Advertisement

Exploiting Binary Pulsars as Laboratories of Gravity Theories

  • Michael Kramer
Part of the Astrophysics and Space Science Library book series (ASSL, volume 359)

Four decades have passed since the discovery of pulsars [1]. These unique objects have been proven to be invaluable in the study of a wide variety of physical and astrophysical problems. Most notable are studies of gravitational physics, the interior of neutron stars, the structure of the Milky Way and stellar and binary evolution. A number of these studies utilize the pulsar emission properties and/or the interaction of the radiation with the ambient medium. Most applications, however, are enabled by a technique known as pulsar timing. Here, pulsar astronomers make use of pulsars as accurate cosmic clocks where a number of fast-rotating pulsars, so called millisecond pulsars, show long-term stabilities that rival the best atomic clocks on Earth. Being compact massive objects with the most extreme states of matter in the present-day Universe, a number of pulsars are also moving in the gravitational field of a companion star, hence providing ideal conditions for tests of general relativity and alternative theories of gravity. In this review, I first discuss why a continuing challenge of Einstein's theory of gravitation, the theory of general relativity, with new observational data is still necessary. Then I describe pulsars and their use as clocks, in particular for their use as cosmic gravitational laboratories. Finally, I review some classical tests and report on the recent progress such as the discovery of the first double pulsar and look ahead to the future. This text should be read in close comparison to the contribution of Thibault Damour who provides much of the theoretical framework and motivation for the observations described here.

Keywords

Black Hole Neutron Star Gravity Theory White Dwarf Radio Pulsar 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Hewish, S. J. Bell, J. D. H. Pilkington, P. F. Scott, R. A. Collins, Nature 217, 709 (1968).CrossRefADSGoogle Scholar
  2. 2.
    K. Nordtvedt, Phys. Rev. 170, 1186 (1968).CrossRefADSGoogle Scholar
  3. 3.
    I. I. Shapiro, Phys. Rev. Lett. 13, 789 (1964).CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    B. Bertotti, L. Iess, P. Tortora, Nature 425, 374 (2003).CrossRefADSGoogle Scholar
  5. 5.
    T. Damour, G. Esposito-Farèse, Phys. Rev. D 53, 5541 (1996).CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    T. Damour, G. Esposito-Farèse, Phys. Rev. D 58, 1 (1998).Google Scholar
  7. 7.
    I. H. Stairs, S. E. Thorsett, Z. Arzoumanian, Phys. Rev. Lett. 93, 141101 (2004).CrossRefADSGoogle Scholar
  8. 8.
    A. G. Lyne, et al., Science 303, 1153 (2004).CrossRefADSGoogle Scholar
  9. 9.
    J. M. Lattimer, M. Prakash, ApJ 550, 426 (2001).CrossRefADSGoogle Scholar
  10. 10.
    J. R. Oppenheimer, G. Volkoff, Phys. Rev. 55, 374 (1939).zbMATHCrossRefADSGoogle Scholar
  11. 11.
    V. E. Zavlin, G. G. Pavlov, A&A 329, 583 (1998).ADSGoogle Scholar
  12. 12.
    S. L. Shapiro, S. A. Teukolsky, Black Holes, White Dwarfs and Neutron Stars. The Physics of Compact Objects (Wiley—Interscience, New York, 1983).CrossRefGoogle Scholar
  13. 13.
    M. A. McLaughlin, et al., ApJ 591, L135 (2003).CrossRefADSGoogle Scholar
  14. 14.
    M. Kramer, A. G. Lyne, J. T. O'Brien, C. A. Jordan, D. R. Lorimer, Science 312, 549 (2006).CrossRefADSGoogle Scholar
  15. 15.
    M. D. Young, R. N. Manchester, S. Johnston, Nature 400, 848 (1999).CrossRefADSGoogle Scholar
  16. 16.
    M. A. Alpar, A. F. Cheng, M. A. Ruderman, J. Shaham, Nature 300, 728 (1982).CrossRefADSGoogle Scholar
  17. 17.
    Lorimer, D. R. and Kramer, M., Handbook of Pulsar Astronomy (Cambridge University Press, 2005).Google Scholar
  18. 18.
    J. H. Taylor, Philos. Trans. Roy. Soc. London A 341, 117 (1992).CrossRefADSGoogle Scholar
  19. 19.
    D. C. Backer, R. W. Hellings, Ann. Rev. Astr. Ap. 24, 537 (1986).CrossRefADSGoogle Scholar
  20. 20.
    T. Damour, N. Deruelle, Ann. Inst. H. Poincar'e (Physique Th'eorique) 43, 107 (1985).zbMATHMathSciNetGoogle Scholar
  21. 21.
    T. Damour, N. Deruelle, Ann. Inst. H. Poincar'e (Physique Th'eorique) 44, 263 (1986).zbMATHMathSciNetGoogle Scholar
  22. 22.
    T. Damour, J. H. Taylor, Phys. Rev. D 45, 1840 (1992).CrossRefADSGoogle Scholar
  23. 23.
    H. P. Robertson, Ann. Math. 38, 101 (1938).CrossRefGoogle Scholar
  24. 24.
    R. Blandford, S. A. Teukolsky, ApJ 205, 580 (1976).CrossRefADSGoogle Scholar
  25. 25.
    P. C. Peters, Phys. Rev. 136, 1224 (1964).CrossRefADSGoogle Scholar
  26. 26.
    C. Will, Living Reviews in Relativity 4, 4 (2001).ADSMathSciNetGoogle Scholar
  27. 27.
    I. H. Stairs, Living Reviews in Relativity 6, 5 (2003).ADSGoogle Scholar
  28. 28.
    T. Damour, G. Schäfer, Phys. Rev. Lett. 66, 2549 (1991).CrossRefADSGoogle Scholar
  29. 29.
    N. Wex, Kramer et al. [53], pp. 113–116.Google Scholar
  30. 30.
    I. H. Stairs, et al., ApJ 632, 1060 (2005).CrossRefADSGoogle Scholar
  31. 31.
    T. Damour, G. Esposito-Farèse, Phys. Rev. D 46, 4128 (1992).CrossRefADSGoogle Scholar
  32. 32.
    V. M. Kaspi, et al. ApJ 543, 321 (2000).CrossRefADSGoogle Scholar
  33. 33.
    M. Bailes, S. M. Ord, H. S. Knight, A. W. Hotan, ApJ 595, L49 (2003).CrossRefADSGoogle Scholar
  34. 34.
    G. Esposito-Farese (2004). Contribution to 10th Marcel Grossmann meeting, gr-qc/0402007.Google Scholar
  35. 35.
    J. M. Weisberg, J. H. Taylor, Bailes et al. [54], pp. 93–98.Google Scholar
  36. 36.
    I. H. Stairs, S. E. Thorsett, J. H. Taylor, A. Wolszczan, ApJ 581, 501 (2002).CrossRefADSGoogle Scholar
  37. 37.
    M. Kramer, ApJ 509, 856 (1998).CrossRefADSGoogle Scholar
  38. 38.
    M. Kramer, O. Löhmer, A. Karastergiou, Bailes et al. [54], pp. 99–102.Google Scholar
  39. 39.
    J. M. Weisberg, R. W. Romani, J. H. Taylor, ApJ 347, 1030 (1989).CrossRefADSGoogle Scholar
  40. 40.
    I. H. Stairs, S. E. Thorsett, J. H. Taylor, Z. Arzoumanian, Kramer et al. [53], pp. 121–124.Google Scholar
  41. 41.
    T. Damour, R. Ruffini, Academie des Sciences Paris Comptes Rendus Ser. Scie. Math. 279, 971 (1974).ADSGoogle Scholar
  42. 42.
    M. Burgay, et al. Nature 426, 531 (2003).CrossRefADSGoogle Scholar
  43. 43.
    M. Kramer, et al. Science 314, 97 (2006).CrossRefADSGoogle Scholar
  44. 44.
    V. Kalogera, et al. ApJ 601, L179 (2004).CrossRefADSGoogle Scholar
  45. 45.
    T. Damour, G. Schäfer, Nuovo Cim. 101, 127 (1988).CrossRefADSGoogle Scholar
  46. 46.
    M. Kramer, D. C. Backer, T. J. W. Lazio, B. W. Stappers, S. Johnston, New Astronomy Reviews 48, 993 (2004).CrossRefADSGoogle Scholar
  47. 47.
    N. Wex, S. Kopeikin, ApJ 513, 388 (1999).CrossRefADSGoogle Scholar
  48. 48.
    S. W. Hawking, R. Penrose, Royal Society of London Proceedings Series A 314, 529 (1970).zbMATHCrossRefADSMathSciNetGoogle Scholar
  49. 49.
    R. M. Wald, General relativity (Chicago: University of Chicago Press, 1984, 1984).zbMATHGoogle Scholar
  50. 50.
    S. W. Hawkings, G. F. R. Ellis, The Large Scale Structure of spacetime (Cambridge University Press, Cambridge, 1973).CrossRefGoogle Scholar
  51. 51.
    K. S. Thorne, Reviews of Modern Physics 52, 299 (1980).CrossRefADSMathSciNetGoogle Scholar
  52. 52.
    K. S. Thorne, R. H. Price, D. A. Macdonald, Black Holes: The Membrane Paradigm (New Haven: Yale University Press, 1986).Google Scholar
  53. 53.
    M. Kramer, N. Wex, R. Wielebinski, eds., Pulsar Astronomy - 2000 and Beyond, IAU Colloquium 177 (Astronomical Society of the Pacific, San Francisco, 2000).Google Scholar
  54. 54.
    M. Bailes, D. J. Nice, S. Thorsett, eds., Radio Pulsars (Astronomical Society of the Pacific, San Francisco, 2003).Google Scholar

Copyright information

© Canopus Publishing Limited 2009

Authors and Affiliations

  • Michael Kramer
    • 1
  1. 1.The University of ManchesterJodrell Bank ObservatoryJodrell BankUK

Personalised recommendations