Electromagnetic Methods for UXO Discrimination

  • Kevin O'NeillEmail author
  • Juan Pablo Fernández
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)


The subsurface remote-sensing technology currently used in the United States for UXO decontamination is relatively crude, consisting of DC (static) magnetometry. Ultrawideband electromagnetic induction (EMI) is emerging as a technology with reasonable discrimination potential. EMI devices operate in the magneto-quasistatic (MQS) band, usually between tens of Hz and perhaps a couple hundred kHz, and engage a substantially different phenomenology than that of wave electromagnetics. Over the relevant space scales, soil, fresh water, and rock are effectively lossless in the MQS regime, which encourages EMI application.


UXO discrimination electromagnetic induction EMI magneto-quasistatics MQS magnetometry standardized excitations approach SEA excitation mode pattern matching magnetic dipole dipole moment magnetic diffusion ground response magnetic charge statistical learning algorithms support vector machine SVM slack variable classification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barrowes, B.E., O'Neill, K., Grzegorczyk, T.M., Chen, X., Kong, J.A.: Broadband analytical magneto-quasistatic electromagnetic induction solution for a conducting and permeable spheroid. IEEE Trans. Geosci. Remote Sensing 42, 2479–2489 (2004)CrossRefGoogle Scholar
  2. 2.
    Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: D. Haussler (ed.) Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory, pp. 144–152. ACM Press, New York (1992)CrossRefGoogle Scholar
  3. 3.
    Burges, C.J.C.: A tutorial on Support Vector Machines for pattern recognition. Data Min. Knowl. Disc. 2, 121–167 (1998)CrossRefGoogle Scholar
  4. 4.
    Butler, D.K.: Implications of magnetic backgrounds for unexploded ordnance detection. J. Appl. Geophys. 54, 111–125 (2003)CrossRefGoogle Scholar
  5. 5.
    Cattach, M.K., Stanley, J.M., Lee, S.J., Boyd, G.W.: Sub-Audio-Magnetics (SAM): a high-resolution technique for simultaneously mapping electrical and magnetic properties. Explor. Geophys. 24, 387–400 (1993). See also Scholar
  6. 6.
    Chen, C.C., Higgins, M.B., O'Neill, K., Detsch, R.: Ultrawide-bandwidth fully-polarimetric ground penetrating radar classification of subsurface unexploded ordnance. IEEE Trans. Geosci. Remote Sensing 39, 1221–1230 (2001)CrossRefGoogle Scholar
  7. 7.
    Chen, X., O'Neill, K., Barrowes, B.E., Grzegorczyk, T.M., Kong, J.A.: Application of a spheroidal mode approach with differential evolution in inversion of magnetoquasistatic data for UXO discrimination. Inv. Prob. 20, 27–40 (2004)CrossRefGoogle Scholar
  8. 8.
    Chen, X., O'Neill, K., Grzegorczyk, T.M., Kong, J.A.: Spheroidal mode approach for the characterization of metallic objects using electromagnetic induction. IEEE Trans. Geosci. Remote Sensing 45, 697–706 (2007)CrossRefGoogle Scholar
  9. 9.
    Cheng, D.K.: Field and Wave Electromagnetics. Addison-Wesley, Reading, MA (1989)Google Scholar
  10. 10.
    Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods. Cambridge University Press, Cambridge (2000)Google Scholar
  11. 11.
    Fernández, J.P., Barrowes, B., O'Neill, K., Paulsen, K., Shamatava, I., Shubitidze, F., Sun, K.: Evaluation of SVM classification of metallic objects based on a magnetic-dipole representation. In: J.T. Broach, R.S. Harmon, J.H. Holloway Jr. (eds.) Detection and Remediation Technologies for Mines and Minelike Targets XI, Proceedings of SPIE, vol. 6217, pp. 6217– 03. Bellingham, WA (2006)Google Scholar
  12. 12.
    Fernández, J.P., Barrowes, B., O'Neill, K., Shamatava, I., Shubitidze, F., Sun, K.: A data-derived time-domain SEA for UXO identification using the MPV sensor. In: R.S. Harmon, J.T. Broach, J.H. Holloway Jr. (eds.) Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XIII, Proceedings of SPIE, vol. 6953, pp. 6953–1H. Bellingham, WA (2008)Google Scholar
  13. 13.
    Fernández, J.P., Sun, K., Barrowes, B., O'Neill, K., Shamatava, I., Shubitidze, F., Paulsen, K.: Inferring the location of buried UXO using a Support Vector Machine. In: R.S. Harmon, J.T. Broach, J.H. Holloway Jr. (eds.) Detection and Remediation Technologies for Mines and Minelike Targets XII, Proceedings of SPIE, vol. 6553, pp. 6553–0B. Bellingham, WA (2007)Google Scholar
  14. 14.
    O'Neill, K.: Ultra-wideband, fully polarimetric ground penetrating radar for UXO discrimination. ESTCP Final Technical Report, Project 199902. (2005)
  15. 15.
    O'Neill, K.: Processing for clutter evasion in UXO discrimination. SERDP Project MM-1590 Final Technical Report. (2008)
  16. 16.
    Pasion, L.R., Oldenburg, D.W.: A discrimination algorithm for UXO using time domain electromagnetics. J. Environ. Eng. Geophys. 6, 91–102 (2001)CrossRefGoogle Scholar
  17. 17.
    Rüping, S.: mySVM-Manual. University of Dortmund, Lehrstuhl Informatik 8 ( (2000)
  18. 18.
    Shubitidze, F., O'Neill, K., Barrowes, B., Shamatava, I., Sun, K., Fernández, J.P., Paulsen, K.: Application of the normalized surface magnetic charge model to UXO discrimination in cases with overlapping signals. J. Appl. Geophys. 61, 292–303 (2007)CrossRefGoogle Scholar
  19. 19.
    Shubitidze, F., O'Neill, K., Shamatava, I., Sun, K., Paulsen, K.D.: Fast and accurate calculation of physically complete EMI response by a heterogeneous metallic object. IEEE Trans. Geosci. Remote Sensing 43, 1736–1750 (2005)CrossRefGoogle Scholar
  20. 20.
    Stratton, J.A.: Electromagnetic Theory. McGraw-Hill, New York (1941)Google Scholar
  21. 21.
    Sun, K., O'Neill, K., Shubitidze, F., Shamatava, I., Paulsen, K.: Fast data-derived fundamental spheroidal excitation models with application to UXO discrimination. IEEE Trans. Geosci. Remote Sensing 43, 2573–2583 (2005)CrossRefGoogle Scholar
  22. 22.
    Vapnik, V.N.: An overview of statistical learning theory. IEEE Trans. Neural Netw. 10, 988– 999 (1999)CrossRefGoogle Scholar
  23. 23.
    Wait, J.R.: A conducting sphere in a time varying magnetic field. Geophysics 16, 666–672 (1951)CrossRefGoogle Scholar
  24. 24.
    Zhang, B.: Classification, identification, and modeling of unexploded ordnance in realistic environments. Ph.D. thesis, Massachusetts Institute of Technology (2008)Google Scholar
  25. 25.
    Zhang, B., O'Neill, K., Kong, J.A., Grzegorczyk, T.M.: Support vector machine and neural network classification of metallic objects using coefficients of the spheroidal MQS response modes. IEEE Trans. Geosci. Remote Sensing 46, 159–171 (2008)CrossRefGoogle Scholar
  26. 26.
    Zhang, B., O'Neill, K., Kong, J.A.: Absolute calibration of EMI measurements and application to soil magnetic susceptibility inference. J. Environ. Eng. Geophys. 13, 223–235 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2009

Authors and Affiliations

  1. 1.Thayer School of EngineeringDartmouth College and U.S. Army Corps of Engineers, ERDC-CRRELHanoverU.S.A.
  2. 2.Thayer School of EngineeringDartmouth CollegeHanoverU.S.A.

Personalised recommendations