Engineering E. coli Central Metabolism for Enhanced Primary Metabolite Production


In engineering of Escherichia coli for the production of chemicals derived from the central metabolic pathway and in using E. coli as a biocatalyst for reactions involving externally supplied specific substrates, there is a need to consider the redox balance and cofactor availability for optimization of the process. Several examples of taking into account the systems biology complexity of redox processes through consideration of gene expression effects, protein level and activity effects, and the role of small molecule effectors of enzyme activity, as well as the role of activation and deactivation of sensitive active site structures are described in the chapter. The manipulation of the availability of reduced cofactors through genetic means and the application of such altered strains for metabolic engineering purposes for the improved production of specific reduced molecules for biofuels, chiral pharmaceutical intermediates, unconjugated colored compounds, and other valuable chemicals is presented.


Metabolic Engineering Pyruvate Carboxylase Appl Environ Succinate Production Succinic Acid Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdel-Hamid AM, Attwood MM, Guest JR (2001) Pyruvate oxidase contributes to the aerobic growth efficiency of Escherichia coli. Microbiology 147(Pt 6):1483–98PubMedGoogle Scholar
  2. Alexeeva S, de Kort B, Sawers G et al. (2000) Effects of limited aeration and of the ArcAB system on intermediary pyruvate catabolism in Escherichia coli. J Bacteriol 182(17):4934–40PubMedCrossRefGoogle Scholar
  3. Alexeeva S, Hellingwerf KJ, Teixeira de Mattos MJ (2002) Quantitative assessment of oxygen availability: perceived aerobiosis and its effect on flux distribution in the respiratory chain of Escherichia coli. J Bacteriol 184(5):1402–6PubMedGoogle Scholar
  4. Alexeeva S, Hellingwerf KJ, Teixeira de Mattos MJ (2003) Requirement of ArcA for redox regulation in Escherichia coli under microaerobic but not anaerobic or aerobic conditions. J Bacteriol 185(1):204–9Google Scholar
  5. Alper H, Fischer C, Nevoigt E et al. (2005a) Tuning genetic control through promoter engineering. Proc Natl Acad Sci USA 102(36):12678–83PubMedCrossRefGoogle Scholar
  6. Alper H, Jin YS, Moxley JF et al. (2005b) Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli. Metab Eng 7(3):155–64PubMedCrossRefGoogle Scholar
  7. Alper H, Miyaoku K, Stephanopoulos G (2006) Characterization of lycopene-overproducing E. coli strains in high cell density fermentations. Appl Microbiol Biotechnol 72(5):968–74PubMedCrossRefGoogle Scholar
  8. Alper H, Stephanopoulos G (2008) Uncovering the gene knockout landscape for improved lycopene production in E. coli. Appl Microbiol Biotechnol 78(5):801–10PubMedCrossRefGoogle Scholar
  9. Andersson C, Hodge D, Berglund KA et al. (2007) Effect of different carbon sources on the production of succinic acid using metabolically engineered Escherichia coli. Biotechnol Prog 23(2):381–8PubMedCrossRefGoogle Scholar
  10. Andersson CI, Holmberg N, Farres J et al. (2000) Error-prone PCR of Vitreoscilla hemoglobin (VHb) to support the growth of microaerobic Escherichia coli. Biotechnol Bioeng 70(4): 446–55PubMedCrossRefGoogle Scholar
  11. Aristidou AA, San KY, Bennett GN (1999) Improvement of biomass yield and recombinant gene expression in Escherichia coli by using fructose as the primary carbon source. Biotechnol Prog 15(1):140–5PubMedCrossRefGoogle Scholar
  12. Backlund E, Markland K, Larsson G (2008) Cell engineering of Escherichia coli allows high cell density accumulation without fed-batch process control. Bioprocess Biosyst Eng 31(1):11–20PubMedCrossRefGoogle Scholar
  13. Bagramyan K, Trchounian A (2003) Structural and functional features of formate hydrogen lyase, an enzyme of mixed-acid fermentation from Escherichia coli. Biochemistry (Mosc) 68(11):1159–70CrossRefGoogle Scholar
  14. Becker A, Fritz-Wolf K, Kabsch W et al. (1999) Structure and mechanism of the glycyl radical enzyme pyruvate formate-lyase. Nat Struct Biol 6(10):969–75PubMedCrossRefGoogle Scholar
  15. Becker S, Vlad D, Schuster S et al. (1997) Regulatory O_2 tensions for the synthesis of fermentation products in Escherichia coli and relation to aerobic respiration. Arch Microbiol 168(4): 290–6PubMedCrossRefGoogle Scholar
  16. Berrios-Rivera SJ, Bennett GN, San KY (2002a) The effect of increasing NADH availability on the redistribution of metabolic fluxes in Escherichia coli chemostat cultures. Metab Eng 4(3): 230–7PubMedCrossRefGoogle Scholar
  17. Berrios-Rivera SJ, Bennett GN, San KY (2002b) Metabolic engineering of Escherichia coli: increase of NADH availability by overexpressing an NAD+-dependent formate dehydrogenase. Metab Eng 4(3):217–29PubMedCrossRefGoogle Scholar
  18. Berrios-Rivera SJ, Sanchez AM, Bennett GN et al. (2004) Effect of different levels of NADH availability on metabolite distribution in Escherichia coli fermentation in minimal and complex media. Appl Microbiol Biotechnol 65(4):426–32PubMedCrossRefGoogle Scholar
  19. Birkmann A, Zinoni F, Sawers G et al. (1987) Factors affecting transcriptional regulation of the formate-hydrogen-lyase pathway of Escherichia coli. Arch Microbiol 148(1):44–51PubMedCrossRefGoogle Scholar
  20. Blaschkowski HP, Neuer G, Ludwig-Festl M et al. (1982) Routes of flavodoxin and ferredoxin reduction in Escherichia coli. CoA-acylating pyruvate: flavodoxin and NADPH: flavodoxin oxidoreductases participating in the activation of pyruvate formate-lyase. Eur J Biochem 123(3):563–9PubMedCrossRefGoogle Scholar
  21. Cassey B, Guest JR, Attwood MM (1998) Environmental control of pyruvate dehydrogenase complex expression in Escherichia coli. FEMS Microbiol Lett 159(2):325–9PubMedCrossRefGoogle Scholar
  22. Causey TB, Shanmugam KT, Yomano LP et al. (2004) Engineering Escherichia coli for efficient conversion of glucose to pyruvate. Proc Natl Acad Sci USA 101(8):2235–40PubMedCrossRefGoogle Scholar
  23. Causey TB, Zhou S, Shanmugam KT et al. (2003) Engineering the metabolism of Escherichia coli W3110 for the conversion of sugar to redox-neutral and oxidized products: homoacetate production. Proc Natl Acad Sci USA 100(3):825–32PubMedCrossRefGoogle Scholar
  24. Chang DE, Jung HC, Rhee JS et al. (1999) Homofermentative production of D- or L-lactate in metabolically engineered Escherichia coli RR1. Appl Environ Microbiol 65(4):1384–9PubMedGoogle Scholar
  25. Chase T, Jr., Rabinowitz JC (1968) Role of pyruvate and S-adenosylmethioine in activating the pyruvate formate-lyase of Escherichia coli. J Bacteriol 96(4):1065–78PubMedGoogle Scholar
  26. Chatterjee R, Millard CS, Champion K et al. (2001) Mutation of the ptsG gene results in increased production of succinate in fermentation of glucose by Escherichia coli. Appl Environ Microbiol 67(1):148–54PubMedCrossRefGoogle Scholar
  27. Chen R, Hatzimanikatis V, Yap WM et al. (1997) Metabolic consequences of phosphotransferase (PTS) mutation in a phenylalanine-producing recombinant Escherichia coli. Biotechnol Prog 13(6):768–75PubMedCrossRefGoogle Scholar
  28. Chou CH, Bennett GN, San KY (1994) Effect of modulated glucose uptake on high-level recombinant protein production in a dense Escherichia coli culture. Biotechnol Prog 10(6):644–7PubMedCrossRefGoogle Scholar
  29. Cox SJ, Shalel Levanon S, Sanchez A et al. (2006) Development of a metabolic network design and optimization framework incorporating implementation constraints: a succinate production case study. Metab Eng 8(1):46–57Google Scholar
  30. Cunningham FX, Jr., Sun Z, Chamovitz D et al. (1994) Molecular structure and enzymatic function of lycopene cyclase from the cyanobacterium Synechococcus sp strain PCC7942. Plant Cell 6(8):1107–21PubMedCrossRefGoogle Scholar
  31. De Anda R, Lara AR, Hernandez V et al. (2006) Replacement of the glucose phosphotransferase transport system by galactose permease reduces acetate accumulation and improves process performance of Escherichia coli for recombinant protein production without impairment of growth rate. Metab Eng 8(3):281–90PubMedCrossRefGoogle Scholar
  32. De Mey M, Lequeux GJ, Beauprez JJ et al. (2007) Comparison of different strategies to reduce acetate formation in Escherichia coli. Biotechnol Prog 23(5):1053–63PubMedGoogle Scholar
  33. Dias JM, Lemos PC, Serafim LS et al. (2006) Recent advances in polyhydroxyalkanoate production by mixed aerobic cultures: from the substrate to the final product. Macromol Biosci 6(11): 885–906PubMedCrossRefGoogle Scholar
  34. Dien BS, Nichols NN, Bothast RJ (2001) Recombinant Escherichia coli engineered for production of L-lactic acid from hexose and pentose sugars. J Ind Microbiol Biotechnol 27(4):259–64PubMedCrossRefGoogle Scholar
  35. Doelle HW, Hollywood NW (1978) Transitional steady-state investigations during aerobic-anaerobic transition of glucose utilization by Escherichia coli K-12. Eur J Biochem 83(2): 479–84PubMedCrossRefGoogle Scholar
  36. Farmer WR, Liao JC (1997) Reduction of aerobic acetate production by Escherichia coli. Appl Environ Microbiol 63(8):3205–10PubMedGoogle Scholar
  37. Farmer WR, Liao JC (2000) Improving lycopene production in Escherichia coli by engineering metabolic control. Nat Biotechnol 18(5):533–7PubMedCrossRefGoogle Scholar
  38. Farmer WR, Liao JC (2001) Precursor balancing for metabolic engineering of lycopene production in Escherichia coli. Biotechnol Prog 17(1):57–61PubMedCrossRefGoogle Scholar
  39. Fidler S, Dennis D (1992) Polyhydroxyalkanoate production in recombinant Escherichia coli. FEMS Microbiol Rev 9(2–4):231–5PubMedGoogle Scholar
  40. Flores N, de Anda R, Flores S et al. (2004) Role of pyruvate oxidase in Escherichia coli strains lacking the phosphoenolpyruvate:carbohydrate phosphotransferase system. J Mol Microbiol Biotechnol 8(4):209–21PubMedCrossRefGoogle Scholar
  41. Fong SS, Burgard AP, Herring CD et al. (2005) In silico design and adaptive evolution of Escherichia coli for production of lactic acid. Biotechnol Bioeng 91(5):643–8PubMedCrossRefGoogle Scholar
  42. Francis K, Patel P, Wendt JC et al. (1990) Purification and characterization of two forms of hydrogenase isoenzyme 1 from Escherichia coli. J Bacteriol 172(10):5750–7PubMedGoogle Scholar
  43. Frey AD, Bailey JE, Kallio PT (2000) Expression of Alcaligenes eutrophus flavohemoprotein and engineered Vitreoscilla hemoglobin-reductase fusion protein for improved hypoxic growth of Escherichia coli. Appl Environ Microbiol 66(1):98–104PubMedCrossRefGoogle Scholar
  44. Galkin A, Kulakova L, Yoshimura T et al. (1997) Synthesis of optically active amino acids from alpha-keto acids with Escherichia coli cells expressing heterologous genes. Appl Environ Microbiol 63(12):4651–6PubMedGoogle Scholar
  45. Gallagher CE, Cervantes-Cervantes M, Wurtzel ET (2003) Surrogate biochemistry: use of Escherichia coli to identify plant cDNAs that impact metabolic engineering of carotenoid accumulation. Appl Microbiol Biotechnol 60(6):713–9PubMedGoogle Scholar
  46. Govantes F, Orjalo AV, Gunsalus RP (2000) Interplay between three global regulatory proteins mediates oxygen regulation of the Escherichia coli cytochrome d oxidase (cydAB) operon. Mol Microbiol 38(5):1061–73PubMedCrossRefGoogle Scholar
  47. Guest JR, Angier SJ, Russell GC (1989) Structure, expression, and protein engineering of the pyruvate dehydrogenase complex of Escherichia coli. Ann NY Acad Sci 573:76–99PubMedCrossRefGoogle Scholar
  48. Guest JR, Cole ST, Jeyaseelan K (1981) Organization and expression of the pyruvate dehydrogenase complex genes of Escherichia coli K12. J Gen Microbiol 127(1):65–79PubMedGoogle Scholar
  49. Guest JR, Stephens PE (1980) Molecular cloning of the pyruvate dehydrogenase complex genes of Escherichia coli. J Gen Microbiol 121(2):277–92PubMedGoogle Scholar
  50. Gunsalus RP, Park SJ (1994) Aerobic-anaerobic gene regulation in Escherichia coli: control by the ArcAB and Fnr regulons. Res Microbiol 145(5–6):437–50PubMedCrossRefGoogle Scholar
  51. Haydon DJ, Quail MA, Guest JR (1993) A mutation causing constitutive synthesis of the pyruvate dehydrogenase complex in Escherichia coli is located within the pdhR gene. FEBS Lett 336(1):43–7PubMedCrossRefGoogle Scholar
  52. Hemmi H, Ohnuma S, Nagaoka K et al. (1998) Identification of genes affecting lycopene formation in Escherichia coli transformed with carotenoid biosynthetic genes: candidates for early genes in isoprenoid biosynthesis. J Biochem 123(6):1088–96PubMedGoogle Scholar
  53. Hernandez-Montalvo V, Martinez A, Hernandez-Chavez G et al. (2003) Expression of galP and glk in a Escherichia coli PTS mutant restores glucose transport and increases glycolytic flux to fermentation products. Biotechnol Bioeng 83(6):687–94PubMedCrossRefGoogle Scholar
  54. Hong SH, Lee SY (2001) Metabolic flux analysis for succinic acid production by recombinant Escherichia coli with amplified malic enzyme activity. Biotechnol Bioeng 74(2):89–95PubMedCrossRefGoogle Scholar
  55. Hong SH, Lee SY (2002) Importance of redox balance on the production of succinic acid by metabolically engineered Escherichia coli. Appl Microbiol Biotechnol 58(3):286–90PubMedCrossRefGoogle Scholar
  56. Hoover DM, Ludwig ML (1997) A flavodoxin that is required for enzyme activation: the structure of oxidized flavodoxin from Escherichia coli at 1.8 A resolution. Protein Sci 6(12):2525–37PubMedCrossRefGoogle Scholar
  57. Hua Q, Joyce AR, Fong SS et al. (2006) Metabolic analysis of adaptive evolution for in silico-designed lactate-producing strains. Biotechnol Bioeng 95(5):992–1002PubMedCrossRefGoogle Scholar
  58. Ingram LO, Aldrich HC, Borges AC et al. (1999) Enteric bacterial catalysts for fuel ethanol production. Biotechnol Prog 15(5):855–66PubMedCrossRefGoogle Scholar
  59. Ingram LO, Conway T, Clark DP et al. (1987) Genetic engineering of ethanol production in Escherichia coli. Appl Environ Microbiol 53(10):2420–5PubMedGoogle Scholar
  60. Jantama K, Haupt MJ, Svoronos SA et al. (2008) Combining metabolic engineering and metabolic evolution to develop nonrecombinant strains of Escherichia coli C that produce succinate and malate. Biotechnol Bioeng 99(5):1140–53PubMedCrossRefGoogle Scholar
  61. Jarboe LR, Grabar TB, Yomano LP et al. (2007) Development of ethanologenic bacteria. Adv Biochem Eng Biotechnol 108:237–61PubMedGoogle Scholar
  62. Jin YS, Stephanopoulos G (2007) Multi-dimensional gene target search for improving lycopene biosynthesis inEscherichia coli. Metab Eng 9(4):337–47PubMedCrossRefGoogle Scholar
  63. Jones SA, Chowdhury FZ, Fabich AJ et al. (2007) Respiration of Escherichia coli in the mouse intestine. Infect Immun 75(10):4891–9PubMedCrossRefGoogle Scholar
  64. Jung YM, Lee JN, Shin HD et al. (2004) Role of tktA gene in pentose phosphate pathway on odd-ball biosynthesis of poly-beta-hydroxybutyrate in transformant Escherichia coli harboring phbCAB operon. J Biosci Bioeng 98(3):224–7PubMedGoogle Scholar
  65. Kabir MM, Shimizu K (2003a) Fermentation characteristics and protein expression patterns in a recombinant Escherichia coli mutant lacking phosphoglucose isomerase for poly(3-hydroxybutyrate) production. Appl Microbiol Biotechnol 62(2–3):244–55PubMedCrossRefGoogle Scholar
  66. Kabir MM, Shimizu K (2003b) Gene expression patterns for metabolic pathway in pgi knockout Escherichia coli with and without phb genes based on RT-PCR. J Biotechnol 105(1–2): 11–31PubMedCrossRefGoogle Scholar
  67. Kajiwara S, Fraser PD, Kondo K et al. (1997) Expression of an exogenous isopentenyl diphosphate isomerase gene enhances isoprenoid biosynthesis in Escherichia coli. Biochem J 324 (Pt 2):421–6PubMedGoogle Scholar
  68. Kallio PT, Tsai PS, Bailey JE (1996) Expression of Vitreoscilla hemoglobin is superior to horse heart myoglobin or yeast flavohemoglobin expression for enhancing Escherichia coli growth in a microaerobic bioreactor. Biotechnol Prog 12(6):751–7PubMedCrossRefGoogle Scholar
  69. Kang MJ, Lee YM, Yoon SH et al. (2005) Identification of genes affecting lycopene accumulation in Escherichia coli using a shot-gun method. Biotechnol Bioeng 91(5):636–42PubMedCrossRefGoogle Scholar
  70. Kaup B, Bringer-Meyer S, Sahm H (2003) Metabolic engineering of Escherichia coli: construction of an efficient biocatalyst for D-mannitol formation in a whole-cell biotransformation. Commun Agric Appl Biol Sci 68(2 Pt A):235–40PubMedGoogle Scholar
  71. Kaup B, Bringer-Meyer S, Sahm H (2004) Metabolic engineering of Escherichia coli: construction of an efficient biocatalyst for D-mannitol formation in a whole-cell biotransformation. Appl Microbiol Biotechnol 64(3):333–9PubMedCrossRefGoogle Scholar
  72. Kaup B, Bringer-Meyer S, Sahm H (2005) D: -Mannitol formation from D: -glucose in a whole-cell biotransformation with recombinant Escherichia coli. Appl Microbiol Biotechnol 69(4): 397–403PubMedCrossRefGoogle Scholar
  73. Keenan TM, Nakas JP, Tanenbaum SW (2006) Polyhydroxyalkanoate copolymers from forest biomass. J Ind Microbiol Biotechnol 33(7):616–26PubMedCrossRefGoogle Scholar
  74. Kim P, Laivenieks M, Vieille C et al. (2004) Effect of overexpression of Actinobacillus succinogenes phosphoenolpyruvate carboxykinase on succinate production in Escherichia coli. Appl Environ Microbiol 70(2):1238–41PubMedCrossRefGoogle Scholar
  75. Kim SW, Jung WH, Ryu JM et al. (2008) Identification of an alternative translation initiation site for the Pantoea ananatis lycopene cyclase (crtY) gene in E. coli and its evolutionary conservation. Protein Expr Purif 58(1):23–31PubMedCrossRefGoogle Scholar
  76. Kim SW, Keasling JD (2001) Metabolic engineering of the nonmevalonate isopentenyl diphosphate synthesis pathway in Escherichia coli enhances lycopene production. Biotechnol Bioeng 72(4):408–15PubMedCrossRefGoogle Scholar
  77. Kim Y, Ingram LO, Shanmugam KT (2007) Construction of an Escherichia coli K-12 mutant for homoethanologenic fermentation of glucose or xylose without foreign genes. Appl Environ Microbiol 73(6):1766–71PubMedCrossRefGoogle Scholar
  78. Knappe J, Blaschkowski HP (1975) Pyruvate formate-lyase from Escherischia coli and its activation system. Methods Enzymol 41:508–18PubMedCrossRefGoogle Scholar
  79. Knappe J, Neugebauer FA, Blaschkowski HP et al. (1984) Post-translational activation introduces a free radical into pyruvate formate-lyase. Proc Natl Acad Sci USA 81(5):1332–5PubMedCrossRefGoogle Scholar
  80. Knappe J, Sawers G (1990) A radical-chemical route to acetyl-CoA: the anaerobically induced pyruvate formate-lyase system of Escherichia coli. FEMS Microbiol Rev 6(4):383–98PubMedCrossRefGoogle Scholar
  81. Knappe J, Wagner AF (1995) Glycyl free radical in pyruvate formate-lyase: synthesis, structure characteristics, and involvement in catalysis. Methods Enzymol 258:343–62PubMedCrossRefGoogle Scholar
  82. Kulzer R, Pils T, Kappl R et al. (1998) Reconstitution and characterization of the polynuclear iron-sulfur cluster in pyruvate formate-lyase-activating enzyme. Molecular properties of the holoenzyme form. J Biol Chem 273(9):4897–903Google Scholar
  83. Lara AR, Caspeta L, Gosset G et al. (2008) Utility of an Escherichia coli strain engineered in the substrate uptake system for improved culture performance at high glucose and cell concentrations: an alternative to fed-batch cultures. Biotechnol Bioeng 99(4):893–901PubMedCrossRefGoogle Scholar
  84. Lara AR, Vazquez-Limon C, Gosset G et al. (2006) Engineering Escherichia coli to improve culture performance and reduce formation of by-products during recombinant protein production under transient intermittent anaerobic conditions. Biotechnol Bioeng 94(6):1164–75PubMedCrossRefGoogle Scholar
  85. Laurinavichene TV, Tsygankov AA (2001) H_2 consumption by Escherichia coli coupled via hydrogenase 1 or hydrogenase 2 to different terminal electron acceptors. FEMS Microbiol Lett 202(1):121–4PubMedCrossRefGoogle Scholar
  86. Lee PC, Momen AZ, Mijts BN et al. (2003) Biosynthesis of structurally novel carotenoids in Escherichia coli. Chem Biol 10(5):453–62PubMedCrossRefGoogle Scholar
  87. Lee SJ, Lee DY, Kim TY et al. (2005) Metabolic engineering of Escherichia coli for enhanced production of succinic acid, based on genome comparison and in silico gene knockout simulation. Appl Environ Microbiol 71(12):7880–7PubMedCrossRefGoogle Scholar
  88. Lee SY, Yim KS, Chang HN et al. (1994) Construction of plasmids, estimation of plasmid stability, and use of stable plasmids for the production of poly(3-hydroxybutyric acid) by recombinant Escherichia coli. J Biotechnol 32(2):203–11PubMedCrossRefGoogle Scholar
  89. Lim SJ, Jung YM, Shin HD et al. (2002) Amplification of the NADPH-related genes zwf and gnd for the oddball biosynthesis of PHB in an E. coli transformant harboring a cloned phbCAB operon. J Biosci Bioeng 93(6):543–9PubMedGoogle Scholar
  90. Lin H, Bennett GN, San KY (2005a) Chemostat culture characterization of Escherichia coli mutant strains metabolically engineered for aerobic succinate production: a study of the modified metabolic network based on metabolite profile, enzyme activity, and gene expression profile. Metab Eng 7(5–6):337–52PubMedCrossRefGoogle Scholar
  91. Lin H, Bennett GN, San KY (2005b) Effect of carbon sources differing in oxidation state and transport route on succinate production in metabolically engineered Escherichia coli. J Ind Microbiol Biotechnol 32(3):87–93PubMedCrossRefGoogle Scholar
  92. Lin H, Bennett GN, San KY (2005c) Fed-batch culture of a metabolically engineered Escherichia coli strain designed for high-level succinate production and yield under aerobic conditions. Biotechnol Bioeng 90(6):775–9PubMedCrossRefGoogle Scholar
  93. Lin H, Bennett GN, San KY (2005d) Genetic reconstruction of the aerobic central metabolism in Escherichia coli for the absolute aerobic production of succinate. Biotechnol Bioeng 89(2):148–56PubMedCrossRefGoogle Scholar
  94. Lin H, San KY, Bennett GN (2005e) Effect of Sorghum vulgare phosphoenolpyruvate carboxylase and Lactococcus lactis pyruvate carboxylase coexpression on succinate production in mutant strains of Escherichia coli. Appl Microbiol Biotechnol 67(4):515–23PubMedCrossRefGoogle Scholar
  95. Lin H, Vadali RV, Bennett GN et al. (2004) Increasing the acetyl-CoA pool in the presence of overexpressed phosphoenolpyruvate carboxylase or pyruvate carboxylase enhances succinate production in Escherichia coli. Biotechnol Prog 20(5):1599–604PubMedCrossRefGoogle Scholar
  96. Linden H, Misawa N, Chamovitz D et al. (1991) Functional complementation in Escherichia coli of different phytoene desaturase genes and analysis of accumulated carotenes. Z Naturforsch [C] 46(11–12):1045–51Google Scholar
  97. Liu X, De Wulf P (2004) Probing the ArcA-P modulon of Escherichia coli by whole genome transcriptional analysis and sequence recognition profiling. J Biol Chem 279(13): 12588–97PubMedCrossRefGoogle Scholar
  98. Lopez de Felipe F, Kleerebezem M, de Vos WM et al. (1998) Cofactor engineering: a novel approach to metabolic engineering in Lactococcus lactis by controlled expression of NADH oxidase. J Bacteriol 180(15):3804–8Google Scholar
  99. Maeda T, Sanchez-Torres V, Wood TK (2007a) Enhanced hydrogen production from glucose by metabolically engineered Escherichia coli. Appl Microbiol Biotechnol 77(4):879–90Google Scholar
  100. Maeda T, Sanchez-Torres V, Wood TK (2007b) Escherichia coli hydrogenase 3 is a reversible enzyme possessing hydrogen uptake and synthesis activities. Appl Microbiol Biotechnol 76(5):1035–42Google Scholar
  101. Martinez I, Zhu J, Lin H, Bennett GN, San KY (2008) Replacing Escherichia coli NAD-dependent glyceraldehyde 3-phosphate dehydrogenase (GAPDH) with a NADP-dependent enzyme from Clostridium acetobutylicum facilitates NADPH-dependent pathways. Metab Eng 10(6):352–9.PubMedCrossRefGoogle Scholar
  102. Matthews PD, Wurtzel ET (2000) Metabolic engineering of carotenoid accumulation in Escherichia coli by modulation of the isoprenoid precursor pool with expression of deoxyxylulose phosphate synthase. Appl Microbiol Biotechnol 53(4):396–400PubMedCrossRefGoogle Scholar
  103. Misawa N, Nakagawa M, Kobayashi K et al. (1990) Elucidation of the Erwinia uredovora carotenoid biosynthetic pathway by functional analysis of gene products expressed in Escherichia coli. J Bacteriol 172(12):6704–12PubMedGoogle Scholar
  104. Misawa N, Shimada H (1997) Metabolic engineering for the production of carotenoids in non-carotenogenic bacteria and yeasts. J Biotechnol 59(3):169–81PubMedCrossRefGoogle Scholar
  105. Miyake M, Miyamoto C, Schnackenberg J et al. (2000) Phosphotransacetylase as a key factor in biological production of polyhydroxybutyrate. Appl Biochem Biotechnol 84–86: 1039–44Google Scholar
  106. Nanba H, Takaoka Y, Hasegawa J (2003a) Purification and characterization of an alpha-haloketone-resistant formate dehydrogenase from Thiobacillus sp. strain KNK65MA, and cloning of the gene. Biosci Biotechnol Biochem 67(10):2145–53Google Scholar
  107. Nanba H, Takaoka Y, Hasegawa J (2003b) Purification and characterization of formate dehydrogenase from Ancylobacter aquaticus strain KNK607M, and cloning of the gene. Biosci Biotechnol Biochem 67(4):720–8Google Scholar
  108. Neves AR, Ramos A, Costa H et al. (2002) Effect of different NADH oxidase levels on glucose metabolism by Lactococcus lactis: kinetics of intracellular metabolite pools determined by in vivo nuclear magnetic resonance. Appl Environ Microbiol 68(12):6332–42PubMedCrossRefGoogle Scholar
  109. Nnyepi MR, Peng Y, Broderick JB (2007) Inactivation of E. coli pyruvate formate-lyase: role of AdhE and small molecules. Arch Biochem Biophys 459(1):1–9PubMedCrossRefGoogle Scholar
  110. Nomura CT, Taguchi S (2007) PHA synthase engineering toward superbiocatalysts for custom-made biopolymers. Appl Microbiol Biotechnol 73(5):969–79PubMedCrossRefGoogle Scholar
  111. Ogasawara H, Ishida Y, Yamada K et al. (2007) PdhR (pyruvate dehydrogenase complex regulator) controls the respiratory electron transport system in Escherichia coli. J Bacteriol 189(15): 5534–41PubMedCrossRefGoogle Scholar
  112. Overton TW, Griffiths L, Patel MD et al. (2006) Microarray analysis of gene regulation by oxygen, nitrate, nitrite, FNR, NarL and NarP during anaerobic growth of Escherichia coli: new insights into microbial physiology. Biochem Soc Trans 34(Pt 1):104–7PubMedGoogle Scholar
  113. Partridge JD, Sanguinetti G, Dibden DP et al. (2007) Transition of Escherichia coli from aerobic to micro-aerobic conditions involves fast and slow reacting regulatory components. J Biol Chem 282(15):11230–7PubMedCrossRefGoogle Scholar
  114. Patel RN (2000) Microbial/enzymatic synthesis of chiral drug intermediates. Adv Appl Microbiol 47:33–78PubMedCrossRefGoogle Scholar
  115. Pecher A, Blaschkowski HP, Knappe K et al. (1982) Expression of pyruvate formate-lyase of Escherichia coli from the cloned structural gene. Arch Microbiol 132(4):365–71PubMedCrossRefGoogle Scholar
  116. Peercy BE, Cox SJ, Shalel-Levanon S et al. (2006) A kinetic model of oxygen regulation of cytochrome production in Escherichia coli. J Theor Biol 242(3):547–63PubMedCrossRefGoogle Scholar
  117. Peoples OP, Sinskey AJ (1989) Poly-beta-hydroxybutyrate (PHB) biosynthesis in Alcaligenes eutrophus H16. Identification and characterization of the PHB polymerase gene (phbC). J Biol Chem 264(26):15298–303PubMedGoogle Scholar
  118. Phue JN, Noronha SB, Hattacharyya R et al. (2005) Glucose metabolism at high density growth of E. coli B and E. coli K: differences in metabolic pathways are responsible for efficient glucose utilization in E. coli B as determined by microarrays and Northern blot analyses. Biotechnol Bioeng 90(7):805–20PubMedCrossRefGoogle Scholar
  119. Picon A, Teixeira de Mattos MJ, Postma PW (2005) Reducing the glucose uptake rate in Escherichia coli affects growth rate but not protein production. Biotechnol Bioeng 90(2): 191–200PubMedCrossRefGoogle Scholar
  120. Quail MA, Guest JR (1995) Purification, characterization and mode of action of PdhR, the transcriptional repressor of the pdhR-aceEF-lpd operon of Escherichia coli. Mol Microbiol 15(3):519–29PubMedCrossRefGoogle Scholar
  121. Reddy SG, Wong KK, Parast CV et al. (1998) Dioxygen inactivation of pyruvate formate-lyase: EPR evidence for the formation of protein-based sulfinyl and peroxyl radicals. Biochemistry 37(2):558–63PubMedCrossRefGoogle Scholar
  122. Redwood MD, Mikheenko IP, Sargent F et al. (2008) Dissecting the roles of Escherichia coli hydrogenases in biohydrogen production. FEMS Microbiol Lett 278(1):48–55PubMedCrossRefGoogle Scholar
  123. Reed JL, Vo TD, Schilling CH et al. (2003) An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biol 4(9):R54PubMedCrossRefGoogle Scholar
  124. Rehm BH (2007) Biogenesis of microbial polyhydroxyalkanoate granules: a platform technology for the production of tailor-made bioparticles. Curr Issues Mol Biol 9(1):41–62PubMedGoogle Scholar
  125. Saito T, Fukui T, Ikeda F et al. (1977) An NADP-linked acetoacetyl CoA reductase from Zoogloea ramigera. Arch Microbiol 114(3):211–7PubMedCrossRefGoogle Scholar
  126. Sakai T, Nakamura N, Umitsuki G et al. (2007) Increased production of pyruvic acid by Escherichia coli RNase G mutants in combination with cra mutations. Appl Microbiol Biotechnol 76(1):183–92PubMedCrossRefGoogle Scholar
  127. Salmon K, Hung SP, Mekjian K et al. (2003) Global gene expression profiling in Escherichia coli K12. The effects of oxygen availability and FNR. J Biol Chem 278(32):29837–55PubMedCrossRefGoogle Scholar
  128. Sanchez AM, Bennett GN, San KY (2005a) Effect of different levels of NADH availability on metabolic fluxes of Escherichia coli chemostat cultures in defined medium. J Biotechnol 117(4):395–405Google Scholar
  129. Sanchez AM, Bennett GN, San KY (2005b) Efficient succinic acid production from glucose through overexpression of pyruvate carboxylase in an Escherichia coli alcohol dehydrogenase and lactate dehydrogenase mutant. Biotechnol Prog 21(2):58–65Google Scholar
  130. Sanchez AM, Bennett GN, San KY (2006) Batch culture characterization and metabolic flux analysis of succinate-producing Escherichia coli strains. Metab Eng 8(3):209–26PubMedCrossRefGoogle Scholar
  131. Sandmann G, Woods WS, Tuveson RW (1990) Identification of carotenoids in Erwinia herbicola and in a transformed Escherichia coli strain. FEMS Microbiol Lett 59(1–2):77–82PubMedCrossRefGoogle Scholar
  132. Sauer U, Canonaco F, Heri S et al. (2004) The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli. J Biol Chem 279(8):6613–9PubMedCrossRefGoogle Scholar
  133. Sauter M, Sawers RG (1990) Transcriptional analysis of the gene encoding pyruvate formate-lyase-activating enzyme of Escherichia coli. Mol Microbiol 4(3):355–63PubMedCrossRefGoogle Scholar
  134. Sawers G (1999) The aerobic/anaerobic interface. Curr Opin Microbiol 2(2):181–7PubMedCrossRefGoogle Scholar
  135. Sawers G, Bock A (1988) Anaerobic regulation of pyruvate formate-lyase from Escherichia coli K-12. J Bacteriol 170(11):5330–6PubMedGoogle Scholar
  136. Sawers G, Hesslinger C, Muller N et al. (1998) The glycyl radical enzyme TdcE can replace pyruvate formate-lyase in glucose fermentation. J Bacteriol 180(14):3509–16PubMedGoogle Scholar
  137. Sawers G, Watson G (1998) A glycyl radical solution: oxygen-dependent interconversion of pyruvate formate-lyase. Mol Microbiol 29(4):945–54PubMedCrossRefGoogle Scholar
  138. Schmidt-Dannert C, Umeno D, Arnold FH (2000) Molecular breeding of carotenoid biosynthetic pathways. Nat Biotechnol 18(7):750–3PubMedCrossRefGoogle Scholar
  139. Schramm G, Zapatka M, Eils R et al. (2007) Using gene expression data and network topology to detect substantial pathways, clusters and switches during oxygen deprivation of Escherichia coli. BMC Bioinformatics 8(149):149PubMedCrossRefGoogle Scholar
  140. Schubert P, Steinbuchel A, Schlegel HG (1988) Cloning of the Alcaligenes eutrophus genes for synthesis of poly-beta-hydroxybutyric acid (PHB) and synthesis of PHB in Escherichia coli. J Bacteriol 170(12):5837–47PubMedGoogle Scholar
  141. Serres MH, Gopal S, Nahum LA et al. (2001) A functional update of the Escherichia coli K-12 genome. Genome Biol 2(9):RESEARCH0035PubMedCrossRefGoogle Scholar
  142. Shalel-Levanon S, San KY, Bennett GN (2005a) Effect of ArcA and FNR on the expression of genes related to the oxygen regulation and the glycolysis pathway in Escherichia coli under microaerobic growth conditions. Biotechnol Bioeng 92(2):147–59Google Scholar
  143. Shalel-Levanon S, San KY, Bennett GN (2005b) Effect of oxygen on the Escherichia coli ArcA and FNR regulation systems and metabolic responses. Biotechnol Bioeng 89(5):556–64Google Scholar
  144. Shalel-Levanon S, San KY, Bennett GN (2005c) Effect of oxygen, and ArcA and FNR regulators on the expression of genes related to the electron transfer chain and the TCA cycle in Escherichia coli. Metab Eng 7(5–6):364–74Google Scholar
  145. Shi H, Nikawa J, Shimizu K (1999) Effect of modifying metabolic network on poly-3-hydroxybutyrate biosynthesis in recombinant Escherichia coli. J Biosci Bioeng 87(5):666–77PubMedCrossRefGoogle Scholar
  146. Slater S, Gallaher T, Dennis D (1992) Production of poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) in a recombinant Escherichia coli strain. Appl Environ Microbiol 58(4): 1089–94PubMedGoogle Scholar
  147. Slater SC, Voige WH, Dennis DE (1988) Cloning and expression in Escherichia coli of the Alcaligenes eutrophus H16 poly-beta-hydroxybutyrate biosynthetic pathway. J Bacteriol 170(10):4431–6PubMedGoogle Scholar
  148. Slusarczyk H, Felber S, Kula MR et al. (2000) Stabilization of NAD-dependent formate dehydrogenase from Candida boidinii by site-directed mutagenesis of cysteine residues. Eur J Biochem 267(5):1280–9PubMedCrossRefGoogle Scholar
  149. Smolke CD, Martin VJ, Keasling JD (2001) Controlling the metabolic flux through the carotenoid pathway using directed mRNA processing and stabilization. Metab Eng 3(4):313–21PubMedCrossRefGoogle Scholar
  150. Snoep JL, de Graef MR, Westphal AH et al. (1993) Differences in sensitivity to NADH of purified pyruvate dehydrogenase complexes of Enterococcus faecalis, Lactococcus lactis, Azotobacter vinelandii and Escherichia coli: implications for their activity in vivo. FEMS Microbiol Lett 114(3):279–83PubMedCrossRefGoogle Scholar
  151. Song BG, Kim TK, Jung YM et al. (2006) Modulation of talA gene in pentose phosphate pathway for overproduction of poly-beta-hydroxybutyrate in transformant Escherichia coli harboring phbCAB operon. J Biosci Bioeng 102(3):237–40PubMedCrossRefGoogle Scholar
  152. Steinbuchel A (2005) Non-biodegradable biopolymers from renewable resources: perspectives and impacts. Curr Opin Biotechnol 16(6):607–13PubMedCrossRefGoogle Scholar
  153. Steinbuchel A, Hein S (2001) Biochemical and molecular basis of microbial synthesis of polyhydroxyalkanoates in microorganisms. Adv Biochem Eng Biotechnol 71:81–123PubMedGoogle Scholar
  154. Stols L, Kulkarni G, Harris BG et al. (1997) Expression of Ascaris suum malic enzyme in a mutant Escherichia coli allows production of succinic acid from glucose. Appl Biochem Biotechnol 63–65:153–8Google Scholar
  155. Thomas AD, Doelle HW, Westwood AW et al. (1972) Effect of oxygen on several enzymes involved in the aerobic and anaerobic utilization of glucose in Escherichia coli. J Bacteriol 112(3):1099–105PubMedGoogle Scholar
  156. Timm A, Steinbuchel A (1992) Cloning and molecular analysis of the poly(3-hydroxyalkanoic acid) gene locus of Pseudomonas aeruginosa PAO1. Eur J Biochem 209(1):15–30PubMedCrossRefGoogle Scholar
  157. Tishkov VI, Popov VO (2006) Protein engineering of formate dehydrogenase. Biomol Eng 23(2–3):89–110PubMedCrossRefGoogle Scholar
  158. Tomar A, Eiteman MA, Altman E (2003) The effect of acetate pathway mutations on the production of pyruvate in Escherichia coli. Appl Microbiol Biotechnol 62(1):76–82PubMedCrossRefGoogle Scholar
  159. Vadali RV, Fu Y, Bennett GN et al. (2005) Enhanced lycopene productivity by manipulation of carbon flow to isopentenyl diphosphate in Escherichia coli. Biotechnol Prog 21(5):1558–61PubMedCrossRefGoogle Scholar
  160. van Wegen RJ, Lee SY, Middelberg AP (2001) Metabolic and kinetic analysis of poly(3-hydroxybutyrate) production by recombinant Escherichia coli. Biotechnol Bioeng 74(1):70–80PubMedCrossRefGoogle Scholar
  161. Varenne S, Casse F, Chippaux M et al. (1975) A mutant of Escherichia coli deficient in pyruvate formate lyase. Mol Gen Genet 141(2):181–4PubMedCrossRefGoogle Scholar
  162. Vemuri GN, Altman E, Sangurdekar DP et al. (2006) Overflow metabolism in Escherichia coli during steady-state growth: transcriptional regulation and effect of the redox ratio. Appl Environ Microbiol 72(5):3653–61PubMedCrossRefGoogle Scholar
  163. Vemuri GN, Eiteman MA, Altman E (2002) Succinate production in dual-phase Escherichia coli fermentations depends on the time of transition from aerobic to anaerobic conditions. J Ind Microbiol Biotechnol 28(6):325–32PubMedCrossRefGoogle Scholar
  164. Vemuri GN, Minning TA, Altman E et al. (2005) Physiological response of central metabolism in Escherichia coli to deletion of pyruvate oxidase and introduction of heterologous pyruvate carboxylase. Biotechnol Bioeng 90(1):64–76PubMedCrossRefGoogle Scholar
  165. Wagner AF, Schultz S, Bomke J et al. (2001) YfiD of Escherichia coli and Y06I of bacteriophage T4 as autonomous glycyl radical cofactors reconstituting the catalytic center of oxygen-fragmented pyruvate formate-lyase. Biochem Biophys Res Commun 285(2): 456–62PubMedCrossRefGoogle Scholar
  166. Walton AZ, Stewart JD (2002) An efficient Baeyer-Villiger oxidation by engineered Escherichia coli cells under non-growing conditions. Biotechnol prog 18(2):262–8.PubMedCrossRefGoogle Scholar
  167. Wang C, Oh MK, Liao JC (2000) Directed evolution of metabolically engineered Escherichia coli for carotenoid production. Biotechnol Prog 16(6):922–6PubMedCrossRefGoogle Scholar
  168. Wang Q, Wu C, Chen T et al. (2006) Expression of galactose permease and pyruvate carboxylase in Escherichia coli ptsG mutant increases the growth rate and succinate yield under anaerobic conditions. Biotechnol Lett 28(2):89–93PubMedCrossRefGoogle Scholar
  169. Weckbecker A, Hummel W (2004) Improved synthesis of chiral alcohols with Escherichia coli cells co-expressing pyridine nucleotide transhydrogenase, NADP+-dependent alcohol dehydrogenase and NAD+-dependent formate dehydrogenase. Biotechnol Lett 26(22):1739–44PubMedCrossRefGoogle Scholar
  170. Wong MS, Wu S, Causey TB et al. (2008) Reduction of acetate accumulation in Escherichia coli cultures for increased recombinant protein production. Metab Eng 10(2):97–108PubMedCrossRefGoogle Scholar
  171. Yamamoto H, Mitsuhashi K, Kimoto N et al. (2005) Robust NADH-regenerator: improved alpha-haloketone-resistant formate dehydrogenase. Appl Microbiol Biotechnol 67(1):33–9PubMedCrossRefGoogle Scholar
  172. Yang YT, Aristidou AA, San KY et al. (1999) Metabolic flux analysis of Escherichia coli deficient in the acetate production pathway and expressing the Bacillus subtilis acetolactate synthase. Metab Eng 1(1):26–34PubMedCrossRefGoogle Scholar
  173. Yi J, Draths KM, Li K et al. (2003) Altered glucose transport and shikimate pathway product yields in E. coli. Biotechnol Prog 19(5):1450–9PubMedCrossRefGoogle Scholar
  174. Yoon SH, Kim JE, Lee SH et al. (2007a) Engineering the lycopene synthetic pathway in E. coli by comparison of the carotenoid genes of Pantoea agglomerans and Pantoea ananatis. Appl Microbiol Biotechnol 74(1):131–9PubMedCrossRefGoogle Scholar
  175. Yoon SH, Lee YM, Kim JE et al. (2006) Enhanced lycopene production in Escherichia coli engineered to synthesize isopentenyl diphosphate and dimethylallyl diphosphate from mevalonate. Biotechnol Bioeng 94(6):1025–32PubMedCrossRefGoogle Scholar
  176. Yoon SH, Park HM, Kim JE et al. (2007b) Increased beta-carotene production in recombinant Escherichia coli harboring an engineered isoprenoid precursor pathway with mevalonate addition. Biotechnol Prog 23(3):599–605PubMedCrossRefGoogle Scholar
  177. Yoshida A, Nishimura T, Kawaguchi H et al. (2005) Enhanced hydrogen production from formic acid by formate hydrogen lyase-overexpressing Escherichia coli strains. Appl Environ Microbiol 71(11):6762–8PubMedCrossRefGoogle Scholar
  178. Yoshida A, Nishimura T, Kawaguchi H et al. (2007) Efficient induction of formate hydrogen lyase of aerobically grown Escherichia coli in a three-step biohydrogen production process. Appl Microbiol Biotechnol 74(4):754–60PubMedCrossRefGoogle Scholar
  179. Yun NR, San KY, Bennett GN (2005) Enhancement of lactate and succinate formation in adhE or pta-ackA mutants of NADH dehydrogenase-deficient Escherichia coli. J Appl Microbiol 99(6):1404–12PubMedCrossRefGoogle Scholar
  180. Zelic B, Bolf N, Vasic-Racki D (2006) Modeling of the pyruvate production with Escherichia coli: comparison of mechanistic and neural networks-based models. Bioprocess Biosyst Eng 29(1):39–47PubMedCrossRefGoogle Scholar
  181. Zelic B, Gostovic S, Vuorilehto K et al. (2004a) Process strategies to enhance pyruvate production with recombinant Escherichia coli: from repetitive fed-batch to in situ product recovery with fully integrated electrodialysis. Biotechnol Bioeng 85(6):638–46PubMedCrossRefGoogle Scholar
  182. Zelic B, Vasic-Racki D, Wandrey C et al. (2004b) Modeling of the pyruvate production with Escherichia coli in a fed-batch bioreactor. Bioprocess Biosyst Eng 26(4):249–58PubMedCrossRefGoogle Scholar
  183. Zhang W, Wong KK, Magliozzo RS et al. (2001) Inactivation of pyruvate formate-lyase by dioxygen: defining the mechanistic interplay of glycine 734 and cysteine 419 by rapid freeze-quench EPR. Biochemistry 40(13):4123–30PubMedCrossRefGoogle Scholar
  184. Zhou S, Causey TB, Hasona A et al. (2003a) Production of optically pure D-lactic acid in mineral salts medium by metabolically engineered Escherichia coli W3110. Appl Environ Microbiol 69(1):399–407PubMedCrossRefGoogle Scholar
  185. Zhou S, Iverson AG, Grayburn WS (2008) Engineering a native homoethanol pathway in Escherichia coli B for ethanol production. Biotechnol Lett 30(2):335–42PubMedCrossRefGoogle Scholar
  186. Zhou S, Shanmugam KT, Ingram LO (2003b) Functional replacement of the Escherichia coli D-(-)-lactate dehydrogenase gene (ldhA) with the L-(+)-lactate dehydrogenase gene (ldhL) from Pediococcus acidilactici. Appl Environ Microbiol 69(4):2237–44PubMedCrossRefGoogle Scholar
  187. Zhou S, Yomano LP, Shanmugam KT et al. (2005) Fermentation of 10%(w/v) sugar to D: (-)-lactate by engineered Escherichia coli B. Biotechnol Lett 27(23–24):1891–6PubMedCrossRefGoogle Scholar
  188. Zhu J, Shalel-Levanon S, Bennett G et al. (2006) Effect of the global redox sensing/regulation networks on Escherichia coli and metabolic flux distribution based on C-13 labeling experiments. Metab Eng 8(6):619–27PubMedCrossRefGoogle Scholar
  189. Zhu J, Shalel-Levanon S, Bennett G et al. (2007a) The YfiD protein contributes to the pyruvate formate-lyase flux in an Escherichia coli arcA mutant strain. Biotechnol Bioeng 97(1):138–43PubMedCrossRefGoogle Scholar
  190. Zhu Y, Eiteman MA, DeWitt K et al. (2007b) Homolactate fermentation by metabolically engineered Escherichia coli strains. Appl Environ Microbiol 73(2):456–64PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of Biochemistry and Cell BiologyRice UniversityHoustonUSA

Personalised recommendations