Skip to main content

The Multiple Scientific Disciplines Served by EcoCyc

  • Chapter
  • 2910 Accesses

Abstract

The EcoCyc database integrates information about the E. coli genome, its metabolic pathways, and its regulatory network. EcoCyc is in use by scientists from a variety of disciplines. Experimental biologists use it as a reference source on E. coli, and to leverage information about E. coli to the study of other microbes. Because the E. coli genome has the largest number of experimentally characterized genes of any organism, EcoCyc is used in the annotation of other microbial genomes by sequence similarity. EcoCyc has also been used in a number of global biological studies by computational biologists, and to provide training and validation datasets for the development of new bioinformatics algorithms. EcoCyc serves as a reference source for metabolic engineers, and it is used in microbiology education. The software behind EcoCyc, called Pathway Tools, has been used to develop EcoCyc-like databases for many other organisms. Pathway Tools provides powerful query and visualization capabilities, including tools to analyze high-throughput datasets by painting those datasets onto genome-scale diagrams of the metabolic network, the transcriptional regulatory network, and the complete genome map.

Keywords

  • Metabolic Network
  • Discipline Serve
  • Pathway Tool
  • Metabolic Engineer
  • Operon Prediction

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4020-9394-4_6
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   179.00
Price excludes VAT (USA)
  • ISBN: 978-1-4020-9394-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   229.99
Price excludes VAT (USA)
Hardcover Book
USD   229.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arita M (2003) In silico atomic tracing by substrate-product relationships in Escherichia coli intermediary metabolism. Genome Res 13(11):2455–66

    PubMed  CrossRef  CAS  Google Scholar 

  • Arita M (2004) The metabolic world of Escherichia coli is not small. Proc Natl Acad Sci USA 101(6):1543–7

    PubMed  CrossRef  CAS  Google Scholar 

  • Bailey JE (1991) Toward a science of metabolic engineering. Science 252(5013):1668–75

    PubMed  CrossRef  CAS  Google Scholar 

  • Bowers PM, Pellegrini M, Thompson MJ et al. (2004) Prolinks: a database of protein functional linkages derived from coevolution. Genome Biol 5(5):R35

    PubMed  CrossRef  Google Scholar 

  • Burden S, Lin YX, Zhang R (2005) Improving promoter prediction for the NNPP2.2 algorithm: a case study using Escherichia coli DNA sequences. Bioinformatics 21(5):601–7

    PubMed  CrossRef  CAS  Google Scholar 

  • Cases I, de Lorenzo V, Ouzounis CA (2003) Transcription regulation and environmental adaptation in bacteria. Trends Microbiol 11(6):248–53

    PubMed  CrossRef  CAS  Google Scholar 

  • Caspi R, Foerster H, Fulcher CA et al. (2008) The MetaCyc Database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases. Nucleic Acids Res 36(Database issue):D623–31

    PubMed  CrossRef  CAS  Google Scholar 

  • Chassagnole C, Letisse F, Diano A et al. (2002) Carbon flux analysis in a pantothenate overproducing Corynebacterium glutamicum strain. Mol Biol Rep 29(1–2):129–34

    PubMed  CrossRef  CAS  Google Scholar 

  • Edwards JS, Palsson BO (2000) The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities. Proc Natl Acad Sci USA 97(10):5528–33

    PubMed  CrossRef  CAS  Google Scholar 

  • Enault F, Suhre K, Poirot O et al. (2003) Phydbac (phylogenomic display of bacterial genes): An interactive resource for the annotation of bacterial genomes. Nucleic Acids Res 31(13): 3720–2

    PubMed  CrossRef  CAS  Google Scholar 

  • Feist AM, Henry CS, Reed JL et al. (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol Syst Biol 3:121

    PubMed  CrossRef  Google Scholar 

  • Frazier ME, Johnson GM, Thomassen DG et al. (2003) Realizing the potential of the genome revolution: the genomes to life program. Science 300(5617):290–3

    PubMed  CrossRef  CAS  Google Scholar 

  • Gama-Castro S, Jimenez-Jacinto V, Peralta-Gil M et al. (2008) RegulonDB (version 6.0): gene regulation model of Escherichia coli K-12 beyond transcription, active (experimental) annotated promoters and Textpresso navigation. Nucleic Acids Res 36(Database issue):D120–4

    PubMed  CrossRef  CAS  Google Scholar 

  • Gordon L, Chervonenkis AY, Gammerman AJ et al. (2003) Sequence alignment kernel for recognition of promoter regions. Bioinformatics 19(15):1964–71

    PubMed  CrossRef  CAS  Google Scholar 

  • Jardine O, Gough J, Chothia C et al. (2002) Comparison of the small molecule metabolic enzymes of Escherichia coli and Saccharomyces cerevisiae. Genome Res 12(6):916–29

    PubMed  CrossRef  CAS  Google Scholar 

  • Karp PD (1997) Use of metabolic databases to guide target selection for anti-microbial drug design. Blackwell Science Ltd., Oxford, UK

    Google Scholar 

  • Karp PD (2003) The Pathway Tools software and its role in anti-microbial drug discovery. Marcel Dekker, Inc., New York

    Google Scholar 

  • Karp PD, Keseler IM, Shearer A et al. (2007) Multidimensional annotation of the Escherichia coli K-12 genome. Nucleic Acids Res 35(22):7577–90

    PubMed  CrossRef  CAS  Google Scholar 

  • Karp PD, Krummenacker M, Paley S et al. (1999) Integrated pathway-genome databases and their role in drug discovery. Trends Biotechnol 17(7):275–81

    PubMed  CrossRef  CAS  Google Scholar 

  • Karp PD, Ouzounis CA, Moore-Kochlacs C et al. (2005) Expansion of the BioCyc collection of pathway/genome databases to 160 genomes. Nucleic Acids Res 33(19):6083–9

    PubMed  CrossRef  CAS  Google Scholar 

  • Lithwick G, Margalit H (2005) Relative predicted protein levels of functionally associated proteins are conserved across organisms. Nucleic Acids Res 33(3):1051–7

    PubMed  CrossRef  CAS  Google Scholar 

  • Ma HW, Kumar B, Ditges U et al. (2004) An extended transcriptional regulatory network of Escherichia coli and analysis of its hierarchical structure and network motifs. Nucleic Acids Res 32(22):6643–9

    PubMed  CrossRef  CAS  Google Scholar 

  • Marcotte EM, Pellegrini M, Thompson MJ et al. (1999) A combined algorithm for genome-wide prediction of protein function. Nature 402(6757):83–6

    PubMed  CrossRef  CAS  Google Scholar 

  • Pellegrini M, Marcotte EM, Thompson MJ et al. (1999) Assigning protein functions by comparative genome analysis: protein phylogenetic profiles. Proc Natl Acad Sci USA 96(8): 4285–8

    PubMed  CrossRef  CAS  Google Scholar 

  • Peregrin-Alvarez JM, Tsoka S, Ouzounis CA (2003) The phylogenetic extent of metabolic enzymes and pathways. Genome Res 13(3):422–7

    PubMed  CrossRef  CAS  Google Scholar 

  • Price MN, Huang KH, Alm EJ et al. (2005) A novel method for accurate operon predictions in all sequenced prokaryotes. Nucleic Acids Res 33(3):880–92

    PubMed  CrossRef  CAS  Google Scholar 

  • Ravasz E, Somera AL, Mongru DA et al. (2002) Hierarchical organization of modularity in metabolic networks. Science 297(5586):1551–5

    PubMed  CrossRef  CAS  Google Scholar 

  • Reed JL, Palsson BO (2003) Thirteen years of building constraint-based in silico models of Escherichia coli. J Bacteriol 185(9):2692–9

    PubMed  CrossRef  CAS  Google Scholar 

  • Reed JL, Palsson BO (2004) Genome-scale in silico models of E. coli have multiple equivalent phenotypic states: assessment of correlated reaction subsets that comprise network states. Genome Res 14(9):1797–805

    PubMed  CrossRef  CAS  Google Scholar 

  • Reed JL, Vo TD, Schilling CH et al. (2003) An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biol 4(9):R54

    PubMed  CrossRef  Google Scholar 

  • Rison SC, Thornton JM (2002) Pathway evolution, structurally speaking. Curr Opin Struct Biol 12(3):374–82

    PubMed  CrossRef  CAS  Google Scholar 

  • Romero PR, Karp PD (2004) Using functional and organizational information to improve genome-wide computational prediction of transcription units on pathway-genome databases. Bioinformatics 20(5):709–17

    PubMed  CrossRef  CAS  Google Scholar 

  • Salgado H, Gama-Castro S, Martinez-Antonio A et al. (2004) RegulonDB (version 4.0): transcriptional regulation, operon organization and growth conditions in Escherichia coli K-12. Nucleic Acids Res 32(Database issue):D303–6

    PubMed  CrossRef  CAS  Google Scholar 

  • Shen-Orr SS, Milo R, Mangan S et al. (2002) Network motifs in the transcriptional regulation network of Escherichia coli. Nat Genet 31(1):64–8

    PubMed  CrossRef  CAS  Google Scholar 

  • Simeonidis E, Rison SC, Thornton JM et al. (2003) Analysis of metabolic networks using a pathway distance metric through linear programming. Metab Eng 5(3):211–9

    PubMed  CrossRef  CAS  Google Scholar 

  • Steinhauser D, Junker BH, Luedemann A et al. (2004) Hypothesis-driven approach to predict transcriptional units from gene expression data. Bioinformatics 20(12):1928–39

    PubMed  CrossRef  CAS  Google Scholar 

  • Stephanopoulos G, Vallino JJ (1991) Network rigidity and metabolic engineering in metabolite overproduction. Science 252(5013):1675–81

    PubMed  CrossRef  CAS  Google Scholar 

  • Studholme DJ, Bentley SD, Kormanec J (2004) Bioinformatic identification of novel regulatory DNA sequence motifs in Streptomyces coelicolor. BMC Microbiol 4(14):14

    PubMed  CrossRef  Google Scholar 

  • Teichmann SA, Rison SC, Thornton JM et al. (2001a) The evolution and structural anatomy of the small molecule metabolic pathways in Escherichia coli. J Mol Biol 311(4):693–708

    PubMed  CrossRef  CAS  Google Scholar 

  • Teichmann SA, Rison SC, Thornton JM et al. (2001b) Small-molecule metabolism: an enzyme mosaic. Trends Biotechnol 19(12):482–6

    PubMed  CrossRef  CAS  Google Scholar 

  • Thanassi JA, Hartman-Neumann SL, Dougherty TJ et al. (2002) Identification of 113 conserved essential genes using a high-throughput gene disruption system in Streptococcus pneumoniae. Nucleic Acids Res 30(14):3152–62

    PubMed  CrossRef  CAS  Google Scholar 

  • Tomita M, Hashimoto K, Takahashi K et al. (1999) E-CELL: software environment for whole-cell simulation. Bioinformatics 15(1):72–84

    PubMed  CrossRef  CAS  Google Scholar 

  • Tsoka S, Ouzounis CA (2000) Prediction of protein interactions: metabolic enzymes are frequently involved in gene fusion. Nat Genet 26(2):141–2

    PubMed  CrossRef  CAS  Google Scholar 

  • Tsoka S, Ouzounis CA (2001) Functional versatility and molecular diversity of the metabolic map of Escherichia coli. Genome Res 11(9):1503–10

    PubMed  CrossRef  CAS  Google Scholar 

  • Tweeddale H, Notley-McRobb L, Ferenci T (1999) Assessing the effect of reactive oxygen species on Escherichia coli using a metabolome approach. Redox Rep 4(5):237–41

    PubMed  CrossRef  CAS  Google Scholar 

  • Van Dien SJ, Strovas T, Lidstrom ME (2003) Quantification of central metabolic fluxes in the facultative methylotroph Methylobacterium extorquens AM1 using 13C-label tracing and mass spectrometry. Biotechnol Bioeng 84(1):45–55

    PubMed  CrossRef  Google Scholar 

  • von Mering C, Zdobnov EM, Tsoka S et al. (2003) Genome evolution reveals biochemical networks and functional modules. Proc Natl Acad Sci USA 100(26):15428–33

    CrossRef  Google Scholar 

  • Weber J, Hoffmann F, Rinas U (2002) Metabolic adaptation of Escherichia coli during temperature-induced recombinant protein production: 2. Redirection of metabolic fluxes. Biotechnol Bioeng 80(3):320–30

    CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter D. Karp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Karp, P.D. (2009). The Multiple Scientific Disciplines Served by EcoCyc. In: Lee, S.Y. (eds) Systems Biology and Biotechnology of Escherichia coli . Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9394-4_6

Download citation