Advertisement

Short Gamma Ray Bursts: Marking the Birth of Black Holes from Coalescing Compact Binaries

  • Davide Lazzati
  • Rosalba Perna
Part of the Astrophysics and Space Science Library book series (ASSL, volume 359)

As soon as the catalog of gamma-ray bursts (GRBs) detected by the BATSE (Burst And Transient Source Experiment) had enough events to allow a statistical study, it was discovered that GRB light curves could be separated into two families [45]. Long GRBs are characterized by a duration of more than 2 seconds and a somewhat soft spectrum. Short GRBs, on the other hand, are characterized by a duration of less than 2 seconds and a harder spectrum.

Not much more could be said in the BATSE era, due to the lack of precise localizations and impossibility of long wavelength follow-up that plagued both the long and short GRB populations. With the launch of the Italian-Dutch satellite BeppoSAX, the situation for long GRBs changed dramatically. X-ray, optical and radio afterglows were discovered [16, 88, 83] to follow the prompt phase. Spectroscopy revealed that the GRBs lie at cosmological distances and that they involve explosion energies similar to core collapse supernovae [55, 46]. Evidence of beaming and association to massive stars emerged [73, 78] leading to the now widely accepted scenario of long GRBs as collimated relativistic outflows associated to Type Ib/c supernova explosions [80, 38]. Unfortunately BeppoSAX was non-optimally designed to detect short GRBs and none of the above information was available for the short bursts that remained elusive and mysterious. The only advance came from the discovery that short GRBs also have longer wavelength emission on longer timescale [47]. This discovery was however made on a stacked light curve from past events, and did not allow for any follow-up observation. A general consensus was reached in those years that short GRBs could be associated with the merger of compact binary systems [22], based on a theoretical desire more than on any robust evidence.

Keywords

Black Hole Accretion Disk Star Formation Rate Elliptical Galaxy Short Burst 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amati L., Della Valle M., Frontera F., Malesani D., Guidorzi C., Montanari E., Pian E., 2007, A&A, 463, 913CrossRefADSGoogle Scholar
  2. 2.
    Balbus, S. A. & Hawley, J. F. 1991, ApJ, 376, 214CrossRefADSGoogle Scholar
  3. 3.
    Band D., et al., 1993, ApJ, 413, 281CrossRefADSGoogle Scholar
  4. 4.
    Belczynski, C., Bulik, T, & Kalogera, V. 2002, ApJ, 571, 147CrossRefADSGoogle Scholar
  5. 5.
    Belczynski, K., Perna, R., Bulik, T., Kalogera, V., Ivanova, N. & Lamb, D. Q. 2006, ApJ, 648, 1116CrossRefADSGoogle Scholar
  6. 6.
    Berger E., et al., 2005, Nature, 438, 988CrossRefADSGoogle Scholar
  7. 7.
    Berger E., Shin M. S., Mulchaey J. S., Jeltema T. E., 2006, ApJ, 660, 496CrossRefADSGoogle Scholar
  8. 8.
    Bloom, S. J., Sigurdsson, S. & Pols, O. 1999, MNRAS, 305, 763CrossRefADSGoogle Scholar
  9. 9.
    Bloom J. S., et al., 2006, ApJ, 638, 354CrossRefADSGoogle Scholar
  10. 10.
    Brown, G. E. 1995, ApJ, 440, 270CrossRefADSGoogle Scholar
  11. 11.
    Burgay, M. et al. 2003, Nature, 426, 531CrossRefADSGoogle Scholar
  12. 12.
    Cameron P. B., et al., 2005, Nature, 434, 1112CrossRefADSGoogle Scholar
  13. 13.
    Campana S., et al., 2006, A&A, 454, 113CrossRefADSGoogle Scholar
  14. 14.
    Castro-Tirado A. J., et al., 2005, A&A, 439, L15CrossRefADSGoogle Scholar
  15. 15.
    Christensen L., Hjorth J., Gorosabel J., 2004, A&A, 425, 913CrossRefADSGoogle Scholar
  16. 16.
    Costa E., et al., 1997, Nature, 387, 783CrossRefADSGoogle Scholar
  17. 17.
    Covino S., et al., 2006, A&A, 447, L5CrossRefADSGoogle Scholar
  18. 18.
    Dai, Z. G., Wang, Z. Y., Wu, X. F., Zhang, B. 2006, Science, 311, 1127CrossRefADSGoogle Scholar
  19. 19.
    Davies, M. B., Benz, W., Piran, T., Thielemann, F. K., 1994, ApJ, 431, 742CrossRefADSGoogle Scholar
  20. 20.
    Della Valle M., et al., 2006, Nature, 444, 1050CrossRefADSGoogle Scholar
  21. 21.
    Di Matteo, T., Perna, R., & Narayan, R. 2002, ApJ, 579, 706CrossRefADSGoogle Scholar
  22. 22.
    Eichler, D., Livio, M., Piran, T., Schramm, D. N. 1989, Nature, 340, 126CrossRefADSGoogle Scholar
  23. 23.
    Fruchter A. S., et al., 2006, Nature, 441, 463CrossRefADSGoogle Scholar
  24. 24.
    Fox D. B., et al., 2005, Nature, 437, 845CrossRefADSGoogle Scholar
  25. 25.
    Fryer, C., Burrows, A. & Benz, W. 1998, ApJ, 496, 333CrossRefADSGoogle Scholar
  26. 26.
    Fryer, C., Woosley, S. E.& Hartmann, D. H. 1999, ApJ, 526, 152CrossRefADSGoogle Scholar
  27. 27.
    Fynbo J. P. U., et al., 2006, Nature, 444, 1047CrossRefADSGoogle Scholar
  28. 28.
    Gal-Yam A., et al., 2006, Nature, 444, 1053CrossRefADSGoogle Scholar
  29. 29.
    Gehrels N., et al., 2005, Nature, 437, 851CrossRefADSGoogle Scholar
  30. 30.
    Ghirlanda G., Ghisellini G., Celotti A., 2004, A&A, 422, L55CrossRefADSGoogle Scholar
  31. 31.
    Ghirlanda G., Ghisellini G., Lazzati D., 2004, ApJ, 616, 331CrossRefADSGoogle Scholar
  32. 32.
    Ghirlanda G., Magliocchetti M., Ghisellini G., Guzzo L., 2006, MNRAS, 368, L20ADSGoogle Scholar
  33. 33.
    Goodman, J. 1986, ApJ, 308, L47CrossRefADSGoogle Scholar
  34. 34.
    Goodman, J., Dar, A. & Nussmov, S. 1987, ApJ, 314, L7CrossRefADSGoogle Scholar
  35. 35.
    Gorosabel J., et al., 2006, A&A, 450, 87CrossRefADSGoogle Scholar
  36. 36.
    Grupe, D., et al., 2007, ApJ, 653, 462CrossRefADSGoogle Scholar
  37. 37.
    Haislip J. B., et al., 2006, Nature, 440, 181CrossRefADSGoogle Scholar
  38. 38.
    Hjorth J., et al., 2003, Nature, 423, 847CrossRefADSGoogle Scholar
  39. 39.
    Hjorth J., et al., 2005, Nature, 437, 859CrossRefADSGoogle Scholar
  40. 40.
    Hjorth J., et al., 2005, ApJ, 630, L117CrossRefADSGoogle Scholar
  41. 41.
    Hobbs, G., Lorimer, D. R., Lyne, A. G., Kramer, M. 2005, MNRAS, 360, 974CrossRefADSGoogle Scholar
  42. 42.
    Kalogera, V. et al. 1994, ApJ, 601, L179CrossRefADSGoogle Scholar
  43. 43.
    Kawai N., et al., 2006, Nature, 440, 184CrossRefADSGoogle Scholar
  44. 44.
    Kochanek, C. S. & Piran, T. 1993, ApJ, 417, L17CrossRefADSGoogle Scholar
  45. 45.
    Kouveliotou C., Meegan C. A., Fishman G. J., Bhat N. P., Briggs M. S., Koshut T. M., Paciesas W. S., Pendleton G. N., 1993, ApJ, 413, L101CrossRefADSGoogle Scholar
  46. 46.
    Kulkarni S. R., et al., 1999, Nature, 398, 389CrossRefADSGoogle Scholar
  47. 47.
    Lazzati D., Ramirez-Ruiz E., Ghisellini G., 2001, A&A, 379, L39CrossRefADSGoogle Scholar
  48. 48.
    Lazzati D., Begelman M. C., 2005, ApJ, 629, 903CrossRefADSGoogle Scholar
  49. 49.
    Lazzati D., Ghirlanda G., Ghisellini G., 2005, MNRAS, 362, L8ADSGoogle Scholar
  50. 50.
    Lazzati, D. & Perna, R. 2007, MNRAS, 375, L46ADSGoogle Scholar
  51. 51.
    Lyutikov, M. 2006, in AIP Conf. Proc. 838: Gamma-Ray Bursts in the Swift Era, ed. S. S. Holt, N. Gehrels and J. A. Nousek, 483Google Scholar
  52. 52.
    McKinney, J. C. & Gammie, C. F. 2004, ApJ, 611, 977CrossRefADSGoogle Scholar
  53. 53.
    Mereghetti S., Götz D., von Kienlin A., Rau A., Lichti G., Weidenspointner G., Jean P., 2005, ApJ, 624, L105CrossRefADSGoogle Scholar
  54. 54.
    Meszaros, P. & Rees, M.J. 1992, ApJ, 397, 570CrossRefADSGoogle Scholar
  55. 55.
    Metzger M. R., Djorgovski S. G., Kulkarni S. R., Steidel C. C., Adelberger K. L., Frail D. A., Costa E., Frontera F., 1997, Nature, 387, 878CrossRefADSGoogle Scholar
  56. 56.
    Mochkovitch, R., Hernanz, M., Isern, J., Loisean, S. 1995, A&A, 293, 803ADSGoogle Scholar
  57. 57.
    Nakar E., Piran T., 2002, MNRAS, 330, 920CrossRefADSGoogle Scholar
  58. 58.
    Nakar E., Gal-Yam A., Piran T., Fox D. B., 2006, ApJ, 640, 849CrossRefADSGoogle Scholar
  59. 59.
    Nakar E., 2007, Physics Reports (astro-ph/0701748)Google Scholar
  60. 60.
    Narayan, R., Kumar, P. & Piran, T. 2001, ApJ, 557, 949CrossRefADSGoogle Scholar
  61. 61.
    Narayan, R. Paczynski, B. & Piran, T. 1992, ApJ, 395, L83CrossRefADSGoogle Scholar
  62. 62.
    Norris J. P., Marani G. F., Bonnell J. T., 2000, ApJ, 534, 248CrossRefADSGoogle Scholar
  63. 63.
    Ofek, E., O., 2006, ApJ, 659, 339CrossRefADSGoogle Scholar
  64. 64.
    Paczynski, B. 1986, ApJ, 308, L43CrossRefADSGoogle Scholar
  65. 65.
    Palmer D. M., et al., 2005, Nature, 434, 1107CrossRefADSGoogle Scholar
  66. 66.
    Pedersen K., et al., 2005, ApJ, 634, L17CrossRefADSGoogle Scholar
  67. 67.
    Perna, R. & Belczynski, C. 2002, ApJ, 570, 252CrossRefADSGoogle Scholar
  68. 68.
    Perna, R., Armitage, P. J. & Zhang, B. 2006, ApJL, 636L, 29CrossRefADSGoogle Scholar
  69. 69.
    Piro, A. L. & Pfhal, E. 2006, ApJL, 658, 1173CrossRefADSGoogle Scholar
  70. 70.
    Popov S. B., Stern B. E., 2006, MNRAS, 365, 885CrossRefADSGoogle Scholar
  71. 71.
    Portegies Zwart, S., F. & Yungelson, L. R. 1998, A&A, 332, 173ADSGoogle Scholar
  72. 72.
    Proga, D. & Zhang, B. 2006, MNRAS, 370, L61ADSGoogle Scholar
  73. 73.
    Rhoads J. E., 1999, ApJ, 525, 737CrossRefADSGoogle Scholar
  74. 74.
    Rosswog, S. et al. 1999, A&A, 341, 499ADSGoogle Scholar
  75. 75.
    Rosswog, S. & Davies, M. B. 2002, MNRAS, 334, 481CrossRefADSGoogle Scholar
  76. 76.
    Ruffert, M. & Janka, H.-T. 1998, A&A, 338, 535ADSGoogle Scholar
  77. 77.
    Ruffert, M. & Janka, H.-T. 1999, A&A, 380, 544CrossRefADSGoogle Scholar
  78. 78.
    Sari R., Piran T., Halpern J. P., 1999, ApJ, 519, L17CrossRefADSGoogle Scholar
  79. 79.
    Soderberg A. M., et al., 2006, ApJ, 650, 261CrossRefADSGoogle Scholar
  80. 80.
    Stanek K. Z., et al., 2003, ApJ, 591, L17CrossRefADSGoogle Scholar
  81. 81.
    Tagliaferri G., et al., 2005, A&A, 443, L1CrossRefADSGoogle Scholar
  82. 82.
    Tanvir N. R., Chapman R., Levan A. J., Priddey R. S., 2005, Nature, 438, 991CrossRefADSGoogle Scholar
  83. 83.
    Taylor G. B., Frail D. A., Beasley A. J., Kulkarni S. R., 1997, Nature, 389, 263CrossRefADSGoogle Scholar
  84. 84.
    Terasawa T., et al., 2005, Nature, 434, 1110CrossRefADSGoogle Scholar
  85. 85.
    Thompson, C. 1994, MNRAS, 270, 480ADSGoogle Scholar
  86. 86.
    Tominaga N., Maeda K., Umeda H., Nomoto K., Tanaka M., Iwamoto N., Suzuki T., Mazzali P. A., 2007, ApJ, 657, L77CrossRefADSGoogle Scholar
  87. 87.
    Tutukov, A. V. & Yungelson, L. R. 1994, MNRAS, 268, 871ADSGoogle Scholar
  88. 88.
    van Paradijs J., et al., 1997, Nature, 386, 686CrossRefADSGoogle Scholar
  89. 89.
    Villasenor J. S., et al., 2005, Nature, 437, 855CrossRefADSGoogle Scholar
  90. 90.
    Zhang B., Zhang B.-B., Liang E.-W., Gehrels N., Burrows D. N., Mészáros P., 2007, ApJ, 655, L25CrossRefADSGoogle Scholar

Copyright information

© Canopus Publishing Limited 2009

Authors and Affiliations

  • Davide Lazzati
    • 1
  • Rosalba Perna
    • 1
  1. 1.JILAUniversity of ColoradoBoulderUSA

Personalised recommendations