Skip to main content

Characterisation of Pyroelectric Materials

Part of the Springer Series in Measurement Science and Technology book series (SSMST,volume 2)

Abstract

Pyroelectrics form a very broad class of materials. Any material which has a crystal structure possessing a polar point symmetry—i.e. one which both lacks a centre of symmetry and has a unique axis of symmetry—will possess an intrinsic, or spontaneous, polarisation and show the pyroelectric effect. The pyroelectric effect is a change in that spontaneous polarisation caused by a change in temperature. It is manifested as the appearance of free charge at the surfaces of the material, or a flow of current in an external circuit connected to it. The effect is a simple one, but it has been used in a range of sensing devices, most notably uncooled pyroelectric infra-red (PIR) sensors, and has thus come to be of some engineering and economic significance, enabling a wide range of sensing systems, ranging from burglar alarms through FTIR spectroscopic instruments to thermal imagers.

Keywords

  • Piezoelectric Coefficient
  • Pyroelectric Coefficient
  • Pyroelectric Detector
  • Pyroelectric Effect
  • Pyroelectric Current

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4020-9311-1_4
  • Chapter length: 22 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-1-4020-9311-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Whatmore, R.W.: Pyroelectric devices and materials. Rep. Prog. Phys. 49(12), 1335 (1986)

    CrossRef  Google Scholar 

  2. Whatmore, R.W., Watton, R.: Pyroelectric materials and devices. In: Capper, P., Elliott, C.T. (eds.) Infrared Detectors and Emitters: Materials and Devices, pp. 99–148. Kluwer Academic Publishers, The Netherlands (1998)

    Google Scholar 

  3. Evans, R.C.: An Introduction to Crystal Chemistry. Cambridge University Press, Cambridge (1964)

    Google Scholar 

  4. Whatmore, R.W.: Ferroelectric Materials. In: Kasap, S., Capper, P., (eds.) Handbook of Electronic and Photonic Materials, pp 597–623. Springer, Heidelberg (2006)

    Google Scholar 

  5. Nye, J.F.: Physical properties of crystals: their representation by tensors and matrices. In: Oxford Science Publications. Clarendon Press, Oxford (1985)

    Google Scholar 

  6. Pontes, W., de Carvalho, A.A., Sakamoto, W.K., de Paula, M.H., Sanches, M.A.A., de Freitas, R.L.B., César, R.B.P., Piubéli, S.L.: PZT for measuring energy fluence rate of x-ray used in superficial cancer therapy. Instrum. Sci. Technol. 38(3), 210–219 (2010)

    Google Scholar 

  7. Lee, T.M., Anderson, A.P., Benson, F.A.: Microwave field-detecting element based on pyroelectric effect in PVDF. Electron. Lett. 22(4), 200–202 (1986)

    CrossRef  Google Scholar 

  8. Kruse, P.W.: Uncooled IR focal plane arrays. In: SPIE’s 1995 International Symposium on Optical Science, Engineering, and Instrumentation, vol. 2552, pp. 556–563 (1995)

    Google Scholar 

  9. Nelms, N., Dowson, J.: Goldblack coating for thermal infrared detectors. Sens. Actuators, A 120(2), 403–407 (2005)

    Google Scholar 

  10. Lang, W., Kühl, K., Sandmaier, H.: Absorbing layers for thermal infrared detectors. Sens. Actuators, A 34(3), 243–248 (1992)

    CrossRef  Google Scholar 

  11. Parsons, A.D.: Thin-film infrared absorber structures for advanced thermal detectors. J. Vac. Sci. Technol. A: Vac. Surf. Films 6(3), 1686 (1988)

    Google Scholar 

  12. Lehman, J.H., Engtrakul, C., Gennett, T., Dillon, A.C.: Single-wall carbon nanotube coating on a pyroelectric detector. Appl. Opt. 44(4), 483–488 (2005)

    CrossRef  Google Scholar 

  13. Yun, M., Bock, J., Leduc, H., Day, P., Kim, M.J.: Fabrication of antenna-coupled transition edge polarization-sensitive bolometer arrays. Nucl. Instrum. Methods Phys. Res. Sect. A 520(1–3), 487–489 (2004)

    Google Scholar 

  14. Auston, D.H., Glass, A.M.: Optical generation of intense picosecond electrical pulses. Appl. Phys. Lett. 20(10), 398 (1972)

    CrossRef  Google Scholar 

  15. Blackmore, V., Doucas, G., Perry, C., Ottewell, B., Kimmitt, M., Woods, M., Molloy, S., Arnold, R.: First measurements of the longitudinal bunch profile of a 28.5 GeV beam using coherent Smith-Purcell radiation. Phys. Rev. Spec. Top. Accel. Beams 12(3), 032803 (2009)

    Google Scholar 

  16. Porter, S.G., Watton, R., and McEwan, R.K.: Ferroelectric arrays: the route to low-cost uncooled infrared imaging. Proc. SPIE Infrared Technology XXI 2552, 573 (1995)

    Google Scholar 

  17. Putley E.H.: Temperature Noise in Pyroelectric Detectors. Infrared Phys 18(4), 373 (1978)

    Google Scholar 

  18. Putley, E.H.: A method for evaluating the performance of pyroelectric detectors. Infrared Phys. 20(3), 139–147 (1980)

    CrossRef  Google Scholar 

  19. Chang, H.H.S., Whatmore, R.W., Huang, Z.: Pyroelectric effect enhancement in laminate composites under short circuit condition. J. Appl. Phys. 106(11), 114110 (2009)

    CrossRef  Google Scholar 

  20. Muralt, P.: Micromachined infrared detectors based on pyroelectric thin films. Rep. Prog. Phys. 64(10), 1339 (2001)

    CrossRef  Google Scholar 

  21. Shorrocks, N.M., Whatmore, R.W., Robinson, M.K., Porter, S.G.: Low microphony pyroelectric arrays. Proc. SPIE (1985) 588, 44–51 (1986)

    Google Scholar 

  22. Bell, A.J., Whatmore, R.W.: Electrical conductivity in uranium doped, modified lead zirconate pyroelectric ceramics. Ferroelectrics 37(1), 543–546 (1981)

    CrossRef  Google Scholar 

  23. Whatmore, R.W.: High performance, conducting pyroelectric ceramics. Ferroelectrics 49(1), 201–210 (1983)

    CrossRef  Google Scholar 

  24. Stringfellow, S.B., Gupta, S., Shaw, C., Alcock, J.R., Whatmore, R.W.: Electrical conductivity control in uranium-doped PbZrO3-PbTiO3-Pb(Mg1/3Nb2/3)O3 pyroelectric ceramics. J. Eur. Ceram. Soc. 22(4), 573–578 (2002)

    CrossRef  Google Scholar 

  25. Whatmore, R.W., Bell, A.J.: Pyroelectric ceramics in the lead zirconate-lead titanate-lead iron niobate system. Ferroelectrics 35(1), 155–160 (1981)

    CrossRef  Google Scholar 

  26. Herbert, J.M.: Ferroelectric transducers and sensors. In: Electrocomponent Science Monographs. Gordon and Breach Science Publishers, New York (1982)

    Google Scholar 

  27. Kumar, A., Periman, M.M.: Simultaneous stretching and corona poling of PVDF and P(VDF-TriFE) films II. J. Phys. D. Appl. Phys. 26(3), 469 (1993)

    CrossRef  Google Scholar 

  28. Marshall, J.M., Zhang, Q., Whatmore, R.W.: Corona poling of highly (001)/(100)-oriented lead zirconate titanate thin films. Thin Solid Films 516(15), 4679–4684 (2008)

    Google Scholar 

  29. Lang, S.B., Steckel, F.: Method for the measurement of the pyroelectric coefficient, dc dielectric constant, and volume resistivity of a polar material. Rev. Sci. Instrum. 36(7), 929 (1965)

    CrossRef  Google Scholar 

  30. Glass, A.M.: Investigation of the electrical properties of sr1xbaxnb2o6 with special reference to pyroelectric detection. J. Appl. Phys. 40(12), 4699 (1969)

    CrossRef  Google Scholar 

  31. Byer, R.L., Roundy, C.B.: Pyroelectric coefficient direct measurement technique and application to a nsec response time detector. Ferroelectrics 3(1), 333–338 (1972)

    CrossRef  Google Scholar 

  32. Whatmore, R.W., Molter, O., Shaw, C.P.: Electrical properties of Sb and Cr-doped PbZrO3–PbTiO3–PbMg1/3Nb2/3O3 ceramics. J. Eur. Ceram. Soc. 23(5), 721–728 (2003)

    CrossRef  Google Scholar 

  33. Molter, O.: Development of new pyroelectric ceramics for thermal imaging applications/Olivier Molter. Dissertation, Ph.D. thesis (M.Sc.), School of Industrial and Manufacturing Science, Advanced Materials, Cranfield University (2001)

    Google Scholar 

  34. Whatmore, R.W., Molter, O., Shaw, C.: Electrical properties of Sb and Cr-doped PbZrO3–PbTiO3–PbMg1/3Nb2/3O3 ceramics. J. Eur. Ceram. Soc. 23(5), 721–728 (2003)

    CrossRef  Google Scholar 

  35. Sharp, E.J., Garn, L.E.: Use of low-frequency sinusoidal temperature waves to separate pyroelectric currents from nonpyroelectric currents. part ii: experiment. J. Appl. Phys. 53(12), 8980 (1982)

    CrossRef  Google Scholar 

  36. Garn, L.E., Sharp, E.J.: Use of low-frequency sinusoidal temperature waves to separate pyroelectric currents from nonpyroelectric currents. part i: theory. J. Appl. Phys. 53(12), 8974 (1982)

    CrossRef  Google Scholar 

  37. Chynoweth, A.G.: Dynamic method for measuring the pyroelectric effect with special reference to barium titanate. J. Appl. Phys. 27(1), 78 (1956)

    CrossRef  Google Scholar 

  38. Shaulov, A.: Improved figure of merit in obliquely cut pyroelectric crystals. Appl. Phys. Lett. 39(2), 180 (1981)

    CrossRef  Google Scholar 

  39. Lang, S.B.: Laser intensity modulation method: a technique for determination of spatial distributions of polarization and space charge in ferroelectric materials. Ferroelectrics 78(1), 129–136 (1988)

    CrossRef  Google Scholar 

  40. Lang, S.: Technique for the measurement of thermal diffusivity based on the laser intensity modulation method (LIMM). Ferroelectrics 93(1), 87–93 (1989)

    CrossRef  Google Scholar 

  41. Stewart, M., Cain, M.G.: Spatial characterization of piezoelectric materials using the scanning laser intensity modulation method (LIMM). J. Am. Ceram. Soc. 91(7), 2176–2181 (2008)

    Google Scholar 

  42. Parker, W.J., Jenkins, R.J., Butler, C.P., Abbott, G.L.: Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. J. Appl. Phys. 32(9), 1679 (1961)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Whatmore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 © Queen's Printer and Controller of HMSO

About this chapter

Cite this chapter

Whatmore, R. (2014). Characterisation of Pyroelectric Materials. In: Cain, M. (eds) Characterisation of Ferroelectric Bulk Materials and Thin Films. Springer Series in Measurement Science and Technology, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9311-1_4

Download citation