Advertisement

Fulfilling the Criteria for Early Life on Earth

Chapter
Part of the Topics in Geobiology book series (TGBI, volume 31)

The ‘burden of proof’ needed for the demonstration of the earliest cellular life is very great indeed. Compelling proof requires the demonstration of multiple, in situ and mutually supporting lines of evidence to fulfil the aforementioned criteria: for a wellconstrained age and context; evidence for a morphology unique to biology; and more than a single line of geochemical evidence for metabolic cycling; together with falsification of the null hypothesis of plausible non-biological origins (see for example Brasieret al., 2004, 2005, 2006 and references therein). This section of the book points the reader to the best areas of the world in which to search for signs of early life and the types of rocks to look for, before Chapter 5 discusses the techniques to use to analyse these rocks.

Keywords

Early Life Greenstone Belt Band Iron Formation Pillow Lava Pillow Basalt 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Recommended Reading for Archean Rock Types

  1. Brasier, M. D., Green, O. R., and Mcloughlin, N., 2004, Characterization and critical testing of potential microfossils from the early Earth: the Apex ‘microfossil debate’ and its lessons for Mars sample return, International Journal of Astrobiology 3: 1–12.CrossRefGoogle Scholar
  2. Brasier, M. D., Green, O. R., Jephcoat, A. P., Kleppe, A. K., Van Kranendonk, M. J., Lindsay, J. F., Steele, A., and Grassineau, N. V., 2002, Questioning the evidence for Earth's oldest fossils, Nature 416: 76–81.CrossRefGoogle Scholar
  3. Brasier, M. D., Green, O. R., Lindsay, J. F., McLoughlin, N., Steele, A., and Stoakes, C., 2005, Critical testing of Earth's oldest putative fossil assemblage from the ~3.5 Ga Apex Chert, Chinaman Creek Western Australia, Precambrian Research 140: 55–102.CrossRefGoogle Scholar
  4. Brasier, M. D., McLoughlin, N., and Wacey, D., 2006, A fresh look at the fossil evidence for early Archaean cellular life, Philosophical Transactions of the Royal Society B 361: 887–902.CrossRefGoogle Scholar
  5. Banerjee, N. R., Simonetti, A., Furnes, H., Muehlenbachs, K., Staudigel, H., Heaman, L., and Van Kranendonk, M. J., 2007, Direct dating of microbial ichnofossils, Geology 35: 487–490.CrossRefGoogle Scholar
  6. Corliss, J. B., Dymond, J., Gordon, L. I., Edmond, J. M., Herzen, R. P. V. , Ballard, R. D., Green, K., Williams, D., Bainbridge, A., Crane, K., and Van Andel, T. H., 1979, Submarine thermal springs on the Galapagos Rift, Science 203: 1073–1083.CrossRefGoogle Scholar
  7. Duck, L. J., Glikson, M., Golding, S. D., and Webb, R. E., 2007, Microbial remains and other carbonaceous forms from the 3.24 Ga Sulphur Springs black smoker deposit, Western Australia, Precambrian Research 154: 205–220.CrossRefGoogle Scholar
  8. Folk, R. L., and Weaver, C. E., 1952, A study of the texture and composition of chert, American Journal of Science 250: 498–510.Google Scholar
  9. Fouquet, Y., Vonstackelberg, U., Charlou, J. L., Donval, J. P., Foucher, J. P., Muhe, R., Wiedicke, M., Soakai, S., and Whitechurch, H., 1991, Hydrothermal activity in the Lau Back-Arc Basin —Sulfides and water chemistry, Geology 19: 303–306.CrossRefGoogle Scholar
  10. Furnes, H., Banerjee, N. R., Muehlenbachs, K., Staudigel, H., and de Wit, M., 2004, Early life recorded in Archean pillow lavas, Science 304: 578–581.CrossRefGoogle Scholar
  11. Garcia-Ruiz, J. M., Hyde, S. T., Carnerup, A. M., Christy, A. G., Van Kranendonk, M. J., and Welham, N. J., 2003, Self-assembled silicacarbonate structures and detection of ancient microfossils, Science 302: 1194–1197.CrossRefGoogle Scholar
  12. Kiyokawa, S., Ito, T., Ikehara, M., and Kitajima, F., 2006, Middle Archean volcano-hydrothermal sequence: Bacterial microfossil-like bearing 3.2 Ga Dixon Island Formation, coastal Pilbara terrane, Australia, Bulletin of the Geological Society of America 118: 3–22.CrossRefGoogle Scholar
  13. Lowe, D. R., 1999, Petrology and sedimentology of cherts and related silicified sedimentary rocks in the Swaziland Supergroup, In: Lowe, D. R., and Byerly, G. R. (eds.), Geologic evolution of the Barberton Greenstone Belt, South Africa, Geological Society of America Special Paper 329: 83–114.Google Scholar
  14. Noffke, N., Eriksson, K. A., Hazen, R. M., and Simpson, E. L., 2006, A new window into Early Archean life: microbial mats in Earth's oldest siliciclastic tidal deposits (3.2 Ga Moodies Group, South Africa), Geology 34: 253–256.CrossRefGoogle Scholar
  15. Rasmussen, B., 2000, Filamentous microfossils in a 3235-million-year- old volcanogenic massive sulphide deposit, Nature 405: 676–679.CrossRefGoogle Scholar
  16. Rieger, G., Rachel, R., Hermann, R., and Stetter, K. O., 1995, Ultrastructure of the hyperthermophilic Archaeon Pyrodictium abyssi, Journal of Structural Biology 115: 78–87.CrossRefGoogle Scholar
  17. Schopf, J. W., 1993, Microfossils of the Early Archaean Apex Chert: new evidence for the antiquity of life, Science 260: 640–646.CrossRefGoogle Scholar
  18. Siever, R., 1992, The silica cycle in the Precambrian, Geochimica et Cosmochimica Acta 56: 3265–3272.CrossRefGoogle Scholar
  19. Sugitani, K., 1992, Geochemical characteristics of Archean cherts and other sedimentary rocks in the Pilbara Block, Western Australia: evidence for Archean seawater enriched in hydrothermally-derived iron and silica, Precambrian Research 57: 21–47.CrossRefGoogle Scholar
  20. Staudigel, H., Furnes, H., Banerjee, N. R., Dilek, Y., and Muehlenbachs, K., 2006, Microbes and volcanoes: A tale from the oceans, ophiolites and greenstone belts, GSA Today 16: 4–11.CrossRefGoogle Scholar
  21. Tice, M. M., and Lowe, D. R., 2004, Photosynthetic microbial mats in the 3,416-Myr-old ocean, Nature 431: 549–552.CrossRefGoogle Scholar
  22. Vearncombe, S., Barley, M. E., Groves, D. I., McNaughton, N. J., Mikucki, E. J., and Vearncombe, J. R., 1995, 3.26 Ga black smoker type mineralization in the Strelley Belt, Pilbara Craton, Western Australia, Journal of the Geological Society of London 152: 587–590.CrossRefGoogle Scholar
  23. Van Kranendonk, M. J., 2006, Volcanic degassing, hydrothermal circulation and the flourishing of early life on Earth: new evidence from the Warrawoona Group, Pilbara Craton, Western Australia, Earth-Science Reviews 74: 197–124.CrossRefGoogle Scholar
  24. Van Kranendonk, M. J., and Pirajno, F., 2004, Geological setting and geochemistry of metabasalts and alteration zones associated with hydrothermal chert-barite deposits in the ca. 3.45 Ga Warrawoona Group. Pilbara Craton, Australia, Geochemistry: Exploration, Environment, Analysis 4: 253–278.CrossRefGoogle Scholar
  25. Van Kranendonk, M. J., Webb, G. E., and Kamber, B. S., 2003, Geological and trace element evidence for a marine sedimentary environment of deposition and biogenicity of 3.45 Ga stromatolitic carbonates in the Pilbara Craton, and support for a reducing Archean ocean, Geobiology 1: 91–108.CrossRefGoogle Scholar
  26. Wacey, D., McLoughlin, N., Green, O. R., Parnell, J., Stoakes, C. A., and Brasier, M. D., 2006, The ~3.4 billion-year-old Strelley Pool sandstone: a new window into early life on Earth, International Journal of Astrobiology 5: 333–342.CrossRefGoogle Scholar
  27. Westall, F., de Vries, S. T., Nijman, W., Rouchon, V., Orberger, B., Pearson, V. , Watson, J., Verchovsky, A., Wright, I., Rouzaud, J. N., Marchesini, D., and Severine, A., 2006, The 3.446 Ga “Kitty's Gap Chert”, an early Archean microbial ecosystem, GSA Special Paper 405: 105–131.Google Scholar

Recommended Reading for Pilbara Geology

  1. Buick, R., Thornett, J. R., McNaughton, N. J., Smith, J. B., Barley, M. E., and Savage, M., 1995, Record of emergent continental crust ~3.5 billion years ago in the Pilbara craton of Australia, Nature 375: 574–577.CrossRefGoogle Scholar
  2. Hickman, A. H., 1983, Geology of the Pilbara block and its environs, Western Australia Geological Survey Bulletin 127: 268.Google Scholar
  3. Hickman, A. H., 2004, Two contrasting granite-greenstone terranes in the Pilbara Craton, Australia: evidence for vertical and horizontal tectonic regimes prior to 2900 Ma, Precambrian Research 131: 153–172.CrossRefGoogle Scholar
  4. Kiyokawa, S., and Taira, A., 1998, The Cleaverville Group in the West Pilbara coastal granitoid-greenstone terrain of Western Australia: an example of a Middle Archean immature oceanic island-arc succession, Precambrian Research 88: 109–142.CrossRefGoogle Scholar
  5. Lowe, D. R., 1983, Restricted shallow-water sedimentation of early Archaean stromatolitic and evaporitic strata of the Strelley Pool chert, Pilbara block, Western Australia, Precambrian Research 19: 239–283.CrossRefGoogle Scholar
  6. Smithies, R. H., Van Kranendonk, M. J., and Champion, D. C., 2005, It started with a plume —early Archaean basaltic proto-continental crust, Earth and Planetary Science Letters 238: 284–297.CrossRefGoogle Scholar
  7. Van Kranendonk, M. J., 2006, Volcanic degassing, hydrothermal circulation and the flourishing of early life on Earth: new evidence from the Warrawoona Group, Pilbara Craton, Western Australia, Earth-Science Reviews 74: 197–124.CrossRefGoogle Scholar
  8. Van Kranendonk, M. J., Hickman, A. H., Williams, I. R., and Nijman, W., 2001, Archean Geology of the East Pilbara Granite-Greenstone Terrane Western Australia—A Field Guide, Western Australia Geological Survey Record 2001/9: 134 p.Google Scholar
  9. Van Kranendonk, M. J., Hickman, A. H., Smithies, R. H., and Nelson, D., 2002, Geology and tectonic evolution of the Archean North Pilbara Terrain, Pilbara Craton, Western Australia, Economic Geology 97: 695–732.CrossRefGoogle Scholar
  10. Van Kranendonk, M. J., Hickman, A. H., and Huston, D. L., 2006, Geology and mineralization of the East Pilbara —a field guide, Western Australia Geological Survey Record 2006/16: 90 p.Google Scholar
  11. Van Kranendonk, M. J., Smithies, R. H., Hickman, A. H., and Champion, D. C., 2007, Review: secular tectonic evolution of Archean continental crust: interplay between horizontal and vertical processes in the formation of the Pilbara Craton, Australia, Terra Nova 19: 1–38.CrossRefGoogle Scholar
  12. Wacey, D., McLoughlin, N., Green, O. R., Parnell, J., Stoakes, C. A., and Brasier, M. D., 2006, The ~3.4 billion-year-old Strelley Pool sandstone: a new window into early life on Earth, International Journal of Astrobiology 5: 333–342.CrossRefGoogle Scholar
  13. Wacey, D., McLoughlin, N., Stoakes, C. A., Kilburn, M. R., Green, O. R., and Brasier, M. D., 2008, The ~3.4 Ga Strelley Pool Chert in the East Strelley greenstone belt—a field and petrographic guide, Western Australia Geological Survey Record.Google Scholar

Recommended Reading for South-West Greenland Geology

  1. Appel, P. W. U., Moorbath, S., and Touret, J. L. R., 2003, Early Archaean processes and the Isua Greenstone Belt, West Greenland, Precambrian Research 126: 173–179.CrossRefGoogle Scholar
  2. Dauphas, N., van Zuilen, M., Wadhwa, M., Davis, A. M., Marty, B., and Janney, P. E., 2004, Clues from Fe isotope variations on the origin of early Archean BIFs from Greenland, Science 306: 2077–2080.CrossRefGoogle Scholar
  3. Fedo, C. M., and Whitehouse, M. J., 2002, Metasomatic origin of quartz-pyroxene rock, Akilia, Greenland, and its implications for Earth's earliest life, Science 296: 1448–1452.CrossRefGoogle Scholar
  4. Kamber, B. S., Moorbath, S., and Whitehouse, M. J., 2001, The oldest rocks on Earth: time constraints and geological controversies, Special Publication of the Geological Society of London 290: 177–203.CrossRefGoogle Scholar
  5. Lepland, A., Arrhenius, G., and Cornell, D., 2002, Apatite in the Early Archean Isua supracrustal rocks, southern West Greenland: its origin, association with graphite and potential as a biomarker, Precambrian Research 118: 221–241.CrossRefGoogle Scholar
  6. Lepland, A., van Zuilen, M. A., Arrehnius, G., Whitehouse, M. J., and Fedo, C. M., 2005, Questioning the evidence for earth's earliest life —Akilia revisited, Geology 33: 77–79.CrossRefGoogle Scholar
  7. Manning, C. E., Mojzsis, S. J., and Harrison, M. T., 2006, Geology, age and origin of supracrustal rocks at Akilia, west Greenland, American Journal of Science 306: 303–366.CrossRefGoogle Scholar
  8. Mojzsis, S. J., Arrenhius, G., McKeegan, K. D., Harrison, T. M., Nutman, A. P., and Friend, C. R. L., 1996, Evidence for life on Earth 3,800 million years ago, Nature 384: 55–59.CrossRefGoogle Scholar
  9. Moorbath, S., O'Nions, R. K., and Pankhurst, R. J., 1973, Early Archaean age for the Isua iron formation, West Greenland, Nature 245: 138–139.CrossRefGoogle Scholar
  10. Nutman, A. P., McGregor, V. R., Friend, C. R. L., Bennett, V. C., and Kinny, P. D., 1996, The Itsaq Gneiss Complex of southern West Greenland; the world's most extensive record of early crustal evolution (3900–3600 Ma), Precambrian Research 78: 1–39.CrossRefGoogle Scholar
  11. Nutman, A. P., Mojzsis, S. J., and Friend, C. R. L., 1997, Recognition of ⁥3850 Ma water-lain sediments in West Greenland and their significance for the early Archaean Earth, Geochimicaet Cosmochimica Acta 61: 2475–2484.CrossRefGoogle Scholar
  12. Rosing, M. T., 1999, 13C Depleted carbon microparticles in >3700-Ma sea-floor sedimentary rocks from West Greenland, Science 283: 674–676.CrossRefGoogle Scholar
  13. van Zuilen, M. A., Lepland, A., and Arhenius, G., 2002, Reassessing the evidence for the earliest traces of life, Nature 418: 627–630.CrossRefGoogle Scholar
  14. van Zuilen, M. A., Lepland, A., Teranes, J., Finarelli, J., Wahlen, M., and Arrhenius, G., 2003, Graphite and carbonates in the 3.8 Ga old Isua Supracrustal Belt, southern West Greenland, Precambrian Research 126: 331–348.CrossRefGoogle Scholar
  15. Whitehouse, M. J., and Fedo, C. M., 2007, Searching for Earth's earliest life in southern West Greenland —history, current status and future prospects. In: Va n Kranendonk, M. J., Smithies, H., and Bennett, V. (Eds.) Earth's Oldest Rocks. Developments in Precambrian Geology 15: 841–853.Google Scholar

Recommended Reading for South-West Greenland Geology

  1. Appel, P. W. U., Moorbath, S., and Touret, J. L. R., 2003, Early Archaean processes and the Isua Greenstone Belt, West Greenland, Precambrian Research 126: 173–179.CrossRefGoogle Scholar
  2. Dauphas, N., van Zuilen, M., Wadhwa, M., Davis, A. M., Marty, B., and Janney, P. E., 2004, Clues from Fe isotope variations on the origin of early Archean BIFs from Greenland, Science 306: 2077–2080.CrossRefGoogle Scholar
  3. Fedo, C. M., and Whitehouse, M. J., 2002, Metasomatic origin of quartz-pyroxene rock, Akilia, Greenland, and its implications for Earth’s earliest life, Science 296: 1448–1452.CrossRefGoogle Scholar
  4. Kamber, B. S., Moorbath, S., and Whitehouse, M. J., 2001, The oldest rocks on Earth: time constraints and geological controversies, Special Publication of the Geological Society of London 290: 177–203.CrossRefGoogle Scholar
  5. Lepland, A., Arrhenius, G., and Cornell, D., 2002, Apatite in the Early Archean Isua supracrustal rocks, southern West Greenland: its origin, association with graphite and potential as a biomarker, Precambrian Research 118: 221–241.CrossRefGoogle Scholar
  6. Lepland, A., van Zuilen, M. A., Arrehnius, G., Whitehouse, M. J., and Fedo, C. M., 2005, Questioning the evidence for earth’s earliest life – Akilia revisited, Geology 33: 77–79.CrossRefGoogle Scholar
  7. Manning, C. E., Mojzsis, S. J., and Harrison, M. T., 2006, Geology, age and origin of supracrustal rocks at Akilia, west Greenland, American Journal of Science 306: 303–366.CrossRefGoogle Scholar
  8. Mojzsis, S. J., Arrenhius, G., McKeegan, K. D., Harrison, T. M., Nutman, A. P., and Friend, C. R. L., 1996, Evidence for life on Earth 3,800 million years ago, Nature 384: 55–59.CrossRefGoogle Scholar
  9. Moorbath, S., O’Nions, R. K., and Pankhurst, R. J., 1973, Early Archaean age for the Isua iron formation, West Greenland, Nature 245: 138–139.CrossRefGoogle Scholar
  10. Nutman, A. P., McGregor, V. R., Friend, C. R. L., Bennett, V. C., and Kinny, P. D., 1996, The Itsaq Gneiss Complex of southern West Greenland; the world’s most extensive record of early crustal evolution (3900–3600 Ma), Precambrian Research 78: 1–39.CrossRefGoogle Scholar
  11. Nutman, A. P., Mojzsis, S. J., and Friend, C. R. L., 1997, Recognition of ≥3850 Ma water-lain sediments in West Greenland and their significance for the early Archaean Earth, Geochimica et Cosmochimica Acta 61: 2475–2484.CrossRefGoogle Scholar
  12. Rosing, M. T., 1999, 13C Depleted carbon microparticles in >3700-Ma sea-floor sedimentary rocks from West Greenland, Science 283: 674–676.CrossRefGoogle Scholar
  13. van Zuilen, M. A., Lepland, A., and Arhenius, G., 2002, Reassessing the evidence for the earliest traces of life, Nature 418: 627–630.CrossRefGoogle Scholar
  14. van Zuilen, M. A., Lepland, A., Teranes, J., Finarelli, J., Wahlen, M., and Arrhenius, G., 2003, Graphite and carbonates in the 3.8 Ga old Isua Supracrustal Belt, southern West Greenland, Precambrian Research 126: 331–348.CrossRefGoogle Scholar
  15. Whitehouse, M. J., and Fedo, C. M., 2007, Searching for Earth’s earliest life in southern West Greenland – history, current status and future prospects. In: Van Kranendonk, M. J., Smithies, H., and Bennett, V. (Eds.) Earth’s Oldest Rocks. Developments in Precambrian Geology 15: 841–853.Google Scholar

Copyright information

© Springer Science + Business Media B.V. 2009

Personalised recommendations