Compact Modeling of Independent Double-Gate MOSFET: A Physical Approach

  • Daniela Munteanu
  • Jean-Luc Autran

The bulk MOSFET scaling has recently encountered significant limitations, mainly related to the gate oxide (SiO2) leakage currents [1, 2], the large increase of parasitic short channel effects (SCEs) and the dramatic mobility reduction [3, 4] (due to highly doped Silicon channels precisely used to reduce these short channel effects). Technological solutions have been proposed in order to continue to use the “bulk solution” until the 32 nm ITRS node. Most of these solutions envisage the introduction of high-permittivity gate dielectric stacks (to reduce the gate leakage, [2, 5, 6]), midgap metal gate (to suppress the Silicon gate polydepletion-induced parasitic capacitances) and strained materials-based channel (to increase carrier mobility [7–9]). In parallel to these efforts, alternative solutions to replace the conventional bulk architecture have been proposed and studied in the recent literature, such as the introduction of new device architecture (e.g. multiple-gate devices, Silicon nanowires MOSFET). Ultra-thin film body Double-Gate (DG) structures become to be envisaged as a possible alternative to the conventional devices, due to its enormous potentiality to push back the integration limits to which conventional bulk transistor are subjected [10–13]. The main advantage of this architecture is to offer a reinforced electrostatic coupling between the conduction channel and the gate electrode. In other terms, a double-gate structure can efficiently sandwich (and thus very well control, electrostatically speaking) the semiconductor element playing the role of the transistor channel, which can be a Silicon thin layer or nanowire. In this way, Double-Gate devices could be designed with intrinsic channels, offering then an enhanced mobility, the elimination of doping fluctuations and a high probability of ballistic transport. Further, for the symmetrical DG device, the condition of “volume inversion” [14] can be beneficial with regard to carrier mobility and source-drain transport. In spite of excellent electrical performances due to its multiple conduction surfaces, conventional DG MOSFET allows only three-terminal operation because the two gates are tied together. DG structures with independent gates have been recently proposed [15–19], allowing a four terminal operation. Independent Double-Gate (IDG) MOSFETs offer additional potentialities, such as a dynamic threshold voltage control by one of the two gates and transconductance modulation in addition to the conventional switching operation [15,16].

Although the operation of DG transistor is similar to the conventional MOSFET, the physics of DG and IDG MOSFETs is more complicated. Moreover, physical phenomena such as 2D electrostatics or carrier quantum confinement have to be considered, since these structures will be precisely used to design very integrated devices (with short channels and ultra thin films). Therefore, new compact models, dedicated to circuit simulation, have to be developed for DG and IDG MOSFETs. Nanoscale DG and IDG MOSFETs introduce challenges to compact modeling associated with the enhanced coupling between the electrodes (source, drain, and gates), quantum confinement, ballistic or quasi-ballistic transport, gate tunneling current, etc. [20]. In the case of IDG MOSFET, the modeling task is even more difficult due to the influence of the second gate which can be independently switched. For DG MOSFET devices, drain current compact models can in general be surface potential or charge based. Most models presented to date are developed for undoped devices with a long enough channel to assume that the transport is mainly governed by the drift-diffusion mechanism [21–30]. Regarding the modeling of the electrostatics, most of the work has been based on solving one-dimensional (1-D) Poisson's equation perpendicular to the gates, thereby neglecting SCEs. For example, Taur [21,22] developed a framework of two equations to describe the electrostatic potential in the Silicon film of the DG MOSFET. Charge-based drain—current models have been developed by He et al. [27] and Sallese et al. [28] to avoid the numerical solution of the transcendental equation used in the surface potential-based models. Recently, a unified model for DG MOSFETs was derived by Taur et al. [23] based on the Pao— Sah's integral [31]. Ortiz-Conde et al. [24,29] have also proposed a surface potential based drain—current model for DG MOSFETs, which was an extension of their previously proposed Lambert function based analytic solution for the surface potential of single-gate undoped-body bulk devices [32]. These models considered the classical (i.e. without quantum effects) drain current in long channels (i.e. neglecting SCE) DG MOSFETs. However SCE is an important issue for these ultra-scaled devices. Liang and Taur proposed in [33] a drain current model for short channel DG MOSFETs, but this model only applies in subthreshold regime, where the assumption of a negligible mobile-charge sheet density can be used for simplifying the solving of the two-dimensional (2-D) Poisson's equation. A conventional technique used to take into account SCE is to add the SCEs as a second-order correction using fitting parameters. An alternative solution is the technique based on conformal mapping for obtaining analytical solutions of the 2-D Poisson's equation, whereby the SCEs are inherently included without the need of additional fitting parameters [34–38].

Keywords

Liner Mora T125 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Taur, D. Buchanan, W. Chen, D. Frank, K. Ismail, S.-H. Lo, G. Sai-Halasz, R. Viswanathan, H.-J. C. Wann, S. Wind and H.-S. Wong, “CMOS scaling into the nanometer regime”, Proc. IEEE, vol. 85, no. 4, pp. 486–504, Apr. 1997.CrossRefGoogle Scholar
  2. 2.
    E. P. Gusev, V. Narayanan and M. M. Frank, “Advanced high-k dielectric stacks with polySi and metal gates: Recent progress and current challenges”, IBM J. Res. Develop., vol. 50, no. 4/5, pp. 387–410, July/Sept. 2006.Google Scholar
  3. 3.
    A. Lochtefeld and D. A. Antoniadis, “On experimental determination of carrier velocity in deeply scaled NMOS: How close to the thermal limit?”, IEEE Electron Device Lett., vol. 22, no. 2, pp. 95–97, Feb. 2001.CrossRefGoogle Scholar
  4. 4.
    M. V. Fischetti and S. E. Laux, “Long-range coulomb interactions in small Si devices. Part I: Performance and reliability”, J. Appl. Phys., vol. 89, no. 2, pp. 1205–1231, Jan. 15, 2001.CrossRefGoogle Scholar
  5. 5.
    G. D. Wilk, R. M. Wallace and J. M. Anthony, “High-k gate dielectrics: Current status and materials properties considerations”, J. Appl. Phys., vol. 89, pp. 5243–5275, May 15, 2001.CrossRefGoogle Scholar
  6. 6.
    M. Houssa (Ed.), “Fundamental and technological aspects of high-k gate dielectrics”, IOP, London, 2004.Google Scholar
  7. 7.
    K. Rim, J. L. Hoyt and J. F. Gibbons, “Transconductance enhancement in deep submicron strained-Si 12-MOSFETs”, in Int. Electron Devices Meeting Tech. Dig., pp. 707–710, Dec. 1998.Google Scholar
  8. 8.
    S. Thompson N. Anand, M. Armstrong, C. Auth, B. Arcot, M. Alavi, P. Bai, J. Bielefeld, R. Bigwood, J. Brandenburg, M. Buehler, S. Cea, V. Chikarmane, C. Choi, R. Frankovic, T. Ghani, G. Glass, W. Han, T. Hoffmann, M. Hussein, P. Jacob, A. Jain, C. Jan, S. Joshi, C. Kenyon, J. Klaus, S. Klopcic, J. Luce, Z. Ma, B. Mcintyre, K. Mistry, A. Murthy, P. Nguyen, H. Pearson, T. Sandford, R. Schweinfurth, R. Shaheed, S. Sivakumar, M. Taylor, B. Tufts, C. Wallace, P. Wang, C. Weber and M. Bohr, “A 90 nm logic technology featuring 50 nm strained silicon channel transistors, 7 layers of Cu interconnects, Low k ILD, and 1 lm2 SRAM Cell”n Int. Electron Devices Meeting Tech. Dig., pp. 61–64, Dec. 2002.Google Scholar
  9. 9.
    H. S. Yang, R. Malik, S. Narasimha, Y. Li, R. Divakaruni, P. Agnello, S. Allen, A. Antreasyan, J. C. Arnold, K. Bandy, M. Belyansky, A. Bonnoit, G. Bronner, V. Chan, X. Chen, Z. Chen, D. Chidambarrao, A. Chou, W. Clark, S. W. Crowder, B. Engel, H. Harifuchi, S. F. Huang, R. Jagannathan, F. F. Jamin, Y. Kohyama, H. Kuroda, C. W. Lai, H. K. Lee, W.-H. Lee, E. H. Lim, W. Lai, A. Mallikarjunan, K. Matsumoto, A. McKnight, J. Nayak, H. Y. Ng, S. Panda, R. Rengarajan, M. Steigerwalt, S. Subbanna, K. Subramanian, J. Sudijono, G. Sudo, S.-P. Sun, B. Tessier, Y. Toyoshima, P. Tran, R. Wise, R. Wong, I. Y. Yang, C. H. Wann, L. T. Su, M. Horstmann, Th. Feudel, A. Wei, K. Frohberg, G. Burbach, M. Gerhardt, M. Lenski, R. Stephan, K. Wieczorek, M. Schaller, H. Salz, J. Hohage, H. Ruelke, J. Klais, P. Huebler, S. Luning, R. van Bentum, G. Grasshoff, C. Schwan, E. Ehrichs, S. Goad, J. Buller, S. Krishnan, D. Greenlaw, M. Raab and N. Kepler, “Dual stress liner for high performance sub-45 nm gate length SOI CMOS manufacturing”, in Int. Electron Devices Meeting Tech. Dig., pp. 1075–1078, Dec. 2004.Google Scholar
  10. 10.
    D. J. Frank, S. E. Laux and M. V. Fischetti, “Monte Carlo simulation of a 30 nm dual-gate MOSFET: How short can Si go?,”in Int. Electron Devices Meeting Tech. Dig., pp. 553–556, Dec. 1992.Google Scholar
  11. 11.
    H.-S. P. Wong, “Novel device options for sub-100 nm CMOS”, in IEDM Short Course: Sub-100 nm CMOS, M. Bohr, Ed., presented at the Int. Electron Devices Meeting, Dec. 1999.Google Scholar
  12. 12.
    J. T. Park and J. P. Colinge, “Multiple-gate SOI MOSFETs: Device design guidelines”, IEEE Trans. Electron Devices, vol. 49, no. 12, pp. 2222–2229, Dec. 2002.CrossRefGoogle Scholar
  13. 13.
    W. Haensch, E. J. Nowak, R. H. Dennard, P. M. Solomon, A. Bryant, O.H. Dokumaci, A. Kumar, X. Wang, J. B. Johnson and M. V. Fischetti, “Silicon CMOS devices beyond scaling”, IBM J. Res. Develop., vol. 50, no. 4/5, pp. 339–361, July/Sept. 2006.CrossRefGoogle Scholar
  14. 14.
    J.-W. Yang and J. G. Fossum, “On the feasibility of nanoscale triple-gate CMOS transistors,” IEEE Trans. Electron Devices, vol. 52, no. 6 pp. 1159–1164, Jun. 2005.CrossRefGoogle Scholar
  15. 15.
    M. Masahara, Y. Liu, K. Sakamoto, K. Endo, T. Matsukawa, K. Ishii, T. Sekigawa, H. Yamauchi, H. Tanoue, S. Kanemaru, H. Koike and E. Suzuki, “Demonstration, analysis, and device design considerations for independent DG MOSFETs”, IEEE Trans. Electron Devices, vol. 52, no. 9, pp. 2046–2051, Sept. 2005.CrossRefGoogle Scholar
  16. 16.
    W. Zhang, J. G. Fossum, L. Mathew and Y. Du, “Physical insights regarding design and performance of independent-gate FinFETs”, IEEE Trans. Electron. Dev., vol. 52, no. 10, pp. 2198–2206, Oct. 2005.CrossRefGoogle Scholar
  17. 17.
    G. Pei and E. C. Kan, “Independently driven DG MOSFETs for mixed-signal circuits: Part I—quasi-static and nonquasi-static channel coupling”, IEEE Trans. Electron Devices, vol. 51, no. 12, pp. 2086–2093, Dec. 2004.CrossRefGoogle Scholar
  18. 18.
    G. Pei, W. Ni, A. V. Kammula, B. A. Minch and E. C. Kan, “A physical compact model of DG MOSFET for mixed-signal circuit applications — Part I: model description”, IEEE Trans. Electron Devices, vol. 50, no. 10, pp. 2135–2143, Oct. 2003.CrossRefGoogle Scholar
  19. 19.
    L. Mathew, Y. Du, A. V. Thean, M. Sadd, A. Vandooren, C. Parker, T. Stephens, R. Mora, R. Rai, M. Zavala, D. Sing, S. Kalpat, J. Hughes, R. Shimer, S. Jallepalli, G. Workman, W. Zhang, J. G. Fossum, B. E. White, B. Y. Nguyen and J. Mogab, “CMOS vertical Multiple Independent Gate Field Effect Transistor (MIGFET)”, in Proc. IEEE Int. SOI Conference, pp. 187–189, Oct. 2004.Google Scholar
  20. 20.
    B. Iñiguez, T. A. Fjeldly, A. Lázaro, F. Danneville and M. J. Deen, “Compact-modeling solutions For nanoscale double-gate and gate-all-around MOSFETs”, IEEE Trans. Electron Devices, vol. 53, no. 9, pp. 2128–2142, Sept. 2006.CrossRefGoogle Scholar
  21. 21.
    Y. Taur, “An analytical solution to a double-gate MOSFET with undoped body,” IEEE Electron Device Lett., vol. 21, no. 5, pp. 245–247, May 2000.CrossRefGoogle Scholar
  22. 22.
    Y. Taur, “Analytic solutions of charge and capacitance in symmetric and asymmetric double-gate MOSFETs,” IEEE Trans. Electron Devices, vol. 48, no. 12, pp. 2861–2869, Dec. 2001.CrossRefGoogle Scholar
  23. 23.
    Y. Taur, X. Liang, W. Wang and H. Lu, “A continuous, analytic drain current model for DG-MOSFETs,” IEEE Electron Device Lett., vol. 25, no. 2, pp. 107–109, Feb. 2004.CrossRefGoogle Scholar
  24. 24.
    A. Ortiz-Conde, F. J. Garcia Sanchez and J. Muci, “Rigorous analytic solution for the drain current of undoped symmetric dual-gate MOSFETs,” Solid State Electron., vol. 49, no. 4, pp. 640–647, Jan. 2005.CrossRefGoogle Scholar
  25. 25.
    D. Jiménez, B. ñiguez, J. Suñé, F. Marsal, J. Pallarès, J. Roig and D. Flores, “Continuous analytic current-voltage model for surrounding gate MOSFETs,” IEEE Electron Device Lett., vol. 25, no. 8, pp. 571–573, Aug. 2004.CrossRefGoogle Scholar
  26. 26.
    B. Iñiguez, D. Jimeénez, J. Roig, H. A. Hamid, L. F. Marsal and J. Pallarès, “Explicit continuous model for long-channel undoped surrounding gate MOSFETs,” IEEE Trans. Electron Devices, vol. 52, no. 8, pp. 1868–1873, Aug. 2005.CrossRefGoogle Scholar
  27. 27.
    J. He, X. Xi, C. H. Lin, M. Chan, A. Niknejad and C. Hu, “A non-charge-sheet analytic theory for undoped symmetric double-gate MOSFET from the exact solution of Poisson's equation using SSP approach,” in Proceedings of the Workshop Compact Modeling, NSTI-Nanotech, pp. 124–127, Boston, MA, May 2004.Google Scholar
  28. 28.
    J. M. Sallese, F. Krummenacher, F. Pregaldiny, C. Lallement, A. Roy and C. Enz, “A design oriented charge-based current model for symmetric DG MOSFET and its correlation with the EKV formalism,” Solid State Electron., vol. 49, no. 3, pp. 485–489, Mar. 2005.CrossRefGoogle Scholar
  29. 29.
    Ortiz-Conde, F. J. García-Sánchez, S. Malobabic and J. Muci, “Analytic solution for the drain—current of undoped symmetric DG MOSFETs,” in Proceedings of the Workshop Compact Modeling, NSTI-Nanotech, pp. 63–68, Anaheim, CA, May 2005.Google Scholar
  30. 30.
    A. Ortiz-Conde, F. J. García-Sánchez, J. Muci, S. Malobabic and J. J. Liou, “A review of core compact models for undoped double-gate SOI MOSFETs”, IEEE Trans. Electron Devices, vol. 54, no. 1, pp. 131–140, Jan. 2007.CrossRefGoogle Scholar
  31. 31.
    H. C. Pao and C. T. Sah, “Effects of diffusion currents on characteristics of metal-oxide (insulator)-semiconductor transistors,” Solid State Electron., vol. 9, no. 10, pp. 927–937, Oct. 1966.CrossRefGoogle Scholar
  32. 32.
    A. Ortiz-Conde, F. J. García-Sánchez and M. Guzmán, “Exact analytical solution of channel surface potential as an explicit function of gate voltage in undoped-body MOSFETs using the Lambert W function and a threshold voltage definition therefrom,” Solid State Electron., vol. 47, no. 11, pp. 2067–2074, Nov. 2003.CrossRefGoogle Scholar
  33. 33.
    Y. P. Liang and Y. Taur, “A 2-D analytical solution for SCEs in DG MOSFETs,” IEEE Trans. Electron Devices, vol. 51, no. 9, pp. 1385–1391, Sep. 2004.CrossRefGoogle Scholar
  34. 34.
    J. Østhaug, T. A. Fjeldly, and B. Iñíguez, “Closed-form 2D modeling of sub-100 nm MOSFETs in the subthreshold regime,” J. Telecommun. Inf. Technol., no. 1, pp. 70–79, 2004.Google Scholar
  35. 35.
    S. Kolberg and T. A. Fjeldly, “2-D modeling of nanoscale DG SOI MOSFETs in the subthreshold regime,” J. Comput. Electron., vol. 5, pp. 217–222, 2006.CrossRefGoogle Scholar
  36. 36.
    S. Kolberg and T. A. Fjeldly, “2-D modeling of nanoscale double gate silicon-on-insulator MOSFETs using conformal mapping”, Phys. Scr., vol. T125, pp. 1–4, 2006.CrossRefGoogle Scholar
  37. 37.
    S. Kolberg, T. A. Fjeldly and B. Iñiguez, “Self-consistent 2-D compact model for nanoscale double gate MOSFETs,” in Proceedings of the ICCS, Springer, Reading/Berlin/Germany, vol. 3994, pp. 607–614, May 28–31, 2006.Google Scholar
  38. 38.
    T. A. Fjeldly, S. Kolberg and B. Iñiguez, “Precise 2-D compact modeling of nanoscale DG MOSFETs based on conformal mapping techniques,” in Tech. Proc. NSTI-Nanotech., vol. 3, pp. 668–673, Boston, MA, May 2006.Google Scholar
  39. 39.
    G. Baccarani and S. Reggiani, “A compact double-gate MOSFET model comprising quantum-mechanical and nonstatic effects,” IEEE Trans. Electron Devices, vol. 46, no. 8, pp. 1656–1666, Aug. 1999.CrossRefGoogle Scholar
  40. 40.
    D. Munteanu, J.-L. Autran, X. Loussier, S. Harrison, R. Cerutti and T. Skotnicki, “Quantum short-channel compact modelling of drain—current in double-gate MOSFET,” Solid State Electron., vol. 50, no. 4, pp. 680–686, Apr. 2006.CrossRefGoogle Scholar
  41. 41.
    D. Jiménez, J. J. Sáenz, B. Iñíguez, J. Suñé, L. F. Marsal and J. Pallarès, “A unified compact model for the ballistic quantum wire and quantum well MOSFET,” J. Appl. Phys., vol. 94, no. 2, pp. 1061–1068, Jul. 15, 2003.CrossRefGoogle Scholar
  42. 42.
    D. Jiménez, J. J. Sáenz, B. Iñíguez, J. Suñé, L. F. Marsal and J. Pallarès, “Modeling of nanoscale gate-all-around MOSFETs,” IEEE Electron Device Lett., vol. 25, no. 5, pp. 314–316, May 2004.CrossRefGoogle Scholar
  43. 43.
    A. Rahman and M. S. Lundstrom, “A compact scattering model for the nanoscale double gate MOSFET,” IEEE Trans. Electron Devices, vol. 49, no. 3, pp. 481–489, Mar. 2002.CrossRefGoogle Scholar
  44. 44.
    H. A. Hamid, B. Iñíguez, D. Jiménez, L. F. Marsal and J. Pallarès, “Transmission model for the nanoscale double gate MOSFET including the effect of the scattering”, Phys. Stat Sol. C, vol. 2, no. 8, pp. 3086–3089, Aug. 2005.CrossRefGoogle Scholar
  45. 45.
    J. L. Autran, D. Munteanu, O. Tintori, E. Decarre and A. M. Ionescu, “An analytical subthresh-old current model for ballistic quantum-wire double gate MOS transistors”, Mol. Simulat., vol. 31, no. 2/3, pp. 179–183, Feb. 15, 2005.MATHCrossRefGoogle Scholar
  46. 46.
    G. Mugnaini and G. Iannaccone, “Physics-based compact model of nanoscale MOSFETs — Part II: Effects of degeneracy on transport,” IEEE Trans. Electron Devices, vol. 52, no. 8, pp. 1802–1806, Aug. 2005.CrossRefGoogle Scholar
  47. 47.
    G. Mugnaini and G. Iannaccone, “Physics-based compact model of nanoscale MOSFETs — Part I: Transition from drift-diffusion to ballistic transport,” IEEE Trans. Electron Devices, vol. 52, no. 8, pp. 1795–1801, Aug. 2005.CrossRefGoogle Scholar
  48. 48.
    G. Mugnaini and G. Iannaccone, “Analytical model for nanowire and nanotube transistors covering both dissipative and ballistic transport,” in Proceedings of the European Solid-State Device Research Conference (ESSDERC), pp. 213–216, Grenoble, France, Sep. 2005.Google Scholar
  49. 49.
    H. Lu and Y. Taur, “An analytic potential model for symmetric and asymmetric DG MOSFETs,” IEEE Trans. Electron Devices , vol. 53, no. 5, pp. 1161–1168, May 2006.CrossRefGoogle Scholar
  50. 50.
    A. S. Roy, J. M. Sallese and C. C. Enz, “A closed-form charge-based expression for drain—current in symmetric and asymmetric double gate MOSFET,” Solid State Electron., vol. 50, no. 4, pp. 687–693, Apr. 2006.CrossRefGoogle Scholar
  51. 51.
    M. Reyboz, T. Poiroux, O. Rozeau, P. Martin and J. Jomaah, “Explicit threshold voltage based compact model of independent double gate MOSFET”, in Tech. Proc. NSTI-Nanotech., Boston, MA, vol. 3, pp. 796–799, May 7–11, 2006.Google Scholar
  52. 52.
    M. Reyboz, O. Rozeau, T. Poiroux, P. Martin, M. Cavelier and J. Jomaah, “Explicit short channel compact model of independent double gate MOSFET”, in Tech. Proc. NSTI-Nanotech.,vol. 3, pp. 578–581, Santa-Clara, May 2007.Google Scholar
  53. 53.
    D. Munteanu, J. L. Autran, X. Loussier and O. Tintori, “Compact modeling of drain current in Independently Driven Double-Gate MOSFETs”, in Tech. Proc. NSTI-Nanotech., vol. 3, pp. 574–577, Santa-Clara, May 2007.Google Scholar
  54. 54.
    D. Munteanu and J. L. Autran, “Two-dimensional modeling of quantum ballistic transport in ultimate double-gate SOI devices”, Solid State Electron., vol. 47, no. 7, pp. 1219–1225, Jul. 2003.CrossRefGoogle Scholar
  55. 55.
    J. L. Autran and D. Munteanu, “Simulation of electron transport in nanoscale independent-gate double-gate devices using a full 2D Green's function approach”, J. Comput. Theor. Nanosci., in press, vol. 5, 2008.Google Scholar
  56. 56.
    D. Munteanu, J. L. Autran, X. Loussier, S. Harrison and R. Cerutti, “Compact modeling of symmetrical double-gate MOSFETs including carrier confinement and short-channel effects”, Mol. Simulat., vol. 33, no. 7, pp. 605–611, Jun. 2007.MATHCrossRefGoogle Scholar
  57. 57.
    R. J. Van Overstraeten, G. J. Declerck and P. A. Muls, “Theory of the MOS transistor in weak inversion-new method to determine the number of surface states”, IEEE Trans. Electron Devices, vol. 22, no. 5, pp. 282–288, May 1975.CrossRefGoogle Scholar
  58. 58.
    Y. Taur and T. H. Ning, “Fundamentals of Modern VLSI Devices”, Cambridge University Press, Cambridge, 1998.Google Scholar
  59. 59.
    S. A. Hareland, S. Jallepalli, W.-K. Shih, H. Wang, G. L. Chindalore, A. F. Tasch and C. M. Maziar, “A physically-based model for quantization effects in hole inversion layers”, IEEE Trans. Electron Devices, vol. 45, no. 1, pp. 179–186, Jan. 1998.CrossRefGoogle Scholar
  60. 60.
    L. Ge and J. G. Fossum, “Analytical modeling of quantization and volume inversion in thin Si-film DG MOSFETs,” IEEE Trans. Electron Devices, vol. 49, no. 2, pp. 287–294, Feb. 2002.CrossRefGoogle Scholar
  61. 61.
    V. Trivedi and J. G. Fossum, “Quantum-mechanical effects on the threshold voltage of undoped double-gate MOSFETs,” IEEE Electron Dev. Lett., vol. 26, no. 8, pp. 579–582, Aug. 2005.CrossRefGoogle Scholar
  62. 62.
    M. Moreau, D. Munteanu and J. L. Autran, “Simulation study of short-channel effects and quantum confinement in independent double-gate metal-oxide-semiconductor field-effect” Jpn. J. App. Phys., in press, 2008.Google Scholar
  63. 63.
    M. Lundstrom, “Fundamentals of Carrier Transport”, 2nd ed., Cambridge University Press, Cambridge, 2000.Google Scholar
  64. 64.
    D. K. Ferry and S. M. Goodnick, “Transport in Nanostructures”, Cambridge University Press, Cambridge, 1997.Google Scholar
  65. 65.
    C. Cohen-Tannoudji, B. Diu and F. Laloeë, “Quantum Mechanics”, Hermann, Paris, 1992.Google Scholar
  66. 66.
    M. Städele, “Influence of source-drain tunneling on the subthreshold behavior of sub-10 nm double-gate MOSFETs”, in Proceedings of the European Solid-State Device Research Conference (ESSDERC), pp. 135–138, Florence, Italy, Sept. 2002.Google Scholar
  67. 67.
    K. Natori, “Ballistic metal-oxide-semiconductor field effect transistor”, J. Appl. Phys., vol. 76, no. 8, pp. 4879–4890, Oct. 1994.CrossRefGoogle Scholar
  68. 68.
    M. S. Lundstrom, “Elementary scattering theory of the Si MOSFET”, IEEE Electron Device Lett., vol. 18, no. 7, pp. 361–363, Jul. 1997.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2009

Authors and Affiliations

  • Daniela Munteanu
    • 1
  • Jean-Luc Autran
    • 1
  1. 1.IM2NP-CNRSFrance

Personalised recommendations