Skip to main content

Part of the book series: Solid Mechanics and its Applications ((SMIA,volume 158))

  • 4598 Accesses

Under the combination of elevated temperature and mechanical loads, struc tural members tend to creep. Basic laws of creep are presented and the effect of temperature changes in the constitutive law of creep is discussed. The rheolog ical models of two important engineering concepts of stress, namely, the load-and the deformation-controlled stresses, are presented. The chapter concludes with the description of numerical techniques of solutions to creep problems. The nature of pure thermal stresses as the deformation-controlled stresses, is presented in the example problems. It is shown that pure thermal stresses relax as the time advances

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Norton, F.H., The Creep of Steel at High Temperatures, McGraw-Hill, New York, 1929

    Google Scholar 

  2. Nádai, A. and Davis, E.A., The Creep of Metals II, Trans. ASME, J. Appl. Mech, Vol. 3, pp. A–7, March 1936

    Google Scholar 

  3. Bailey, R.W., Design Aspects of Creep, J. Appl. Mech., Vol. 3, pp. A-1, March 1936

    Google Scholar 

  4. Soderberg, C.R., The Interpolation of Creep Tests for Machine Design, Trans. ASME, Vol. 58, pp. 733–743, 1936

    Google Scholar 

  5. Wahl, A.M., Creep Tests of Rotating Disks at Elevated Temperature and Comparison with Theory, J. Appl. Mech., pp. 225–235, Sept. 1954

    Google Scholar 

  6. Wahl, A.M., Analysis of Creep in Rotating Disks Based on the Tresca Criterion and Associated Flow Rule, J. Appl. Mech., pp. 231–238, June 1956

    Google Scholar 

  7. Wahl, A.M., Stress Distribution in Rotating Disks Subjected to Creep at Elevated Temperatures, J. Appl. Mech., pp. 299–305, 1957

    Google Scholar 

  8. Weir, C.D., The Creep of Thick Tubes Under Internal Pressure, J. Appl. Mech., pp. 464–466, Sept. 1957

    MathSciNet  Google Scholar 

  9. Finnie, I. and Heller, W.R., Creep of Engineering Materials, McGraw-Hill, New York, 1959

    Google Scholar 

  10. Mendelson, A., A General Approach to the Practical Solution of Creep Problems, Trans. ASME, Vol. 81, pp. 585–598, 1959

    Google Scholar 

  11. Rimrott, F.P.J., Creep of Thick-Walled Tubes Under Internal Pressure Considering Large Strain, Trans. ASME, Vol. 81, pp. 271–275, 1959

    Google Scholar 

  12. Taira, S., Creep of Thick-Walled Cylinders Under Internal Pressure at Elevated Temperature, The 8th Japan Congress on Testing Materials, Kyoto, Japan, pp. 53–60, 1965

    Google Scholar 

  13. Bhatnagar, N.S. and Gupta, S.K., Analysis of Thick-Walled Orthotropic Cylinder in the Theory of Creep, J. Phys. Soc. Jpn., Vol. 27, No. 6, Dec. 1969

    Google Scholar 

  14. Hult, J.A.H., Creep in Engineering Structures, Blaisdell, New York, 1966

    Google Scholar 

  15. Odqvist, F.K.G., Mathematical Theory of Creep and Creep Rupture, Oxford University Press, Oxford, 1966

    MATH  Google Scholar 

  16. Rabotnov, Y.N., Creep Problems in Structural Members, Wiley Inter-science Div., Wiley, New York, 1969

    MATH  Google Scholar 

  17. Smith, A.J. and Nicolson, A.M., Advances in Creep Design, Halsted Press Div., Wiley, New York, 1971

    Google Scholar 

  18. Penny, R.K. and Marriot, D.L., Design for Creep, McGraw-Hill, New York, 1971

    Google Scholar 

  19. Kachanov, L.M., The Theory of Creep, National Lending Library, New York, 1967

    Google Scholar 

  20. Fridman, Y.B., Strength and Deformation in Nonuniform Temperature Field, Consultants Bureau, New York, 1964

    Google Scholar 

  21. Dorn, J.E., Some Fundamental Experiments on High Temperature Creep, Mech. Phys. Solids, Vol. 3, pp. 85–116, 1954

    Article  Google Scholar 

  22. Skrzypek, J., Plasticity and Creep, Edited by Hetnarski, R.B., Begell House, New York, and CRC Press, Boca Raton, 1993

    Google Scholar 

  23. Garofalo, F., Fundamentals of Creep and Creep Rupture in Metals, MacMillan Series in Material Science, MacMillan, New York, 1965

    Google Scholar 

  24. Weertman, J., Theory of Steady State Creep Based on Dislocation Climb, J. Appl. Phys., Vol. 26, p. 1213, 1955

    Article  Google Scholar 

  25. Weertman, J., Creep of Aluminium Single Crystals, J. Appl. Phys., Vol. 27, p. 832, 1956

    Article  Google Scholar 

  26. Weertman, J., Creep of Indium, Lead and Some of Their Alloys with Various Metals, Trans. AIME, Vol. 218, p. 207, 1960

    Google Scholar 

  27. Sherby, O.D., Creep of Polycrystalline Alpha and Beta Thallium, Trans. AIME, Vol. 212, p. 708, 1958

    Google Scholar 

  28. Lawly, A., Coll, J.A., and Cahn, R.W., Influence of Crystallographic Order on Creep of Iron-Aluminium, Trans. AIME, Vol. 218, p. 166, 1960

    Google Scholar 

  29. Tagart, W.J., Activation Energies for High Temperature Creep of Poly-crystalline Magnesium, Acta Met., Vol. 9, p. 614, 1961

    Article  Google Scholar 

  30. McLean, D. and Hale, K.F., Structural Processes in Creep, London: Iron and Steel Inst., pp. 19, 1961

    Google Scholar 

  31. Howard, E.M., Barmore, W.C., Mote, J.D., and Dorn, J.E., On the Thermally-Activated Mechanism of Prismatic Slip in the Silver-Aluminium Hexagonal-Intermediate Phase, Trans. AIME, Vol. 227, p. 1061, 1963

    Google Scholar 

  32. Jones, R.B. and Harris, J.E., Proceedings of Joint International Confer ence on Creep, New York, The Institution of Mech. Eng., pp. 1–11, 1963

    Google Scholar 

  33. Price, A.T., Holl, H.A., and Grennough, A.P., The Surface Energy and Self Diffusion Coefficient of Solid Iron Above 1350°C, Acta Met., Vol. 12, p. 49, 1964

    Article  Google Scholar 

  34. Sellars, C.M. and Quarrell, A.G., The High Temperature Creep of Gold-Nickel Alloys, Inst. Met., Vol. 90, p. 329, 1961–1962

    Google Scholar 

  35. Kauzman, W., Flow of Solid Metals from the Standpoint of the Chamical Rate Theory, Trans. AIME, Vol. 143, p. 57, 1941

    Google Scholar 

  36. Cottrell, A.H. and Aytekin, V., The Flow of Zinc Under Constant Stress, J. Inst. Met., Vol. 77, p. 389, 1950

    Google Scholar 

  37. Feltham, P., The Plastic Flow of Iron and Plane Carbon Steels Above A3-Point, Proc. Phys. Soc., Vol. 66B, p. 865, 1953

    Google Scholar 

  38. Feltham, P., On the Mechanism of High Temperature Creep in Metals with Special Reference to Polycrystalline Lead, Proc. Phys. Soc., Vol. 69B, p. 1173, 1956

    Google Scholar 

  39. Feltham, P. and Mikean, J.D., Creep in Face-Centered Cubic Metals with Special Reference to Copper, Acta. Met., Vol. 7, p. 614, 1959

    Article  Google Scholar 

  40. Feltham, P., Stress Relaxation in Copper and Alpha-Brasses at Low Tem peratures, J. Inst. Met., Vol. 89, p. 210, 1960–1961

    Google Scholar 

  41. Nádai, A. and McVetty, P.G., Hyperbolic Sine Chart for Estimating Work ing Stresses of Alloys at Elevated Temperatures, Proc. ASTM, Vol. 43, p. 735, 1943

    Google Scholar 

  42. Sherby, O.D. and Dorn, J.E., Some Observations on Correlations Between the Creep Behavior and the Resulting Structures in Alpha Solid Solutions, Trans. AIME, Vol. 197, p. 324, 1953

    Google Scholar 

  43. Weertman, J. and Breen, J.E., Creep of Tin Single Crystals, J. Appl. Phys., Vol. 27, p. 1189, 1956

    Article  Google Scholar 

  44. Garofalo, F., Richmond, O., and Domis, W.F., Joint Int. Conf. on Creep, London: The Institution of Mech. Eng., pp. 1–31, 1963

    Google Scholar 

  45. Sherby, O.D., Frenkel, R., Nadeau, J., and Dorn, J.E., Effect of Stress on the Creep Rates of Polycrystalline Aluminium Alloy Under Constant Structure, Trans. AIME, Vol. 200, p. 275, 1954

    Google Scholar 

  46. Feltham, P., On the Activation Energy of High Temperature Creep in Metals, Phil. Mag., Vol. 2, p. 585, 1957

    Google Scholar 

  47. Graham, A. and Walles, K.F.A., Relation Between Long and Short Time Properties of a Commercial Alloy, J. Iron Steel Inst., Vol. 179, 1955

    Google Scholar 

  48. McVetty, P.G., Creep of Metals at Elevated Temperatures — The Hyper bolic Sine Relation Between Stress and Creep Rate, Trans. ASME, Vol. 65, 1943

    Google Scholar 

  49. Marin, J. and Pao, Y.H., An Analytical Theory of the Creep Deformation of Materials, J. Appl. Mech., Vol. 20, 1953

    Google Scholar 

  50. Saint-Venant, B., Mémoire sur l'établissement des équations différentialles des mouvements intérieurs opérés dans les corps solides ductiles au delà des limites où l'élasticité pourrait les ramener à leur premier état, Compt. Rend., Vol. 70, pp. 473–480, 1870

    Google Scholar 

  51. Lévy, M., Mémoire sur les équations générales des mouvements intérieurs des corps solides ductile au dela limites où l'élasticité pourrait les ramener à leur premier état, Compt. Rend., Vol. 70, pp. 1323–1325, 1870

    Google Scholar 

  52. von Mises, R., Mechanik der festen Körper in Plastisch deformablem Zu-stand, Göttinger Nachr. Math. Phys., Kl., pp. 582–592, 1913

    Google Scholar 

  53. Rozenblyum, V.I., Axisymmetric Creep of Cylindrical Bodies with Tem perature Variation Along the Axis, PMTF, No. 6, 1961

    Google Scholar 

  54. Danyushevskii, A. and Listrinskii, G., Creep in a Nonuniformly Heated Thick-Walled Tube Subjected to Internal Pressure, Mech. Solids, Vol. 1, No. 2, pp. 72–73, 1966

    Google Scholar 

  55. Eslami, M.R., Creep Linearization of Non-Axisymmetrically Heated Cylinders, AIAA J., Vol. 18, No.7, pp. 862–864, July 1980

    Article  MATH  Google Scholar 

  56. Sabbaghian, M. and Eslami, M.R., Creep Relaxation of Axisymmet-ric Thermal Stresses in Thick-Walled Cylindrical Vessels, ASME Paper No.74-PVP-9, 1974

    Google Scholar 

  57. Sabbaghian, M. and Eslami, M.R., Creep Relaxation of Nonaxisymmetric Thermal Stresses in Thick-Walled Cylinders, AIAA J., Vol. 12, pp. 1652– 1658, Dec. 1974

    Article  MATH  Google Scholar 

  58. Eslami, M.R., Creep Relaxation of a Beam of General Cross Section Sub jected to Mechanical and Thermal Loads, Trans. ASME, J. Mech. Design, Vol. 100, pp. 626–629, 1978

    Google Scholar 

  59. Eslami, M.R. and Tafreshi, A., Thermoelastic-Plastic Analysis of Beams, Proc. Int. Conf. Constitutive Law in Eng. Mat., Chongqing, China, Aug. 10–13, 1989

    Google Scholar 

  60. Eslami, M.R., Yazdan, M.R., and Salimi, E., Elastic-Plastic-Creep Anal ysis of Thick Cylinders and Spheres of Strain Hardening Materials, Proc. Int. Cong. Appl. Mech., Beijing, China, Aug. 21–25, 1989

    Google Scholar 

  61. Eslami, M.R. and Loghman, A., Thermoelastic-Plastic-Creep Analysis of Thick Cylindrical Pressure Vessels of Strain Hardening Materials, Proc. ASME-PVP Conf., Hawaii, July 23–27, 1989

    Google Scholar 

  62. Eslami, M.R. and Shariyat, M., A Technique to Distinguish the Primary and Secondary Stresses, Trans. ASME, J. Press. Vess. Tech., Vol. 117, pp. 1–7, 1995

    Article  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, B.V

About this chapter

Cite this chapter

(2009). Creep Analysis. In: Thermal Stresses – Advanced Theory and Applications. Solid Mechanics and its Applications, vol 158. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9247-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-9247-3_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-9246-6

  • Online ISBN: 978-1-4020-9247-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics