar 

  • Gleiss PM, Stadler PF, Wagner A et al. (2001) Relevant Cycles in Chemical ReactionNetworks. Adv Complex Syst 1:1–000

    Google Scholar 

  • Guimera R, Nunes Amaral LA (2005) Functional cartography of complex metabolic networks. Nature 433(7028):895–900

    Article  PubMed  CAS  Google Scholar 

  • Han JD, Bertin N, Hao T et al. (2004) Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature 430(6995):88–93

    Article  PubMed  CAS  Google Scholar 

  • Hartwell LH, Hopfield JJ, Leibler S et al. (1999) From molecular to modular cell biology. Nature 402(6761 Suppl):C47–52

    Article  PubMed  CAS  Google Scholar 

  • Heinrich R, Schuster S (1996) The Regulation of Cellular Systems. Chapman & Hall, New York

    Google Scholar 

  • Huberman BA, Adamic LA (1999) Growth dynamics of the World-Wide Web. Nature 400:131

    Article  Google Scholar 

  • Ito T, Chiba T, Ozawa R et al. (2001) A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci USA 98(8):4569–74

    Article  PubMed  CAS  Google Scholar 

  • Jeong H (2003) Complex scale-free networks Physica A 321:226–37

    Article  Google Scholar 

  • Jeong H, Mason SP, Barabasi AL et al. (2001) Lethality and centrality in protein networks. Nature 411(6833):41–2

    Article  PubMed  CAS  Google Scholar 

  • Jeong H, Tombor B, Albert R et al. (2000) The large-scale organization of metabolic networks. Nature 407(6804):651–4

    Article  PubMed  CAS  Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27–30

    Article  PubMed  CAS  Google Scholar 

  • Karp PD, Krummenacker M, Paley S et al. (1999) Integrated pathway-genome databases and their role in drug discovery. Trends Biotechnol 17(7):275–81

    Article  PubMed  CAS  Google Scholar 

  • Kim PJ, Lee DY, Kim TY et al. (2007) Metabolite essentiality elucidates robustness of Escherichia coli metabolism. Proc Natl Acad Sci USA 104(34):13638–42

    Article  PubMed  CAS  Google Scholar 

  • Mangan S, Alon U (2003) Structure and function of the feed-forward loop network motif. Proc Natl Acad Sci USA 100(21):11980–5

    Article  PubMed  CAS  Google Scholar 

  • Milo R, Itzkovitz S, Kashtan N et al. (2004) Superfamilies of evolved and designed networks. Science 303(5663):1538–42

    Article  PubMed  CAS  Google Scholar 

  • Milo R, Shen-Orr S, Itzkovitz S et al. (2002) Network motifs: simple building blocks of complex networks. Science 298(5594):824–7

    Article  PubMed  CAS  Google Scholar 

  • Newman MEJ (2001) Scientific collaboration networks. Phys Rev E64:016131

    Google Scholar 

  • Newman MEJ (2002) Assortative Mixing in Networks. Phys Rev Lett 89:208701

    Article  PubMed  CAS  Google Scholar 

  • Ooi SL, Shoemaker DD, Boeke JD (2003) DNA helicase gene interaction network defined using synthetic lethality analyzed by microarray. Nat Genet 35(3):277–86

    Article  PubMed  CAS  Google Scholar 

  • Overbeek R, Larsen N, Pusch GD et al. (2000) WIT: integrated system for high-throughput genome sequence analysis and metabolic reconstruction. Nucleic Acids Res 28(1):123–5

    Article  PubMed  CAS  Google Scholar 

  • Papp B, Pal C, Hurst LD (2004) Metabolic network analysis of the causes and evolution of enzyme dispensability in yeast. Nature 429(6992):661–4

    Article  PubMed  CAS  Google Scholar 

  • Pastor-Satorras R, Vàzquez A, Vespignani A (2001) Dynamical and Correlation Properties of the Internet. Phys Rev Lett 87:258701

    Article  PubMed  CAS  Google Scholar 

  • Price ND, Reed JL, Palsson BO (2004) Genome-scale models of microbial cells: evaluating the consequences of constraints. Nat Rev Microbiol 2(11):886–97

    Article  PubMed  CAS  Google Scholar 

  • Rain J-C, Selig L, De Reuse H et al. (2001a) The protein-protein interaction map of Helicobacter pylori. Nature 409:211

    Article  PubMed  CAS  Google Scholar 

  • Rain JC, Selig L, De Reuse H et al. (2001b) The protein-protein interaction map of Helicobacter pylori. Nature 409(6817):211–5

    Article  PubMed  CAS  Google Scholar 

  • Ravasz E, Somera AL, Mongru DA et al. (2002) Hierarchical organization of modularity in metabolic networks. Science 297(5586):1551–5

    Article  PubMed  CAS  Google Scholar 

  • Raymond J, Segre D (2006) The effect of oxygen on biochemical networks and the evolution of complex life. Science 311(5768):1764–7

    Article  PubMed  CAS  Google Scholar 

  • Reed JL, Palsson BO (2004) Genome-scale in silico models of E. coli have multiple equivalent phenotypic states: assessment of correlated reaction subsets that comprise network states. Genome Res 14(9):1797–805

    Article  PubMed  CAS  Google Scholar 

  • Schmidt S, Sunyaev S, Bork P et al. (2003) Metabolites: a helping hand for pathway evolution? Trends Biochem Sci 28(6):336–41

    Article  PubMed  CAS  Google Scholar 

  • Shen-Orr SS, Milo R, Mangan S et al. (2002) Network motifs in the transcriptional regulation network of Escherichia coli. Nat Genet 31(1):64–8

    Article  PubMed  CAS  Google Scholar 

  • Stauffer D, Aharony A (1992) Percolation Theory. Taylor & Francis, London

    Google Scholar 

  • Strogatz SH (2001) Exploring complex networks. Nature 410(6825):268–76

    Article  PubMed  CAS  Google Scholar 

  • Suki B, Alencar AM, Sujeer MK et al. (1998) Life-support system benefits from noise. Nature 393(6681):127–8

    Article  PubMed  CAS  Google Scholar 

  • Tong AH, Evangelista M, Parsons AB et al. (2001) Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294(5550):2364–8

    Article  PubMed  CAS  Google Scholar 

  • Tucker CL, Fields S (2003) Lethal combinations. Nat Genet 35(3):204–5

    Article  PubMed  CAS  Google Scholar 

  • Uetz P, Giot L, Cagney G et al. (2000) A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403(6770):623–7

    Article  PubMed  CAS  Google Scholar 

  • Vazquez A, Dobrin R, Sergi D et al. (2004) The topological relationship between the large-scale attributes and local interaction patterns of complex networks. Proc Natl Acad Sci 101:17940

    Article  PubMed  CAS  Google Scholar 

  • Wagner A (2005) Robustness and Evolvability in Living Systems. Princeton University Press, Princeton

    Google Scholar 

  • Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393(6684):440–2

    Article  PubMed  CAS  Google Scholar 

  • Wong SL, Zhang LV, Tong AH et al. (2004) Combining biological networks to predict genetic interactions. Proc Natl Acad Sci USA 101(44):15682–7

    Article  PubMed  CAS  Google Scholar 

  • Xenarios I, Rice DW, Salwinski L et al. (2000) DIP: the database of interacting proteins. Nucleic Acids Res 28(1):289–91

    Article  PubMed  CAS  Google Scholar 

  • Yi TM, Huang Y, Simon MI et al. (2000) Robust Perfect Adaptation in Bacterial Chemotaxis through Integral Feedback Control. Proc Natl Acad Sci USA 97:4649–53

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hawoong Jeong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Jeong, H. (2009). Analysis of E. coli Network. In: Lee, S.Y. (eds) Systems Biology and Biotechnology of Escherichia coli . Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9394-4_7

Download citation

Publish with us

Policies and ethics