Skip to main content

Keyhole Welding: The Solid and Liquid Phases

  • Chapter

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 119))

Abstract

Deep penetration laser welding relies on the evaporation of material by a high power laser beam in order to drill a vapour capillary, usually referred to as a keyhole. During continuous welding the keyhole is kept open by the pressure in the vapour which evaporates continuously from its wall; the pressure acts continuously against the surface tension pressure that favours contraction. In contrast to pulsed wave (pw-) laser welding, during continuous wave (cw-) laser welding quasi-steady state conditions of the accompanying temperature field, and thus of the shape of the keyhole and melt pool, are established. Nevertheless, in the keyhole and melt pool complex fluid mechanical mechanisms take place. The most important thermodynamic and melt flow phenomena in keyhole laser welding will be briefly discussed. For some of them mathematical models and calculation results will be presented, complementing a comprehensive survey that was published earlier [1].

Notation employed in this chapter is given in Table 3.1.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kapadia P, Dowden J (1994) Review of mathematical models of deep penetra-tion laser welding. Lasers in Engineering 3(3–4): 187–280

    Google Scholar 

  2. Bergström D, Powell J, Kaplan A (2005) Laser absorption measurements in opaque solids. Proc NOLAMP 10. Luleå(S), Ed: Kaplan AFH, Luleå TU (S) 10: 91–116

    Google Scholar 

  3. Prokhorov AM, Konov VI, Ursu I, Mihailescu (1990) In: Laser heating of metals. Adam Hilger, Bristol (UK)

    Google Scholar 

  4. Kaplan A (1994) A model of deep penetration laser welding based on calculation of the keyhole profile. J Phys D: Appl Phys 27: 1805–1814

    Article  ADS  Google Scholar 

  5. Steen WM, Dowden J, Davis M, Kapadia P (1988) A point and line source model of laser keyhole welding. J Phys D: Appl Phys 21: 1255–1260

    Article  ADS  Google Scholar 

  6. Resch M, Kaplan AFH (1998) Heat conduction modelling of laser welding. Lasers in Engineering 7(3–4): 229–240

    Google Scholar 

  7. Bergström D, Powell J, Kaplan AFH (2007) The absorptance of steels to Nd:YLF and Nd:YAG laser light at room temperature. Appl Surf Sci 253: 5017–5028

    Article  ADS  Google Scholar 

  8. Bergströom D, Powell J, Kaplan AFH (2007) Light scattering and absorption in Gaussian random rough metal surfaces using the geometric optics approxima- tion. J Appl Phys 101(11): 113504–113514

    Article  ADS  Google Scholar 

  9. Rosenthal D (1946) The theory of moving sources of heat and its application to metal treatments. Trans ASME 48: 849–865

    Google Scholar 

  10. Carslaw HS, Jaeger JC (1959) Conduction of heat in solids. Oxford Clarendon, Oxford

    Google Scholar 

  11. Cline HE, Anthony TR (1977) Heat treating and melting material with a scanning laser or electron beam. J Appl Phys 48(9): 3895–3900

    Article  ADS  Google Scholar 

  12. Kaplan AFH (1997) Surface processing by non-Gaussian beams. Appl Phys Lett 70(2): 264–266

    Article  ADS  Google Scholar 

  13. Simon G, Gratzke U, Kroos J (1993) Analysis of heat conduction in deep penetration welding with a time-modulated laser beam. J Phys D: Appl Phys 26(5): 862–869

    Article  ADS  Google Scholar 

  14. Baeva M, Baev P, Kaplan A (1997) An analysis of the heat transfer from a moving elliptical cylinder. J Phys D: Appl Phys 30(8): 1190–1196

    Article  ADS  Google Scholar 

  15. Kaplan A (1994) Modellrechnung und numerische Simulation von Absorption, Wäarmeleitung und Strömung des Laser-Tiefschweiβens (in German), PhD-thesis (Dissertation), Vienna University of Technology, Vienna (A)

    Google Scholar 

  16. Kaplan AFH (2004) Semi-analytical modeling of the process interaction zone. Proc. WCCM VI/APCOM'04, Beijing (CHI), Singh University Press & Springer-Verlag, Berlin (D)

    Google Scholar 

  17. Lampa C, Kaplan AFH, Powell J, Magnusson C (1997) An analytical thermo- dynamic model of laser welding. J Phys D: Appl Phys 30: 1293–1299

    Article  ADS  Google Scholar 

  18. Kaplan AFH (2005) Modelling the absorption variation during pulsed laser heating. Appl Surf Sci 241(3–4): 362–370

    Article  ADS  Google Scholar 

  19. Dowden J, Kapadia P (1999) Oscillations of a weld pool formed by melting through a thin work piece. Lasers in Engineering 8(4): 311–318

    Google Scholar 

  20. Kaplan AFH, Mizutani M, Katayama S, Matsunawa A (2002) Unbounded keyhole collapse and bubble formation during pulsed laser interaction with liquid zinc. J Phys D: Appl Phys 35: 1218–1228

    Article  ADS  Google Scholar 

  21. Lampa C, Kaplan AFH, Resch M, Magnusson C (1998) Fluid flow and resolidification in deep penetration laser welding, Lasers in Engineering 7(3–4): 241–253

    Google Scholar 

  22. Beck M, Berger P, Dausinger F, Hügel H (1991) Aspects of keyhole/melt interaction in high speed laser welding. Proc SPIE 1397, Ed: Orza JM, Domingo C, Bellingham (WA) 769–774

    Google Scholar 

  23. Fuhrich Th, Berger P, Huügel H (2002) Numerical calculation of the weld pool in deep penetration laser welding. Proc Mathematical modelling of weld phenomena 6, ed: Cerjak H, Bhadeshia HKDH, Maney Pub, London (UK) 93–119

    Google Scholar 

  24. Otto A, Geiger M (2007) From basic research to industrial applications – new developments for laser welding, Proc. LIM – Lasers in Manufacturing, Munich (D), ed: Vollertsen F et al., WLT, Bremen (D) 5–11

    Google Scholar 

  25. Choo RTC, Szekely J (1994) Possible role of turbulence in GTA weld pool behavior. Welding Journal 73(2): 25s–31s

    Google Scholar 

  26. Fabbro R, Slimani S (2007) Melt pool dynamics during deep penetration cw Nd:YAG laser welding. Proc LIM – Lasers in Manufacturing, Munich (D), ed: Vollertsen F et al., WLT, Bremen (D) 259–264

    Google Scholar 

  27. Katayama S, Kawahito Y, Mizutani M (2007) Plume behaviour and melt flows during laser and hybrid welding. Proc LIM – Lasers in Manufacturing, Munich (D), ed: Vollertsen F et al., WLT, Bremen (D) 265–271

    Google Scholar 

  28. Neumann S, Thomy C, Seefeld T, Wagner F (2007) Experimental investiga- tion of the humping effect in welding with highest beam quality. Proc. LIM – Lasers in Manufacturing, Munich (D), ed: Vollertsen F et al., WLT, Bremen (D) 273–276

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Canopus Academic Publishing Limited

About this chapter

Cite this chapter

Kaplan, A. (2009). Keyhole Welding: The Solid and Liquid Phases. In: Dowden, J. (eds) The Theory of Laser Materials Processing. Springer Series in Materials Science, vol 119. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9340-1_3

Download citation

Publish with us

Policies and ethics