Whatmore, R.W.: Pyroelectric devices and materials. Rep. Prog. Phys. 49(12), 1335 (1986)
CrossRef
Google Scholar
Whatmore, R.W., Watton, R.: Pyroelectric materials and devices. In: Capper, P., Elliott, C.T. (eds.) Infrared Detectors and Emitters: Materials and Devices, pp. 99–148. Kluwer Academic Publishers, The Netherlands (1998)
Google Scholar
Evans, R.C.: An Introduction to Crystal Chemistry. Cambridge University Press, Cambridge (1964)
Google Scholar
Whatmore, R.W.: Ferroelectric Materials. In: Kasap, S., Capper, P., (eds.) Handbook of Electronic and Photonic Materials, pp 597–623. Springer, Heidelberg (2006)
Google Scholar
Nye, J.F.: Physical properties of crystals: their representation by tensors and matrices. In: Oxford Science Publications. Clarendon Press, Oxford (1985)
Google Scholar
Pontes, W., de Carvalho, A.A., Sakamoto, W.K., de Paula, M.H., Sanches, M.A.A., de Freitas, R.L.B., César, R.B.P., Piubéli, S.L.: PZT for measuring energy fluence rate of x-ray used in superficial cancer therapy. Instrum. Sci. Technol. 38(3), 210–219 (2010)
Google Scholar
Lee, T.M., Anderson, A.P., Benson, F.A.: Microwave field-detecting element based on pyroelectric effect in PVDF. Electron. Lett. 22(4), 200–202 (1986)
CrossRef
Google Scholar
Kruse, P.W.: Uncooled IR focal plane arrays. In: SPIE’s 1995 International Symposium on Optical Science, Engineering, and Instrumentation, vol. 2552, pp. 556–563 (1995)
Google Scholar
Nelms, N., Dowson, J.: Goldblack coating for thermal infrared detectors. Sens. Actuators, A 120(2), 403–407 (2005)
Google Scholar
Lang, W., Kühl, K., Sandmaier, H.: Absorbing layers for thermal infrared detectors. Sens. Actuators, A 34(3), 243–248 (1992)
CrossRef
Google Scholar
Parsons, A.D.: Thin-film infrared absorber structures for advanced thermal detectors. J. Vac. Sci. Technol. A: Vac. Surf. Films 6(3), 1686 (1988)
Google Scholar
Lehman, J.H., Engtrakul, C., Gennett, T., Dillon, A.C.: Single-wall carbon nanotube coating on a pyroelectric detector. Appl. Opt. 44(4), 483–488 (2005)
CrossRef
Google Scholar
Yun, M., Bock, J., Leduc, H., Day, P., Kim, M.J.: Fabrication of antenna-coupled transition edge polarization-sensitive bolometer arrays. Nucl. Instrum. Methods Phys. Res. Sect. A 520(1–3), 487–489 (2004)
Google Scholar
Auston, D.H., Glass, A.M.: Optical generation of intense picosecond electrical pulses. Appl. Phys. Lett. 20(10), 398 (1972)
CrossRef
Google Scholar
Blackmore, V., Doucas, G., Perry, C., Ottewell, B., Kimmitt, M., Woods, M., Molloy, S., Arnold, R.: First measurements of the longitudinal bunch profile of a 28.5 GeV beam using coherent Smith-Purcell radiation. Phys. Rev. Spec. Top. Accel. Beams 12(3), 032803 (2009)
Google Scholar
Porter, S.G., Watton, R., and McEwan, R.K.: Ferroelectric arrays: the route to low-cost uncooled infrared imaging. Proc. SPIE Infrared Technology XXI 2552, 573 (1995)
Google Scholar
Putley E.H.: Temperature Noise in Pyroelectric Detectors. Infrared Phys 18(4), 373 (1978)
Google Scholar
Putley, E.H.: A method for evaluating the performance of pyroelectric detectors. Infrared Phys. 20(3), 139–147 (1980)
CrossRef
Google Scholar
Chang, H.H.S., Whatmore, R.W., Huang, Z.: Pyroelectric effect enhancement in laminate composites under short circuit condition. J. Appl. Phys. 106(11), 114110 (2009)
CrossRef
Google Scholar
Muralt, P.: Micromachined infrared detectors based on pyroelectric thin films. Rep. Prog. Phys. 64(10), 1339 (2001)
CrossRef
Google Scholar
Shorrocks, N.M., Whatmore, R.W., Robinson, M.K., Porter, S.G.: Low microphony pyroelectric arrays. Proc. SPIE (1985) 588, 44–51 (1986)
Google Scholar
Bell, A.J., Whatmore, R.W.: Electrical conductivity in uranium doped, modified lead zirconate pyroelectric ceramics. Ferroelectrics 37(1), 543–546 (1981)
CrossRef
Google Scholar
Whatmore, R.W.: High performance, conducting pyroelectric ceramics. Ferroelectrics 49(1), 201–210 (1983)
CrossRef
Google Scholar
Stringfellow, S.B., Gupta, S., Shaw, C., Alcock, J.R., Whatmore, R.W.: Electrical conductivity control in uranium-doped PbZrO3-PbTiO3-Pb(Mg1/3Nb2/3)O3 pyroelectric ceramics. J. Eur. Ceram. Soc. 22(4), 573–578 (2002)
CrossRef
Google Scholar
Whatmore, R.W., Bell, A.J.: Pyroelectric ceramics in the lead zirconate-lead titanate-lead iron niobate system. Ferroelectrics 35(1), 155–160 (1981)
CrossRef
Google Scholar
Herbert, J.M.: Ferroelectric transducers and sensors. In: Electrocomponent Science Monographs. Gordon and Breach Science Publishers, New York (1982)
Google Scholar
Kumar, A., Periman, M.M.: Simultaneous stretching and corona poling of PVDF and P(VDF-TriFE) films II. J. Phys. D. Appl. Phys. 26(3), 469 (1993)
CrossRef
Google Scholar
Marshall, J.M., Zhang, Q., Whatmore, R.W.: Corona poling of highly (001)/(100)-oriented lead zirconate titanate thin films. Thin Solid Films 516(15), 4679–4684 (2008)
Google Scholar
Lang, S.B., Steckel, F.: Method for the measurement of the pyroelectric coefficient, dc dielectric constant, and volume resistivity of a polar material. Rev. Sci. Instrum. 36(7), 929 (1965)
CrossRef
Google Scholar
Glass, A.M.: Investigation of the electrical properties of sr1xbaxnb2o6 with special reference to pyroelectric detection. J. Appl. Phys. 40(12), 4699 (1969)
CrossRef
Google Scholar
Byer, R.L., Roundy, C.B.: Pyroelectric coefficient direct measurement technique and application to a nsec response time detector. Ferroelectrics 3(1), 333–338 (1972)
CrossRef
Google Scholar
Whatmore, R.W., Molter, O., Shaw, C.P.: Electrical properties of Sb and Cr-doped PbZrO3–PbTiO3–PbMg1/3Nb2/3O3 ceramics. J. Eur. Ceram. Soc. 23(5), 721–728 (2003)
CrossRef
Google Scholar
Molter, O.: Development of new pyroelectric ceramics for thermal imaging applications/Olivier Molter. Dissertation, Ph.D. thesis (M.Sc.), School of Industrial and Manufacturing Science, Advanced Materials, Cranfield University (2001)
Google Scholar
Whatmore, R.W., Molter, O., Shaw, C.: Electrical properties of Sb and Cr-doped PbZrO3–PbTiO3–PbMg1/3Nb2/3O3 ceramics. J. Eur. Ceram. Soc. 23(5), 721–728 (2003)
CrossRef
Google Scholar
Sharp, E.J., Garn, L.E.: Use of low-frequency sinusoidal temperature waves to separate pyroelectric currents from nonpyroelectric currents. part ii: experiment. J. Appl. Phys. 53(12), 8980 (1982)
CrossRef
Google Scholar
Garn, L.E., Sharp, E.J.: Use of low-frequency sinusoidal temperature waves to separate pyroelectric currents from nonpyroelectric currents. part i: theory. J. Appl. Phys. 53(12), 8974 (1982)
CrossRef
Google Scholar
Chynoweth, A.G.: Dynamic method for measuring the pyroelectric effect with special reference to barium titanate. J. Appl. Phys. 27(1), 78 (1956)
CrossRef
Google Scholar
Shaulov, A.: Improved figure of merit in obliquely cut pyroelectric crystals. Appl. Phys. Lett. 39(2), 180 (1981)
CrossRef
Google Scholar
Lang, S.B.: Laser intensity modulation method: a technique for determination of spatial distributions of polarization and space charge in ferroelectric materials. Ferroelectrics 78(1), 129–136 (1988)
CrossRef
Google Scholar
Lang, S.: Technique for the measurement of thermal diffusivity based on the laser intensity modulation method (LIMM). Ferroelectrics 93(1), 87–93 (1989)
CrossRef
Google Scholar
Stewart, M., Cain, M.G.: Spatial characterization of piezoelectric materials using the scanning laser intensity modulation method (LIMM). J. Am. Ceram. Soc. 91(7), 2176–2181 (2008)
Google Scholar
Parker, W.J., Jenkins, R.J., Butler, C.P., Abbott, G.L.: Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. J. Appl. Phys. 32(9), 1679 (1961)
CrossRef
Google Scholar