Skip to main content

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 359))

Four decades have passed since the discovery of pulsars [1]. These unique objects have been proven to be invaluable in the study of a wide variety of physical and astrophysical problems. Most notable are studies of gravitational physics, the interior of neutron stars, the structure of the Milky Way and stellar and binary evolution. A number of these studies utilize the pulsar emission properties and/or the interaction of the radiation with the ambient medium. Most applications, however, are enabled by a technique known as pulsar timing. Here, pulsar astronomers make use of pulsars as accurate cosmic clocks where a number of fast-rotating pulsars, so called millisecond pulsars, show long-term stabilities that rival the best atomic clocks on Earth. Being compact massive objects with the most extreme states of matter in the present-day Universe, a number of pulsars are also moving in the gravitational field of a companion star, hence providing ideal conditions for tests of general relativity and alternative theories of gravity. In this review, I first discuss why a continuing challenge of Einstein's theory of gravitation, the theory of general relativity, with new observational data is still necessary. Then I describe pulsars and their use as clocks, in particular for their use as cosmic gravitational laboratories. Finally, I review some classical tests and report on the recent progress such as the discovery of the first double pulsar and look ahead to the future. This text should be read in close comparison to the contribution of Thibault Damour who provides much of the theoretical framework and motivation for the observations described here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Hewish, S. J. Bell, J. D. H. Pilkington, P. F. Scott, R. A. Collins, Nature 217, 709 (1968).

    Article  ADS  Google Scholar 

  2. K. Nordtvedt, Phys. Rev. 170, 1186 (1968).

    Article  ADS  Google Scholar 

  3. I. I. Shapiro, Phys. Rev. Lett. 13, 789 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  4. B. Bertotti, L. Iess, P. Tortora, Nature 425, 374 (2003).

    Article  ADS  Google Scholar 

  5. T. Damour, G. Esposito-Farèse, Phys. Rev. D 53, 5541 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  6. T. Damour, G. Esposito-Farèse, Phys. Rev. D 58, 1 (1998).

    Google Scholar 

  7. I. H. Stairs, S. E. Thorsett, Z. Arzoumanian, Phys. Rev. Lett. 93, 141101 (2004).

    Article  ADS  Google Scholar 

  8. A. G. Lyne, et al., Science 303, 1153 (2004).

    Article  ADS  Google Scholar 

  9. J. M. Lattimer, M. Prakash, ApJ 550, 426 (2001).

    Article  ADS  Google Scholar 

  10. J. R. Oppenheimer, G. Volkoff, Phys. Rev. 55, 374 (1939).

    Article  MATH  ADS  Google Scholar 

  11. V. E. Zavlin, G. G. Pavlov, A&A 329, 583 (1998).

    ADS  Google Scholar 

  12. S. L. Shapiro, S. A. Teukolsky, Black Holes, White Dwarfs and Neutron Stars. The Physics of Compact Objects (Wiley—Interscience, New York, 1983).

    Book  Google Scholar 

  13. M. A. McLaughlin, et al., ApJ 591, L135 (2003).

    Article  ADS  Google Scholar 

  14. M. Kramer, A. G. Lyne, J. T. O'Brien, C. A. Jordan, D. R. Lorimer, Science 312, 549 (2006).

    Article  ADS  Google Scholar 

  15. M. D. Young, R. N. Manchester, S. Johnston, Nature 400, 848 (1999).

    Article  ADS  Google Scholar 

  16. M. A. Alpar, A. F. Cheng, M. A. Ruderman, J. Shaham, Nature 300, 728 (1982).

    Article  ADS  Google Scholar 

  17. Lorimer, D. R. and Kramer, M., Handbook of Pulsar Astronomy (Cambridge University Press, 2005).

    Google Scholar 

  18. J. H. Taylor, Philos. Trans. Roy. Soc. London A 341, 117 (1992).

    Article  ADS  Google Scholar 

  19. D. C. Backer, R. W. Hellings, Ann. Rev. Astr. Ap. 24, 537 (1986).

    Article  ADS  Google Scholar 

  20. T. Damour, N. Deruelle, Ann. Inst. H. Poincar'e (Physique Th'eorique) 43, 107 (1985).

    MATH  MathSciNet  Google Scholar 

  21. T. Damour, N. Deruelle, Ann. Inst. H. Poincar'e (Physique Th'eorique) 44, 263 (1986).

    MATH  MathSciNet  Google Scholar 

  22. T. Damour, J. H. Taylor, Phys. Rev. D 45, 1840 (1992).

    Article  ADS  Google Scholar 

  23. H. P. Robertson, Ann. Math. 38, 101 (1938).

    Article  Google Scholar 

  24. R. Blandford, S. A. Teukolsky, ApJ 205, 580 (1976).

    Article  ADS  Google Scholar 

  25. P. C. Peters, Phys. Rev. 136, 1224 (1964).

    Article  ADS  Google Scholar 

  26. C. Will, Living Reviews in Relativity 4, 4 (2001).

    ADS  MathSciNet  Google Scholar 

  27. I. H. Stairs, Living Reviews in Relativity 6, 5 (2003).

    ADS  Google Scholar 

  28. T. Damour, G. Schäfer, Phys. Rev. Lett. 66, 2549 (1991).

    Article  ADS  Google Scholar 

  29. N. Wex, Kramer et al. [53], pp. 113–116.

    Google Scholar 

  30. I. H. Stairs, et al., ApJ 632, 1060 (2005).

    Article  ADS  Google Scholar 

  31. T. Damour, G. Esposito-Farèse, Phys. Rev. D 46, 4128 (1992).

    Article  ADS  Google Scholar 

  32. V. M. Kaspi, et al. ApJ 543, 321 (2000).

    Article  ADS  Google Scholar 

  33. M. Bailes, S. M. Ord, H. S. Knight, A. W. Hotan, ApJ 595, L49 (2003).

    Article  ADS  Google Scholar 

  34. G. Esposito-Farese (2004). Contribution to 10th Marcel Grossmann meeting, gr-qc/0402007.

    Google Scholar 

  35. J. M. Weisberg, J. H. Taylor, Bailes et al. [54], pp. 93–98.

    Google Scholar 

  36. I. H. Stairs, S. E. Thorsett, J. H. Taylor, A. Wolszczan, ApJ 581, 501 (2002).

    Article  ADS  Google Scholar 

  37. M. Kramer, ApJ 509, 856 (1998).

    Article  ADS  Google Scholar 

  38. M. Kramer, O. Löhmer, A. Karastergiou, Bailes et al. [54], pp. 99–102.

    Google Scholar 

  39. J. M. Weisberg, R. W. Romani, J. H. Taylor, ApJ 347, 1030 (1989).

    Article  ADS  Google Scholar 

  40. I. H. Stairs, S. E. Thorsett, J. H. Taylor, Z. Arzoumanian, Kramer et al. [53], pp. 121–124.

    Google Scholar 

  41. T. Damour, R. Ruffini, Academie des Sciences Paris Comptes Rendus Ser. Scie. Math. 279, 971 (1974).

    ADS  Google Scholar 

  42. M. Burgay, et al. Nature 426, 531 (2003).

    Article  ADS  Google Scholar 

  43. M. Kramer, et al. Science 314, 97 (2006).

    Article  ADS  Google Scholar 

  44. V. Kalogera, et al. ApJ 601, L179 (2004).

    Article  ADS  Google Scholar 

  45. T. Damour, G. Schäfer, Nuovo Cim. 101, 127 (1988).

    Article  ADS  Google Scholar 

  46. M. Kramer, D. C. Backer, T. J. W. Lazio, B. W. Stappers, S. Johnston, New Astronomy Reviews 48, 993 (2004).

    Article  ADS  Google Scholar 

  47. N. Wex, S. Kopeikin, ApJ 513, 388 (1999).

    Article  ADS  Google Scholar 

  48. S. W. Hawking, R. Penrose, Royal Society of London Proceedings Series A 314, 529 (1970).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  49. R. M. Wald, General relativity (Chicago: University of Chicago Press, 1984, 1984).

    MATH  Google Scholar 

  50. S. W. Hawkings, G. F. R. Ellis, The Large Scale Structure of spacetime (Cambridge University Press, Cambridge, 1973).

    Book  Google Scholar 

  51. K. S. Thorne, Reviews of Modern Physics 52, 299 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  52. K. S. Thorne, R. H. Price, D. A. Macdonald, Black Holes: The Membrane Paradigm (New Haven: Yale University Press, 1986).

    Google Scholar 

  53. M. Kramer, N. Wex, R. Wielebinski, eds., Pulsar Astronomy - 2000 and Beyond, IAU Colloquium 177 (Astronomical Society of the Pacific, San Francisco, 2000).

    Google Scholar 

  54. M. Bailes, D. J. Nice, S. Thorsett, eds., Radio Pulsars (Astronomical Society of the Pacific, San Francisco, 2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Canopus Publishing Limited

About this chapter

Cite this chapter

Kramer, M. (2009). Exploiting Binary Pulsars as Laboratories of Gravity Theories. In: Colpi, M., Casella, P., Gorini, V., Moschella, U., Possenti, A. (eds) Physics of Relativistic Objects in Compact Binaries: From Birth to Coalescence. Astrophysics and Space Science Library, vol 359. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9264-0_2

Download citation

Publish with us

Policies and ethics