Temperature Dependence of Ferroelectric and Piezoelectric Properties of PZT Ceramics

  • Paul Weaver
  • Markys G. Cain
Part of the Springer Series in Measurement Science and Technology book series (SSMST, volume 2)


Temperature induced changes in the properties of piezoelectric and ferroelectric materials have major implications for the design of devices used in wide variety of technological applications.


Curie Temperature Piezoelectric Material Remanent Polarisation Piezoelectric Response Strain Loop 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Vopsaroiu, M., Blackburn, J., Muniz-Piniella, A., Cain, M.G.: Multiferroic magnetic recording read head technology for 1Tbitin.[sup 2] and beyond. J. Appl. Phys. 103(7), 07F506 (2008)CrossRefGoogle Scholar
  2. 2.
    Lines, E., Glass, A.M.: Principles and applications of ferroelectrics and related materials. In: International Series of Monographs on Physics. Oxford University Press, Oxford (1977)Google Scholar
  3. 3.
    Sabat, R.G., Mukherjee, B.K., Ren, W., Yang, G.: Temperature dependence of the complete material coefficients matrix of soft and hard doped piezoelectric lead zirconate titanate ceramics. J. Appl. Phys. 101(6), 064111 (2007)Google Scholar
  4. 4.
    Maiwa, H., Kim, S.-H., Ichinose, N.: Temperature dependence of the electrical and electromechanical properties of lead zirconate titanate thin films. Appl. Phys. Lett. 83(21), 4396 (2003)CrossRefGoogle Scholar
  5. 5.
    Cook, W., Berlincourt, D., Scholz, F.: Thermal expansion and pyroelectricity in lead titanate zirconate and barium titanate. J. Appl. Phys. 34(5), 1392–1398 (1963)CrossRefGoogle Scholar
  6. 6.
    Seveyrat, L., Lemercier, M., Guiffard, B., Lebrun, L., Guyomar, D.: Temperature dependence of macroscopic and microscopic PZT properties studied by thermo-mechanical analysis, dielectric measurements and X-ray diffraction. Ceram. Int. 35(1), 45–49 (2009)CrossRefGoogle Scholar
  7. 7.
    Kungl, H., Hoffmann, M.J.: Method for the estimation of the total displacement of ferroelectric actuators under mixed thermal and electrical loading. Sens. Actuators A: Phys. 144(2), 328–336 (2008)CrossRefGoogle Scholar
  8. 8.
    Kholkin, A.L., Akdogan, E.K., Safari, A., Chauvy, P.F., Setter, N.: Characterization of the effective electrostriction coefficients in ferroelectric thin films. J. Appl. Phys. 89(12), 8066 (2001)CrossRefGoogle Scholar
  9. 9.
    Jona, F., Shirane, G.: Ferroelectric crystals. In: International Series of Monographs on Solid State Physics. Pergamon Press, New York (1962)Google Scholar
  10. 10.
    Haun, M.J., Zhuang, Z.Q., Furman, E., Jang, S.J., Cross, L.E.: Electrostrictive properties of the lead zirconate titanate solid solution system. J. Am. Ceram. Soc. 72(7), 1140–1144 (1989)CrossRefGoogle Scholar
  11. 11.
    Weaver, P.M., Cain, M.G., Stewart, M.: Temperature dependence of high field electromechanical coupling in ferroelectric ceramics. J. Phys. D: Appl. Phys. 43, 165404 (2010)Google Scholar
  12. 12.
    Weaver, P.M., Cain, M.G., Stewart, M.: Temperature dependence of strain-polarization coupling in ferroelectric ceramics. Appl. Phys. Lett. 96, 142905 (2010)Google Scholar
  13. 13.
    Weaver, P.M., Cain, M.G., Correia, T.M., Stewart, M.: Electromechanical coupling and temperature-dependent polarization reversal in piezoelectric ceramics. IEEE. Trans. Ultrason. Ferroelectr. Freq. Control 58, 1730–1736 (2011)Google Scholar
  14. 14.
    Li, F., Jin, L., Xu, Z., Zhang, S.: Electrostrictive effect in ferroelectrics: An alternative approach to improve piezoelectricity. Appl. Phys. Rev. 1, 011103 (2014)Google Scholar
  15. 15.
    Jaffe, B., Cook, W.R., Jaffe, H.L.: Piezoelectric ceramics. In: Non-metallic Solids. Academic Press, New York (1971)Google Scholar
  16. 16.
    Cross, L.E.: Relaxor ferroelectrics. Ferroelectrics 76(1), 241–267 (1987)CrossRefGoogle Scholar
  17. 17.
    Mason, W.P.: Electrostrictive effect in barium titanate ceramics. Phys. Rev. 74(9), 1134 (1948)CrossRefGoogle Scholar
  18. 18.
    Kay, H.: Electrostriction. Rep. Prog. Phys. 18(1), 230 (1955)CrossRefGoogle Scholar
  19. 19.
    Damjanovic, D.: Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep. Prog. Phys. 61, 1267 (1998)CrossRefGoogle Scholar
  20. 20.
    Berlincourt, D.: Properties of lead titanate zirconate ceramics. Technical report no. 3 for 1 Feb 1956–31 Jan 1957 (1957)Google Scholar
  21. 21.
    Burfoot, J.C., Taylor, G.: Polar Dielectrics and Their Applications. University of California Press, Berkeley (1979)Google Scholar
  22. 22.
    Newcomb, C., Flinn, I.: Improving the linearity of piezoelectric ceramic actuators. Electron. Lett. 18(11), 442–444 (1982)CrossRefGoogle Scholar
  23. 23.
    Zhang, Q.M., Pan, W.Y., Jang, S., Cross, L.E.: Domain wall excitations and their contributions to the weaksignal response of doped lead zirconate titanate ceramics. J. Appl. Phys. 64(11), 6445–6451 (1988)Google Scholar
  24. 24.
    Chong, K.B., Guiu, F., Reece, M.J.: Thermal activation of ferroelectric switching. J. Appl. Phys. 103(1), 014101 (2008)CrossRefGoogle Scholar
  25. 25.
    Roark, R.J., Young, W.C., Budynas, R.G.: Roark’s Formulas for Stress and Strain. McGraw Hill, New York (2002)Google Scholar
  26. 26.
    Timoshenko, S.: Analysis of bi-metal thermostats. J. Opt. Soc. Am. 11(3), 233–255 (1925)CrossRefGoogle Scholar

Copyright information

© © Queen's Printer and Controller of HMSO 2014

Authors and Affiliations

  1. 1.National Physical LaboratoryTeddingtonUK

Personalised recommendations