Skip to main content

Environmental Factors Affecting Phagocytosis of Dying Cells:Smoking and Static Magnetic Fields

  • Chapter
Phagocytosis of Dying Cells: From Molecular Mechanisms to Human Diseases

Abstract

Cell surface modifications are fundamental for the correct and fast removal of apoptotic cells. These changes include the appearance of tethering molecules on the surface of apoptotic cells, the externalization of PS, oxidation of phospholipids and qualitative and quantitative changes in surface sugars and ICAM-3. Phagocytes, both professional and non-professional, use specific receptors that bind to the apoptotic cells either directly or through bridging molecules. In non-pathological conditions, apoptotic cells are normally cleared via an anti-inflammatory pathway. In contrast, the uptake and removal of necrotic cells normally involves inflammation and an immune response. Besides the “eat me” signals on the dying cells, phagocytes can also recognize “leave-me-alone” signals on healthy cells. The correct repertoire of molecules exposed on the cell surfaces prevents the engulfment of living undamaged cells. Thus, any factors influencing cell surface molecule expression on both phagocytes and/or apoptotic cells can in turn affect recognition of living and/or apoptotic cells. One such factor is cigarette smoke, which contains highly reactive carbonyls, which can modify proteins that directly or indirectly affect cellular functions. Moreover cigarette smoke is a major etiological factor in the development of COPD, in which apoptosis and defective PACs play a fundamental role. Another environmental factor that may interfere with the normal correct exposure of molecules on cell surfaces is exposure to (S)MFs. Despite the multiplicity of experimental conditions (i.e. in vitro or in vivo models, intensity and type of field, time of exposure, metabolic state of the cells, etc), converging data indicate that the primary site of action of (S)MFs and (E)MFs is the plasma membrane: i.e. they affect the electrochemical balance of the membrane, the distribution of membrane proteins and membrane receptors, cell-cell and cell-matrix junctions, sugar residues on cell membranes and trans-membrane fluxes of various ions, especially calcium. The effects of cigarette smoke and SMF exposure on the phagocytosis of apoptotic cells will be discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbro L, Lanubile R, Dini L (2004) Liver recognition of young and aged lymphocytes exposed to magnetic pollution. Recent Res Dev Cell Sci 1:83–97

    Google Scholar 

  • Alberti I, Bernard G, Rouquette-Jazdanian AK et al (2002) CD99 isoforms expression dictates T cell functional outcomes. FASEB J 16:1946–1948

    PubMed  Google Scholar 

  • Albertini MC, Accorsi A, Citterio B et al (2003) Morphological and biochemical modifications induced by a static magnetic field on Fusarium culmorum. Biochimie 85:963–970

    Article  PubMed  CAS  Google Scholar 

  • Amara S, Douki T, Ravanat JL et al (2007) Influence of a static magnetic field (250 mT) on the antioxidant response and DNA integrity in THP1 cells. Phys Med Biol 52:889–898

    Article  PubMed  CAS  Google Scholar 

  • Anderson RGW (1993) Caveolae: where incoming and outgoing messengers meet. Proc Natl Acad Sci USA 90:10909–10913

    Article  PubMed  CAS  Google Scholar 

  • Arabi M (2004) Nicotinic infertility: assessing DNA and plasma membrane integrity of human spermatozoa. Andrologia 36:305–310

    Article  PubMed  CAS  Google Scholar 

  • Argentin G, Cicchetti R (2004) Genotoxic and anti-apoptotic effect of nicotine on human gingival fibroblasts. Toxicol Sci 79:75–81

    Article  PubMed  CAS  Google Scholar 

  • Arur S, Uche UE, Rezaul K et al (2003) Annexin I is an endogenous ligand that mediates apoptotic cell engulfment. Dev Cell 4:587–598

    Article  PubMed  CAS  Google Scholar 

  • Baehrecke EH (2002) How death shapes life during development. Nat Rev Mol Cell Biol 3:779–787

    Article  PubMed  CAS  Google Scholar 

  • Barnes P (2000) Mechanisms in COPD: differences from asthma. Chest 117:10S–14S

    Article  PubMed  CAS  Google Scholar 

  • Beischer DE (1971) The null magnetic field as reference for the study of geomagnetic directional effects in animals and man. Ann N Y Acad Sci 188:324–330

    Article  PubMed  CAS  Google Scholar 

  • Belyaev IYa, Alipov YD, Harms-Ringdahl M (1997) Effects of zero magnetic fieldon the conformation of chromatin in human cells. Biochim Biophys Acta 1336:465–473

    PubMed  CAS  Google Scholar 

  • Bernard G, Breittmayer JP, de Matteis M et al (1997) Apoptosis of immature thymocytes mediated by E2/CD99. J Immunol 158:2543–2550

    PubMed  CAS  Google Scholar 

  • Bersani F, Marinelli F, Ognibene A et al (1997) Intramembrane protein distribution in cell cultures is affected by 50 Hz pulsed magnetic fields. Bioelectromagnetics 18:463–469

    Article  PubMed  CAS  Google Scholar 

  • Bian X, Hughes FM Jr, Huang Y et al (1997) Roles of cytoplasmic Ca2+ and intracellular Ca2+stores in induction and suppression of apoptosis in S49 cells. Am J Physiol 272; C1241–1249

    Google Scholar 

  • Bordiushkov IuN, Goroshinskaia IA, Frantsiiants EM et al (2000) Structural-functional changes in lymphocyte and erythrocyte membranes after exposure to alternating magnetic field. Vop Med Khim 46:72–80

    Google Scholar 

  • Botto M, Dell’Agnola C, Bygrave AE et al (1998) Homozygous C1q deficiency causes glomerulonephritis associated with multiple apoptotic bodies. Nat Genet 19:56–59

    Article  PubMed  CAS  Google Scholar 

  • Brown D, Rose J (1992) Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68:533–544

    Article  PubMed  CAS  Google Scholar 

  • Buemi M, Marino D, Di Pasquale G et al (2001) Cell proliferation/cell death balance in renal cell cultures after exposure to a static magnetic field. Nephron 87:269–273

    Article  PubMed  CAS  Google Scholar 

  • Cambay A, Feldstein AE, Higuchi H et al (2003) Kupffer cell engulfment of apoptotic bodies stimulates death ligand and cytokine expression. Hepatology 38:1188–1198

    Article  CAS  Google Scholar 

  • Capko D, Zhuravkov A, Davies RJ (1996) Transepithelial depolarisation in breast cancer. Breast Cancer Res 41:230

    Google Scholar 

  • Cappelli G, Volpe P, Sanduzzi A et al (2001) Human macrophage gamma interferon decreases gene expression but not replication of Mycobacterium tuberculosis: analysis of the host-pathogen reciprocal influence on transcription in a comparison of strains H37Rv and CMT97. Infect Immun 69:7262–7270

    Article  PubMed  CAS  Google Scholar 

  • Casey PJ (1995) Protein lipidation in cell signalling. Science 268:221–225

    Article  PubMed  CAS  Google Scholar 

  • Cavopol AV, Wamil AW, Holcomb RR et al (1995) Measurement and analysis of static magnetic fields that block action potentials in cultured neurons. Bioelectromagnetics 16:197–206

    Article  PubMed  CAS  Google Scholar 

  • Chionna A, Dwikat M, Panzarini E et al (2003a) Cell shape and plasma membrane alterations after static magnetic fields exposure. Eur J Histochem 47:299–308

    CAS  Google Scholar 

  • Chionna A, Panzarini E, Pagliara P et al (2003b) Hepatic clearance of apoptotic lymphocytes: simply removal of waste cells? Eur J Histochem 47:97–104

    CAS  Google Scholar 

  • Chionna A, Tenuzzo B, Panzarini E et al (2005) Time dependent modifications of Hep G2 cells during exposure to static magnetic fields. Bioelectromagnetics 26:275–286

    Article  PubMed  CAS  Google Scholar 

  • Cooke JP, Bitterman H (2004) Nicotine and angiogenesis: A new paradigm for tobacco-related diseases. Ann Med 36:33–40

    Article  PubMed  CAS  Google Scholar 

  • Crispe IN, Dao T, Klugewitz K et al (2000) The liver as a site of T-cell apoptosis: graveyard, or killing field? Immunol Rev 174:47–62

    Article  PubMed  CAS  Google Scholar 

  • Cutolo M, Carruba G, Villaggio B et al (2001) Phorbol diester 12-O-tetradecanoylphorbol 13-acetate (TPA) up-regulates the expression of estrogen receptors in human THP-1 leukemia cells. J Cell Biochem 83:390–400

    Article  PubMed  CAS  Google Scholar 

  • Dajas-Bailador F, Wonnacott S (2004) Nicotinic acetylcholine receptors and the regulation of neuronal signalling. Trends Pharmacol Sci 25:317–324

    Article  PubMed  CAS  Google Scholar 

  • De Mattei M, Gagliano N, Moscheni C et al (2005) Changes in polyamines, c-myc and c-fos gene expression in osteoblast-like cells exposed to pulsed electromagnetic fields. Bioelectromagnetics 26:207–214

    Article  PubMed  CAS  Google Scholar 

  • deAlmeida CJ, Linden R (2005) Phagocytosis of apoptotic cells: a matter of balance. Cell Mol Life Sci 62:1532–1546

    Article  CAS  Google Scholar 

  • deBakker CD, Haney LB, Kinchen JM et al (2004) Phagocytosis of apoptotic cells is regulated by a UNC-73/TRIO-MIG-2/RhoG signaling module and armadillo repeats of CED-12/ELMO. Curr Biol 14:2208–2216

    Article  PubMed  CAS  Google Scholar 

  • Ding GR, Yaguchi H, Yoshida M et al (2000) Increase in X-ray-induced mutations by exposure to magnetic field (60 Hz, 5 mT) in NF-κB-inhibited cells. Biochem Biophys Res Commun 276:238–243

    Article  PubMed  CAS  Google Scholar 

  • Dini L (2005) Phagocyte and apoptotic cell interplay. In: Scovassi AI (ed) Apoptosis, 2005. Research Signpost, Kerala, India pp 107–129

    Google Scholar 

  • Dini L (2006) Recognition and engulfment of the apoptotic cells: influence of the environment. In: Shultz LB (ed) Cell Apoptosis: regulation and enviromental factors. Nova Science Publishers, New York pp. 85–111

    Google Scholar 

  • Dini L, Abbro L (2005) Bioeffects of moderate-intensity static magnetic fields on cell cultures. Micron 36:195–217

    Article  PubMed  Google Scholar 

  • Dini L, Carlà EC (1998) Hepatic sinusoidal endothelium heterogeneity with respect to the recognition of apoptotic cells. Exp Cell Res 240:388–393

    Article  PubMed  CAS  Google Scholar 

  • Dini L, Falasca L, Lentini A et al (1993) Galactose-specific receptor modulation related to the onset of apoptosis in rat liver. Eur J Cell Biol 61:329–337

    PubMed  CAS  Google Scholar 

  • Dini L, Lentini A, Diez GD et al (1995) Phagocytosis of apoptotic bodies by liver endothelial cells. J Cell Sci 108:967–973

    PubMed  CAS  Google Scholar 

  • Dini L, Pagliara P, Carlà EC (2002) Phagocytosis of apoptotic cells by liver: a morphological study. Microsc Res Tech 57:530–540

    Article  PubMed  Google Scholar 

  • Dini L, Tenuzzo B, Vergallo C et al (2007) Static magnetic field exposure labels human lymphocytes as apoptotic cells. 75th Gordon Research Conferences. “Apoptotic cell recognition & clearance”. Bates College, Lewiston, Maine (ME)—USA

    Google Scholar 

  • Douglas IS, Diaz Del Valle F, Winn RA et al (2006) Beta-catenin in the fibroproliferative response to acute lung injury. Am J Resp Cell Mol 34:274–285

    Article  CAS  Google Scholar 

  • Duffield JS (2003) The inflammatory macrophage: a story of Jekyll and Hyde. Clin Sci (Lond) 104:27–38

    CAS  Google Scholar 

  • Ellis RE, Jacobson DM, Horvitz HR (1991) Genes required for the engulfment of cell corpses during programmed cell death in Caenorhabditis elegans. Genetics 129:79–94

    PubMed  CAS  Google Scholar 

  • Emoto K, Toyama-Sorimachi N, Karasuyama H et al (1997) Exposure of phosphatidylethanolamine on the surface of apoptotic cells. Exp Cell Res 232:430–434

    Article  PubMed  CAS  Google Scholar 

  • Erwig LP, Henson PM (2007) Immunological consequences of apoptotic cell phagocytosis. Am J Pathol 171:2–8

    Article  PubMed  CAS  Google Scholar 

  • Esterbauer H, Schaur RJ, Zollner H (1991) Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med 11:81–128

    Article  PubMed  CAS  Google Scholar 

  • Fadeel B (2003) Programmed cell clearance. Cell Mol Life Sci 60:2575–2585

    Article  PubMed  CAS  Google Scholar 

  • Fanelli C, Coppola S, Barone R et al (1999) Magnetic fields increase cell survival by inhibiting apoptosis via modulation of Ca2+ influx. FASEB J 13:95–102

    PubMed  CAS  Google Scholar 

  • Ferrara A, Bisetti A, Azzarà V (1996) The Rational basis of hyperreactivity of the integrated respiratory tract. Acta Otorhinolaryngol Ital 16:4–28

    PubMed  CAS  Google Scholar 

  • Feychting M (2005) Health effects of static magnetic fields - a review of the epidemiological evidence. Prog Biophys Mol Biol 87:241–246

    Article  PubMed  Google Scholar 

  • Finney-Hayward TK, Russell REK, Kon OM et al (2005) Decreased phagocytotic activity of monocyte-derived macrophages in patients with COPD. Proc Am Thorac Soc 2:A17

    Google Scholar 

  • Flipo D, Fournier M, Benquet C et al (1998) Increased apoptosis, changes in intracellular Ca2+, and functional alterations in lymphocytes and macrophages after in vitro exposure to static magnetic field. J Toxicol Environ Health A 54:63–76

    Article  PubMed  CAS  Google Scholar 

  • Gaipl US, Munoz LE, Grossmayer G et al (2007) Clearance deficiency and systemic lupus erythematosus (SLE). J Autoimmun 28:114–121

    Article  PubMed  Google Scholar 

  • Gartzke J, Lange K (2002) Cellular target of weak magnetic fields: ionic conduction along actin filaments of microvilli. Am J Physiol Cell Physiol 283:C1333–C1346

    PubMed  CAS  Google Scholar 

  • Ghibelli L, Cerella C, Cordisco S et al (2006) NMR exposure sensitizes tumor cells to apoptosis. Apoptosis 11:359–365

    Article  PubMed  CAS  Google Scholar 

  • Gmitrov J (2007) Geomagnetic field modulates artificial static magnetic field effect on arterial baroreflex and on microcirculation. Int J Biometeorol 51:335–344

    Article  PubMed  Google Scholar 

  • Goodman R, Wei LX, Bumann J et al (1992) Exposure of human cells to electromagnetic fields: effect of time and field strength on transcript levels. J Electro Magnetobiol 11:19–28

    Google Scholar 

  • Grimsley C, Ravichandran KS (2003) Cues for apoptotic cell engulfment: eat-me, don’t eat-me and come-get-me signals. Trends Cell Biol 13:648–656

    Article  PubMed  CAS  Google Scholar 

  • Gumienny TL, Hengartner MO (2001) How the worm removes corpses: the nematode C. elegans as a model system to study engulfment. Cell Death & Differ 8:564–568

    Article  CAS  Google Scholar 

  • Gupta S, Agrawal A, Agrawal S et al (2006) A paradox of immunodeficiency and inflammation in human aging: lessons learned from apoptosis. Immun Ageing 19:3–5

    Google Scholar 

  • Hamada SH, Witkus R, Griffith Jr R (1989) Cell surface changes during electromagnetic field exposure. Exp Cell Biol 57:1–10

    Article  PubMed  CAS  Google Scholar 

  • Haslett C (1999) Granulocyte apoptosis and its role in the resolution and control of lung inflammation. Am J Respir Crit Care Med 160:S5–11

    PubMed  CAS  Google Scholar 

  • Henson PM (2005) Engulfment: ingestion and migration with Rac, Rho and TRIO. Curr Biol 15: R29–R30

    Article  PubMed  CAS  Google Scholar 

  • Hirose H, Nakahara T, Zhang QM et al (2003) Static magnetic field with a strong magnetic field gradient (41.7 T/m) induces c-Jun expression in HL-60 cells. In Vitro Cell Dev Biol Anim 39:348–352

    Article  PubMed  CAS  Google Scholar 

  • Hodge S, Hodge G, Ahern J et al (2007) Smoking alters alveolar macrophage recognition and phagocytic ability: implications in chronic obstructive pulmonary disease. Am J Resp Cell Mol Biol 37:748–755

    Article  CAS  Google Scholar 

  • Hodge S, Hodge G, Brozyna S et al (2006) Azithromycin increases phagocytosis of apoptotic bronchial epithelial cells by alveolar macrophages. Eur Respir J 28:486–495

    Article  PubMed  CAS  Google Scholar 

  • Hodge S, Hodge G, Scicchitano R et al (2003) Alveolar macrophages from subjects with chronic obstructive pulmonary disease are deficient in their ability to phagocytose apoptotic airway epithelial cells. Immun Cell Biol 81:289–296

    Article  Google Scholar 

  • Hoffmann D, Hoffmann I (1997) The changing cigarette, 1950–,1995. J Toxicol Env Health 50:307–364

    Article  CAS  Google Scholar 

  • Hoffmann PR, Kench JA, Vondracek A et al (2005) Interaction between phosphatidylserine and the phosphatidylserine receptor inhibits immune responses in vivo. J Immunol 174:1393–1404

    PubMed  CAS  Google Scholar 

  • Hong FT (1995) Magnetic field effects on biomolecules, cells, and living organisms. Biosystems 36:187–229

    Article  PubMed  CAS  Google Scholar 

  • Ikehata M, Koana T, Suzuki Y et al (1999) Mutagenicity and co-mutagenicity of static magnetic fields detected by bacterial mutation assay. Mutat Res 427:147–156

    PubMed  CAS  Google Scholar 

  • Ishido M (2006) Apoptosis induced by environmental factors. In: Shultz LB (ed) Cell Apoptosis: regulation and enviromental factors. Nova Science Publishers, New York pp141–156

    Google Scholar 

  • Jehle AW, Gardai SJ, Li S et al (2006) ATP-binding cassette transporter A7 enhances phagocytosis of apoptotic cells and associated ERK signaling in macrophages. J Cell Biol 174:547–556

    Article  PubMed  CAS  Google Scholar 

  • Kai S, Ikonen E (1997) Functional rafts in cell membrane. Nature 387:569–572

    Article  CAS  Google Scholar 

  • Kim S, Chung EY, Ma X (2005) Immunological consequences of macrophage-mediated clearance of apoptotic cells. Cell Cycle 4:231–234

    PubMed  CAS  Google Scholar 

  • Kirkham PA, Spooner G, Ffoulkes-Jones C et al (2003) Cigarette smoke triggers macrophage adhesion and activation: role of lipid peroxidation products and scavenger receptor. Free Rad Biol Med 35:697–710

    Article  PubMed  CAS  Google Scholar 

  • Kirkham PA, Spooner G, Rahman I et al (2004) Macrophage phagocytosis of apoptotic neutrophils is compromised by matrix proteins modified by cigarette smoke and lipid peroxidation products. Biochem Biophys Res Commun 318:32–37

    Article  PubMed  CAS  Google Scholar 

  • Kleinsasser NH, Sassen AW, Semmler MP et al (2005) The tobacco alkaloid nicotine demonstrates genotoxicity in human tonsillar tissue and lymphocytes. Toxicol Sci 86:309–317

    Article  PubMed  CAS  Google Scholar 

  • Krammer PH (2000) CD95’s deadly mission in the immune system. Nature 407:789–795

    Article  PubMed  CAS  Google Scholar 

  • Krysko DV, Brouckaert G, Kalai M et al (2003) Mechanisms of internalization of apoptotic and necrotic L929 cells by a macrophage cell line studied by electron microscopy. J Morphol 258:336–345

    Article  PubMed  Google Scholar 

  • Krysko DV, Denecker G, Festjens N et al (2006) Macrophages use different internalization mechanisms to clear apoptotic and necrotic cells. Cell Death Diff 13:2011–2022

    Article  CAS  Google Scholar 

  • Kusumi A, Sako Y (1996) Cell surface organization by the membrane skeleton. Curr Opin Cell Biol 8:566–574

    Article  PubMed  CAS  Google Scholar 

  • Lange K (1999) Microvillar Ca2+ signaling: a new view of an old problem. J Cell Physiol 180:19–34

    Article  PubMed  CAS  Google Scholar 

  • Lange K (2000) Microvillar ion channels: cytoskeletal modulation of ion fluxes. J Theor Biol 206:561–884

    Article  PubMed  CAS  Google Scholar 

  • Lauber K, Blumenthal SG, Waibel M et al (2004) Clearance of apoptotic cells: getting rid of the corpses. Mol Cell 14:277–287

    Article  PubMed  CAS  Google Scholar 

  • Lenardo MJ (1997) The molecular regulation of lymphocyte apoptosis. Semin Immunol 9:1–5

    Article  PubMed  CAS  Google Scholar 

  • Liboff AR, Cherng S, Jenrow KA et al (2003) Calmodulin-dependent cyclic nucleotide phosphodiesterase activity is altered by 20 mT magnetostatic fields. Bioelectromagnetics 24:32–38

    Article  PubMed  CAS  Google Scholar 

  • Liburdy RP, Sloma TR, Sokolic R et al (1993) ELF magnetic fields, breast cancer, and melatonin: 50 Hz fields block melatonin’s oncostatic action on ER+ breast cancer cell proliferation. J Pineal Res 14:89–97

    Article  PubMed  CAS  Google Scholar 

  • Lisanti MP, Scherer PE, Tang ZL et al (1994) Caveolaer, caveolin and caveolin-rich membrane domains: a signalling hypothesis. Trends Cell Biol 4:231–235

    Article  PubMed  CAS  Google Scholar 

  • Lisi A, Pozzi D, Pasquali E et al (2000) Three dimensional (3D) analysis of the morphological changes induced by 50 Hz magnetic field exposure on human lymphoblastoid cells (Raji). Bioelectromagnetics 21:46–51

    Article  PubMed  CAS  Google Scholar 

  • Maderna P, Godson C (2003) Phagocytosis of apoptotic cells and the resolution of inflammation. Biochim Biophys Acta 1639:141–151

    PubMed  CAS  Google Scholar 

  • Magnelli L, Cinelli M, Turchetti A et al (1994) Apoptosis induction in 32D cells by IL-3 withdrawal is preceded by a drop in the intracellular calcium level. Biochem Biophys Res Commun 194:1394–1397

    Article  Google Scholar 

  • Mahoney JA, Rosen A (2005) Apoptosis and autoimmunity. Curr Opin Immunol 17:583–588

    Article  PubMed  CAS  Google Scholar 

  • Maio M, Del Vecchio L (1992) Expression and functional role of CD54/Intercellular Adhesion Molecule-1 (ICAM-1) on human blood cells. Leuk Lymphoma 8:23–33

    Article  PubMed  CAS  Google Scholar 

  • Marino AA, Iliev IG, Schwalke MA et al (1994) Association between cell membrane potential and breast cancer. Tumour Biol 15:82–89

    Article  PubMed  CAS  Google Scholar 

  • Massimi M, Devirgiliis LC, Kolb-Bachofen V et al (1995) Independent modulation of galactosespecific receptor expression in rat liver cells. Hepatology 22:1819–1828

    PubMed  CAS  Google Scholar 

  • Miyakoshi J (2005) Effects of static magnetic fields at the cellular level. Prog Biophys Mol Biol 87:213–223

    Article  PubMed  CAS  Google Scholar 

  • Morimoto K, Janssen WJ, Fessler MB et al (2006) Lovastatin enhances clearance of apoptotic cells (efferocytosis) with implications for chronic obstructive pulmonary disease. J Immunol 176:7657–7665

    PubMed  CAS  Google Scholar 

  • Morris CE, Homann U (2001) Cell surface area regulation and membrane tension. J Membr Biol 179:79–102

    PubMed  CAS  Google Scholar 

  • Nakahara T, Yaguchi H, Yoshida M et al (2002) Effects of exposure of CHO-K1 cells to a 10-T static magnetic field. Radiology 224:817–822

    Article  PubMed  Google Scholar 

  • Nuccitelli S, Cerella C, Cordisco S et al (2006) Hyperpolarization of plasma membrane of tumour cells sensitive to anti-apoptotic effects of magnetic fields. Ann N Y Acad Sci 1090:217–225

    Article  PubMed  CAS  Google Scholar 

  • Pagliara P, Chionna A, Panzarini E et al (2003) Lymphocytes apoptosis: young vs. aged and humans vs. rats. Tissue Cell 35:29–36

    Article  PubMed  CAS  Google Scholar 

  • Pagliara P, Lanubile R, Dwikat M et al (2005) Differentiation of monocytic U937 cells under static magnetic field exposure. Eur J Histochem 49:75–86

    PubMed  CAS  Google Scholar 

  • Paradisi S, Donelli G, Santini MT et al (1993) A 50-Hz magnetic field induces structural and biophysical changes in membranes. Bioelectromagnetics 14:247–255

    Article  PubMed  CAS  Google Scholar 

  • Park JW, Ryter SW, Choi AMK (2007) Functional significance of apoptosis in chronic obstructive pulmonary disease. COPD 4:347–353

    Article  PubMed  Google Scholar 

  • Parton RG, Simons K (1995) Digging into caveole. Science 269:1398–1399

    Article  PubMed  CAS  Google Scholar 

  • Papadimitraki ED, Bertsias GK, Boumpas DT (2007) Toll like receptors and autoimmunity: a critical appraisal. J Autoimmun 29:310–318

    PubMed  CAS  Google Scholar 

  • Pesci A, Balbi B, Majori M et al (1998) Inflammatory cells and mediators in bronchial lavage of patients with chronic obstructive pulmonary disease. Eur Respir J 12:380–386

    Article  PubMed  CAS  Google Scholar 

  • Petrovski G, Zahuczky G, Màjai G et al (2007) Phagocytosis of cells dying through autophagy evokes a pro-inflammatory response in macrophages. Autophagy 3: 509–511

    PubMed  CAS  Google Scholar 

  • Platt N, Suzuki H, Kurihara Y et al (1996) Role for the class A macrophage scavenger receptor in the phagocytosis of apoptotic thymocytes in vitro. Proc Natl Acad Sci USA 93:12456–12460

    Article  PubMed  CAS  Google Scholar 

  • Popov SV, Svitkina TM, Margolis LB et al (1991) Mechanism of cell protrudion formation in electrical field: the role of actin. Biochem Biophys Acta 1066:151–158

    Article  PubMed  CAS  Google Scholar 

  • Prieto A, Reyes E, Bernstein ED et al (2001) Defective natural killer and phagocytic activities in chronic obstructive pulmonary disease are restored by glycophosphopeptical (inmunoferon). Am J Respir Crit Care Med 163:1578–1583

    PubMed  CAS  Google Scholar 

  • Rathmell JC, Thompson CB (2002) Pathways of apoptosis in lymphocyte development, omeostasis, and disease. Cell 109:S97–S107

    Article  PubMed  CAS  Google Scholar 

  • Raucher D, Sheetz MP (1999) Characteristics of a membrane reservoir buffering membrane tension. Biophys J 77:1992–2002

    Article  PubMed  CAS  Google Scholar 

  • Raucher D, Sheetz MP (2000) Cell spreading and lamellipodial extension rate is regulated by membrane tension. J Cell Biol 148:127–136

    Article  PubMed  CAS  Google Scholar 

  • Reddien PW, Horvitz HR (2004) The engulfment process of programmed cell death in Caenorhabditis elegans. Annu Rev Cell Dev Biol 20:193–221

    Article  PubMed  CAS  Google Scholar 

  • Rieti S, Manni V, Lisi A et al (2004) SNOM and AFM microscopy techniques to study the effect of non-ionizing radiation on the morphological and biochemical properties of human keratinocytes cell line (HaCaT). J Micros 213:20–28

    Article  CAS  Google Scholar 

  • Rosen AD (1993) Membrane response to static magnetic fields: effect of exposure duration. Biochim Biophys Acta 1148:317–320

    Article  PubMed  CAS  Google Scholar 

  • Rosen AD (1996) Inhibition of calcium channel activation in GH3 cells by static magnetic fields. Biochim Biophys Acta 1282:149–155

    Article  PubMed  Google Scholar 

  • Rosen AD (2003a) Effect of a 125 mT static magnetic field on the kinetics of voltage activated Na+ channels in GH3 cells. Bioelectromagnetics 24:517–523

    Article  CAS  Google Scholar 

  • Rosen AD (2003b) Mechanism of action of moderate-intensity static magnetic fields on biological systems. Cell Biochem Biophys 39:163–173

    Article  CAS  Google Scholar 

  • Ruzittu M, Carlá EC, Montinari MR et al (1999) Modulation of cell surface expression of liver carbohydrate receptors during in vivo induction of apoptosis with lead nitrate. Cell Tissue Res 298:105–112

    Article  PubMed  CAS  Google Scholar 

  • Saetta M, Di Stefano A, Turato G et al (1998) CD8+ T-lymphocytes in peripheral airways of smokers with chronic bstructive pulmonary disease. Am J Respir Crit Care Med 157:822–826

    PubMed  CAS  Google Scholar 

  • Saffer JD, Phillips JL (1996) Evaluating the biological aspects of in vitro studies in bioelectromagnetics. Bioelectrochem. Bioenergetics 40:1–7

    CAS  Google Scholar 

  • Santoro N, Lisi A, Pozzi D et al (1997) Effect of extremely low frequency (ELF) magnetic field exposure on morphological and biophysical properties of human lymphoid cell line (Raji). Biochem Biophys Acta 1357:281–290

    Article  PubMed  CAS  Google Scholar 

  • Savill J, Dransfield I, Gregory C et al (2002) A blast from the past: clearance of apoptotic cells regulates immune responses. Nat Rev Immunol 2:965–975

    Article  PubMed  CAS  Google Scholar 

  • Schiffer IB, Schreiber WG, Graf R et al (2003) No influence of magnetic fields on cell cycle progression using conditions relevant for patients during MRI. Bioelectromagnetics 4:241–250

    Article  Google Scholar 

  • Schrijvers DM, De Meyer GRY, Kockx MM et al (2005) Phagocytosis of apoptotic cells by macrophages is impaired in atherosclerosis. Arterioscler Thromb Vasc Biol25:1256

    Article  PubMed  CAS  Google Scholar 

  • Schuller HM (1994) Carbon dioxide potentiates the mitogenic effects of nicotine and its carcinogenic derivative, NNK, in normal and neoplastic neuroendocrine lung cells via stimulation of autocrine and protein kinase C–dependent mitogenic pathways. Neurotoxicology 15:877–886

    PubMed  CAS  Google Scholar 

  • Scott RS, McMahon EJ, Pop SM et al (2001) Phagocytosis and clearance of apoptotic cells is mediated by MER. Nature 411:207– 211

    PubMed  Google Scholar 

  • Semm P, Schneider T, Vollrath L (1980) Effects of an Earth-strength magnetic field on electrical activity of pineal cells. Nature 288:607–608

    Article  PubMed  CAS  Google Scholar 

  • Shapiro SD (1999) The macrophage in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 160:S29–S32

    PubMed  CAS  Google Scholar 

  • Shin VY, Wu WK, Ye YN et al (2004) Nicotine promotes gastric tumor growth and neovascularization by activating extracellular signal-regulated kinase and cyclooxygenase-2. Carcinogenesis 25:2487–2495

    Article  PubMed  CAS  Google Scholar 

  • Schuller HM (1994) Carbon dioxide potentiates the mitogenic effects of nicotine and its carcinogenic derivative, NNK, in normal and neoplastic neuroendocrine lung cells via stimulation of autocrine and protein kinase C–dependent mitogenic pathways. Neurotoxicology 15:877–886

    PubMed  CAS  Google Scholar 

  • Silva AKA, Silva EL, Egito EST et al (2006) Safety concerns related to magnetic field exposure. Radiat Environ Biophys 45:245–252

    Article  PubMed  Google Scholar 

  • Simkó M, Droste S, Kriehuber R et al (2001) Stimulation of phagocytosis and free radical production in murine macrophages by 50 Hz electromagnetic fields. Eur J Cell Biol 80:562–566

    Article  PubMed  Google Scholar 

  • Smith CJ, Perfetti TA, Garg R et al (2003) IARC carcinogens reported in cigarette mainstream smoke and their calculated log P values. Food Chem Toxicol 41:807–817

    Article  PubMed  CAS  Google Scholar 

  • Somosy Z (2000) Radiation response of cell organelles. Micron 31:165–181

    Article  PubMed  CAS  Google Scholar 

  • Sonnier H, Kolomytkin O, Marino A (2003) Action potential from human neuroblastoma cells in magnetic fields. Neurosci Lett 337:163–166

    Article  PubMed  CAS  Google Scholar 

  • St Pierre TG, Dobson J (2000) Theoretical evaluation of cell membrane ion channel activation by applied magnetic fields. Eur Biophys J 29:455–456

    Article  PubMed  CAS  Google Scholar 

  • Steinman RM, Turley S, Mellman I et al (2000) The induction of tolerance by dendritic cells that have captured apoptotic cells. J Exp Med 191:411–416

    Article  PubMed  CAS  Google Scholar 

  • Stringer KA, Tobias M, O’Neill HC et al (2007) Cigarette smoke extract-induced suppression of caspase-3-like activity impairs human neutrophil phagocytosis. Am J Physiol Lung Cell Mol Physiol 292:L1572–1579

    Article  PubMed  CAS  Google Scholar 

  • Stuart LM, Ezekowitz RA (2005) Phagocytosis: elegant complexity. Immunity 22:539–550

    Article  PubMed  CAS  Google Scholar 

  • Sun EW, Shi YF (2001) Apoptosis: the quiet death silences the immune system. Pharmacol Ther 92:135–145

    Article  PubMed  CAS  Google Scholar 

  • Szabo G, Mandrekar P, Dolganiuc A (2007) Innate immune response and hepatic inflammation. Semin Liver Dis 27:339–350

    Article  PubMed  CAS  Google Scholar 

  • Taylor PR, Carugati A, Fadok VA et al (2000) A hierarchical role for classical pathway complement proteins in the clearance of apoptotic cells. J Exp Med 192:359–366

    Article  PubMed  CAS  Google Scholar 

  • Tenforde TS, Liburdy RP (1988) Magnetic deformation of phospholipid bilayers: Effects on lysosome shape and solute permeability at prephase transition temperatures. J Theor Biol 133:385–396

    Article  CAS  Google Scholar 

  • Tenuzzo B, Chionna A, Panzarini E et al (2006) Biological effects of 6 mT static magnetic fields: a comparative study in different cell types. Bioelectromagnetics 27:560–577

    Article  PubMed  CAS  Google Scholar 

  • Teodori L, Göhde W, Valente MG et al (2002a) Static magnetic fields affect calcium fluxes and inhibit stress-induced apoptosis in human glioblastoma cells. Cytometry 49:143–149

    Article  CAS  Google Scholar 

  • Teodori L, Grabarek J, Smolewski P et al (2002b) Exposure of cells to static magnetic field accelerates loss of integrity of plasma membrane during apoptosis. Cytometry 49:113–118

    Article  Google Scholar 

  • Testorf MF, Oberg PA, Iwasaka M et al (2002) Melanophore aggregation in strong static magnetic fields. Bioelectromagnetics 23:444–449

    Article  PubMed  Google Scholar 

  • Tian F, Nakahara T, Yoshida M et al (2002) Exposure to power frequency magnetic fields suppresses X-ray-induced apoptosis transiently in Ku80-deficient xrs5 cells. Biochem Biophys Res Commun 292:355–361

    Article  PubMed  CAS  Google Scholar 

  • Tofani S, Barone D, Berardelli M et al (2003) Static and ELF magnetic fields enhance the in vivo anti-tumor efficacy of cis-platin against lewis lung carcinoma, but not of cyclophosphamide against B16 melanotic melanoma. Pharmacol Res 48:83–90

    PubMed  CAS  Google Scholar 

  • Togo T, Krasieva TB, Steinhardt RA (2000) A decrease in membrane tension precedes successful cell-membrane repair. Mol Biol Cell 11:4339–4346

    PubMed  CAS  Google Scholar 

  • Van Meer G (1989) Lipid traffic in animal cells. Annu Rev Cell Biol 5:247–275

    Article  PubMed  Google Scholar 

  • Vandivier RW, Fadok VA, Hoffmann PR et al (2002) Elastase-mediated phosphatidylserine receptor cleavage impairs apoptotic cell clearance in cystic fibrosis and bronchiectasis. J Clin Invest 109:661–670

    PubMed  CAS  Google Scholar 

  • Vandivier RW, Henson PM, Douglas IS (2006) Burying the dead: the impact of failed apoptotic cell removal (efferocytosis) on chronic inflammatory lung disease. Chest 129:1673–1682

    Article  PubMed  Google Scholar 

  • Volpe P (2003) Interactions of zero-frequency and oscillating magnetic fields with biostructures and biosystems. Photochem Photobiol Sci 2:637–648

    Article  PubMed  CAS  Google Scholar 

  • Volpe P, Cappelli G, Mariani F et al (2002) Macrophage sensitivity to static magnetic fields. In: Kostarakis P, Demokritos Publishers (ed) Biological Effects of EMFs, vol I. Rhodes, pp 374–381

    Google Scholar 

  • Walleczek J, Liburdy RP (1990) Nonthermal 60-Hz sinusoidal magnetic field exposure enhances 45CaCC uptake in rat thymocytes: dependence on mitogen activation. FEBS Lett 271:157–160

    Article  PubMed  CAS  Google Scholar 

  • Ward C, Dransfield I, Chilvers ER et al (1999) Pharmacological manipulation of granulocyte apoptosis: potential therapeutic targerts. Trends Pharmacol Sci 20:503–509

    Article  PubMed  CAS  Google Scholar 

  • Wiskirchen J, Grönewäller EF, Heinzelmann F et al (2000) Human fetal lung fibroblasts: in vitro study of repetitive magnetic field exposure at 0.2, 1.0, and 1.5 T. Radiol 215:858–862

    CAS  Google Scholar 

  • Worcester DL (1978) Structural origins of diamagnetic anisotropy in proteins. Biophys J 75:5475–5477

    CAS  Google Scholar 

  • Zhang QM, Tokiwa M, Doi T et al (2003) Strong static magnetic field and the induction of mutations through elevated production of reactive oxygen species in E. coli soxR. Int J Radiat Biol 79:281–286

    Article  PubMed  CAS  Google Scholar 

  • Zhou Z, Hartwieg E, Horvitz HR (2001) CED-1 is a transmembrane receptor that mediates cell corpse engulfment in C. elegans. Cell 104:43–56

    Article  PubMed  CAS  Google Scholar 

  • Zmyslony M, Palus J, Jajte J et al (2000) DNA damage in rat lymphocytes treated in vitro with iron cations and exposed to 7 mT magnetic fields (static or 50 Hz). Mutat Res 453:89–96

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Dini, L., Vergallo, C. (2009). Environmental Factors Affecting Phagocytosis of Dying Cells:Smoking and Static Magnetic Fields. In: Krysko, D.V., Vandenabeele, P. (eds) Phagocytosis of Dying Cells: From Molecular Mechanisms to Human Diseases. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9293-0_15

Download citation

Publish with us

Policies and ethics