Modeling Light Harvesting and Primary Charge Separation in Photosystem I and Photosystem II

  • Rienk van Grondelle
  • Vladimir I. Novoderezhkin
  • Jan P. Dekker
Part of the Advances in Photosynthesis and Respiration book series (AIPH, volume 29)

We discuss how the light harvesting in photosystem I, photosystem II and in light-harvesting complex II can be modeled at a quantitative level by taking into account the exciton structure of the chromophores in the pigment-protein complexes, static (conformational) disorder, and coupling of electronic excitations and charge-transfer (CT) states to fast nuclear motion. We show examples of simultaneous fitting of linear and nonlinear (time-dependent) spectral responses based on the modified Redfield theory that resulted in a consistent physical picture of the energy and electron transfer reactions. This picture (including the time scales and pathways of energy and charge transfer) allows a visualization of the excitation dynamics, thus leading to a deeper understanding of how photosynthetic pigment-proteins perform their function in harvesting of solar energy.


Exciton State Site Energy Liner Dichroism Participation Ratio Primary Charge Separation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amunts A, Drory O and Nelson N (2007) The structure of a plant photosystem I supercomplex at 3.4 Å resolution. Nature 447: 58–63PubMedCrossRefGoogle Scholar
  2. Barber J (2003) Photosystem II: the engine of life. Quart Rev Biophys 36: 71–89CrossRefGoogle Scholar
  3. Barkai E, Jung YJ and Silbey RJ (2004) Theory of single-molecule spectroscopy: Beyond the ensemble average. Annu Rev Phys Chem 55: 457–507PubMedCrossRefGoogle Scholar
  4. Barter LMC, Durrant JR and Klug DR (2003) A quantitative structure-function relationship for the Photosystern II reaction center: Supermolecular behavior in natural photosynthesis. Proc Natl Acad Sci USA 100: 946–951PubMedCrossRefGoogle Scholar
  5. Ben-Shem A, Frolow F and Nelson N (2003) Crystal structure of plant photosystem I. Nature 426: 630–635PubMedCrossRefGoogle Scholar
  6. Bopp MA, Sytnik A, Howard TD, Cogdell RJ and Hochstrasser RM (1999) The dynamics of structural deformations of immobilized single light-harvesting complexes. Proc Natl Acad Sci USA 96: 11271–11276PubMedCrossRefGoogle Scholar
  7. Brüggemann B, Sznee K, Novoderezhkin V, Van Grondelle R and May V (2004) From structure to dynamics: Modeling exciton dynamics in the photosynthetic antenna PS1, J Phys Chem B 108: 13536–13546CrossRefGoogle Scholar
  8. Byrdin M, Jordan P, Krauss N, Fromme P, Stehlik D and Schlodder E (2002) Light harvesting in photosystem I: Modeling based on the 2.5-Å structure of photosystem I from Synechococcus elongatus. Biophys J 83: 433–457PubMedCrossRefGoogle Scholar
  9. Cho M, Vaswani HM, Brixner T, Stenger J and Fleming GR (2005) Exciton analysis in 2D electronic spectroscopy. J Phys Chem B 109: 10542–10556PubMedCrossRefGoogle Scholar
  10. Damjanović A, Kosztin I, Kleinekathoefer U and Schulten K (2002a) Excitons in a photosynthetic light-harvesting system: A combined molecular dynamics, quantum chemistry, and polaron model study. Phys Rev E 65: 031919-1– 031919-24Google Scholar
  11. Damjanović A, Vaswani HM, Fromme P and Fleming GR (2002b) Chlorophyll excitations in photosystem I of Syne-chococcus elongatus. J Phys Chem B 106: 10251–10262CrossRefGoogle Scholar
  12. Dekker JP and Van Grondelle R (2000) Primary charge separation in photosystem II. Photosynth Res 63: 195–208PubMedCrossRefGoogle Scholar
  13. Diner BA and Rappaport F (2002) Structure, dynamics, and energetics of the primary photochemistry of photosystem II of oxygenic photosynthesis. Annu Rev Plant Biol 53: 551–580PubMedCrossRefGoogle Scholar
  14. Diner BA, Schlodder E, Nixon JP, Coleman WJ, Rappaport F, Lavergne J, Vermaas WFJ and Chisholm DA (2001) Site-directed mutations at D1-His198 and D2-His197 of photosystem II in Synechocystis PCC 6803: Sites of primary charge separation and cation and triplet stabilization. Biochemistry 40: 9265–9281PubMedCrossRefGoogle Scholar
  15. Durrant JR, Klug DR, Kwa SLS, Van Grondelle R, Porter G and Dekker JP (1995) A multimer model for P680, the primary electron donor of photosystem II. Proc Natl Acad Sci USA 92: 4798–4802PubMedCrossRefGoogle Scholar
  16. Ferreira KN, Iverson TM, Maghlaoui K, Barber J and Iwata S (2004) Architecture of the photosynthetic oxygen-evolving center. Science 303: 1831–1838PubMedCrossRefGoogle Scholar
  17. Förster T (1965) Delocalized excitation and excitation transfer. In: Sinanoğlu (ed) Modern Quantum Chemistry, Part III. B. Action of Light and Organic Crystals, pp. 93–137. Academic, New YorkGoogle Scholar
  18. Frese RN, Palacios MA, Azzizi A, Van Stokkum IHM, Kruip J, Roegner M, Karapetyan NV, Schlodder E, Van Gron-delle R and Dekker JP (2002) Electric field effects on red chlorophylls, β-carotenes and P700 in cyanobacterial photosystem I complexes. Biochim Biophys Acta 1554: 180–191PubMedCrossRefGoogle Scholar
  19. Gillie JK, Small GJ and Golbeck JH (1989) Nonphotochem-ical hole burning of the native antenna complex of photo-system I (PS I-200). J Phys Chem 93: 1620–1627CrossRefGoogle Scholar
  20. Gobets B and Van Grondelle R (2001) Energy transfer and trapping in photosystem I. Biochim Biophys Acta 1507: 80–99PubMedCrossRefGoogle Scholar
  21. Gobets B, Van Stokkum IHM, Van Mourik F, Dekker JP and Van Grondelle R (2003) Excitation wavelength dependence of the fluorescence kinetics in photosystem I particles from Synechocystis PCC 6803 and Synechococcus elongatus. Biophys J 85: 3883–3898PubMedCrossRefGoogle Scholar
  22. Gradinaru CC, Özdemir S, Gülen D, Van Stokkum IHM, Van Grondelle R and Van Amerongen H (1998) The flow of excitation energy in LHCII monomers. Implications for the structural model of the major plant antenna. Biophys J 75: 3064–3077PubMedCrossRefGoogle Scholar
  23. Greenfield SR, Seibert M, Govindjee and Wasielewski M (1997) Direct measurement of the effective rate constant for primary charge separation in isolated photosystem II reaction centers. J Phys Chem B 101: 2251–2255CrossRefGoogle Scholar
  24. Groot M-L, Pawlowicz NP, Van Wilderen LJGW, Breton J, Van Stokkum IHM and Van Grondelle R (2005) Initial electron donor and acceptor in isolated photosystem II reaction centers identified with femtosecond mid-IR spec-troscopy. Proc Natl Acad Sci USA 102: 13087–13092PubMedCrossRefGoogle Scholar
  25. Jang S, Newton MD and Silbey RJ (2004) Multichro-mophoric Förster resonance energy transfer. Phys Rev Lett 92: 218301-1–218301-4Google Scholar
  26. Jean JM and Fleming GR (1995) Competition between energy and phase relaxation in electronic curve crossing processes. J Chem Phys 103: 2092–2101CrossRefGoogle Scholar
  27. Jordan P, Fromme P, Witt HT, Klukas O, Saenger W and Krauß N (2001) Three-dimensional structure of cyanobac-terial photosystem I at 2.5 Å resolution. Nature 411: 909–917PubMedCrossRefGoogle Scholar
  28. Kamiya N and Shen J-R (2003) Crystal structure of oxygen-evolving photosystem II from Thermosynechococcus vul-canus at 3.7 Å resolution. Proc Natl Acad Sci USA 100: 98–103PubMedCrossRefGoogle Scholar
  29. Kamlowski A, Frankemoller L, Van der Est A, Stehlik D and Holzwarth AR (1996) Evidence for delocalization of the triplet state 3P680 in the D1-D2cytb559-complex of pho-tosystem II. Ber Bunsenges Phys Chem 100: 2045–2051Google Scholar
  30. Karapetyan N, Schlodder E, Van Grondelle R and Dekker JP (2006) The long wavelength chlorophylls of photosys-tem I. In: Golbeck JH (ed) Photosystem I: The Light-Driven Plastocyanin:Ferredoxin Oxidoreductase, pp. 177– 192. Springer, The NetherlandsGoogle Scholar
  31. Kleima FJ, Gradinaru CC, Calkoen F, Van Stokkum IHM, Van Grondelle R and Van Amerongen H (1997) Energy transfer in LHCII monomers at 77 K studied by sub-picosecond transient absorption spectroscopy. Biochemistry 36: 15262–15268PubMedCrossRefGoogle Scholar
  32. Kühlbrandt W, Wang DN and Fujiyoshi Y (1994) Atomic model of plant light-harvesting complex by electron crystallography. Nature 367: 614–621PubMedCrossRefGoogle Scholar
  33. Leegwater JA, Durrant JR and Klug DR (1997) Exciton equilibration induced by phonons: Theory and application to PS II reaction centers. J Phys Chem B 101: 7205–7210CrossRefGoogle Scholar
  34. Liu Z, Yan H, Wang K, Kuang T, Zhang J, Gui L, An X and Chang W (2004) Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution. Nature 428: 287–292PubMedCrossRefGoogle Scholar
  35. Loll B, Kern J, Saenger W, Zouni A and Biesiadka J (2005) Towards complete cofactor arrangement in the 3.0 Å resolution structure of photosystem II. Nature 438: 1040–1044PubMedCrossRefGoogle Scholar
  36. Meier T, Chernyak V and Mukamel S (1997) Femtosecond photon echoes in molecular aggregates. J Chem Phys 107: 8759–8774CrossRefGoogle Scholar
  37. Moerner WE (2002) A dozen years of single-molecule spec-troscopy in physics, chemistry, and biophysics. J Phys Chem B 106: 910–927CrossRefGoogle Scholar
  38. Mukamel S (1995) Principles of Nonlinear Optical Spec-troscopy. Oxford University Press, New York, OxfordGoogle Scholar
  39. Noguchi T, Inoue Y and Satoh K (1993) FT-IR studies on the triplet state of P680 in the photosystem II reaction center: Triplet equilibrium within a chlorophyll dimer. Biochemistry 32: 7186–7195PubMedCrossRefGoogle Scholar
  40. Novoderezhkin VI and Razjivin AP (1994) Exciton states of the antenna and energy trapping by the reaction center. Photosynth Res 42: 9–15CrossRefGoogle Scholar
  41. Novoderezhkin VI and Razjivin AP (1996) The theory of Förster-type migration between clusters of strongly interacting molecules: Application to light-harvesting complexes of purple bacteria. Chem Phys 211: 203–214CrossRefGoogle Scholar
  42. Novoderezhkin VI, Palacios MA, Van Amerongen H and Van Grondelle R (2004a) Energy-transfer dynamics in the LHCII complex of higher plants: Modified Redfield approach. J Phys Chem B 108: 10363–10375CrossRefGoogle Scholar
  43. Novoderezhkin VI, Yakovlev AG, Van Grondelle R and Shuvalov VA (2004b) Coherent nuclear and electronic dynamics in primary charge separation in photosynthetic reaction centers: A Redfield theory approach. J Phys Chem B 108: 7445–7457CrossRefGoogle Scholar
  44. Novoderezhkin VI, Palacios MA, Van Amerongen H and Van Grondelle R (2005a) Excitation dynamics in the LHCII complex of higher plants: Modeling based on 2.72 A crystal structure. J Phys Chem B 109: 10493–10504CrossRefGoogle Scholar
  45. Novoderezhkin VI, Andrizhiyevskaya EG, Dekker JP and Van Grondelle R (2005b) Pathways and timescales of primary charge separation in the photosystem II reaction center as revealed by a simultaneous fit of time-resolved fluorescence and transient absorption. Biophys J 89: 1464–1481CrossRefGoogle Scholar
  46. Novoderezhkin VI, Rutkauskas D and Van Grondelle R (2006) Dynamics of the emission spectrum from single LH2 complex: Interplay of slow and fast nuclear motions. Biophys J 90: 2890–2902PubMedCrossRefGoogle Scholar
  47. Novoderezhkin VI, Dekker JP and Van Grondelle R (2007) Mixing of exciton and charge-transfer states in photosys-tem II reaction centers: Modeling of Stark spectra with modified Redfield theory. Biophys J 93: 1293–1311PubMedCrossRefGoogle Scholar
  48. Peterman EJG, Pullerits T, Van Grondelle R and Van Amerongen H (1997) Electron-phonon coupling and vibronic fine structure of light-harvesting complex II of green plants: Temperature dependent absorption and high-resolution fluorescence spectroscopy. J Phys Chem B 101: 4448–4457CrossRefGoogle Scholar
  49. Peterman EJG, Van Amerongen H, Van Grondelle R and Dekker JP (1998) The nature of the excited state of the reaction center of photosystem II of green plants: A high-resolution fluorescence spectroscopy study. Proc Natl Acad Sci USA 95: 6128–6133PubMedCrossRefGoogle Scholar
  50. Pieper J, Voigt J and Small GJ (1999) Chlorophyll a Franck-Condon factors and excitation energy transfer. J Phys Chem B 103: 2319–2322CrossRefGoogle Scholar
  51. Prokhorenko VI and Holzwarth AR (2000) Primary processes and structure of the photosystem II reaction center: A) Photon echo study. J Phys Chem B 104: 1563–11578CrossRefGoogle Scholar
  52. Raszewski G, Saenger W and Renger Th (2005) Theory of optical spectra of photosystem II reaction centers: Location of the triplet state and the identity of the primary electron donor. Biophys J 88: 986–998PubMedCrossRefGoogle Scholar
  53. Redfield AG (1965) The theory of relaxation processes. Adv Mag Res 1: 1–32Google Scholar
  54. Renger Th and Marcus R (2002) Photophysical properties of PS-2 reaction centers and a discrepancy in exciton relaxation times. J Phys Chem B 106: 1809–1819CrossRefGoogle Scholar
  55. Renger Th and May V (1997) Theory of multiple exciton effects in the photosynthetic antenna complex LHC-II. J Phys Chem B 101: 7232–7240CrossRefGoogle Scholar
  56. Renger Th and Schlodder E (2006). Modeling of optical spectra and light harvesting in photosystem I. In: Golbeck JH (ed) Photosystem I: The Light-Driven Plastocyanin:Ferredoxin Oxidoreductase, pp. 595–610. Springer, The NetherlandsGoogle Scholar
  57. Renger Th, May V and Kühn O (2001) Ultrafast excitation energy transfer dynamics in photosynthetic pigment-protein complexes. Phys Rep 343: 137–254CrossRefGoogle Scholar
  58. Rutkauskas D, Novoderezhkin V, Cogdell RJ and Van Grondelle R (2004) Fluorescence spectral fluctuations of single LH2 complexes from Rhodopseudomonas aci-dophila strain 10050. Biochemistry 43: 4431–4438PubMedCrossRefGoogle Scholar
  59. Rutkauskas D, Novoderezhkin V, Cogdell RJ and Van Grondelle R (2005) Fluorescence spectroscopy of confor-mational changes of single LH2 complexes. Biophys J 88: 422–435PubMedCrossRefGoogle Scholar
  60. Rutkauskas D, Novoderezhkin V, Gall A, Olsen J, Cogdell RJ, Hunter CN and Van Grondelle R (2006) Spectral trends in the fluorescence of single bacterial light-harvesting complexes: Experiments and modified Redfield simulations. Biophys J 90: 2475–2485PubMedCrossRefGoogle Scholar
  61. Savikhin S (2006) Ultrafast optical spectroscopy of photo-system I. In: Golbeck JH (ed) Photosystem I: The Light-Driven Plastocyanin:Ferredoxin Oxidoreductase, pp 155– 176. Springer, The NetherlandsGoogle Scholar
  62. Schlodder E, Shubin VV, El Mohsnawy E, Roegner M and Karapetyan NV (2007) Steady-state and transient polarized absorption spectroscopy of photosystem I complexes from the cyanobacteria Arthrospira platensis and Thermosynechococcus elongatus. Biochim Biophys Acta 1767: 732–741PubMedCrossRefGoogle Scholar
  63. Scholes GD and Fleming GR (2000) On the mechanism of light harvesting in purple bacteria: B800 to B850 energy transfer. J Phys Chem B 104: 1854–1868CrossRefGoogle Scholar
  64. Sener MK, Lu DY, Ritz T, Park S, Fromme P and Schulten K (2002) Robustness and optimality of light harvesting in cyanobacterial photosystem I. J Phys Chem B 106: 7948– 7960CrossRefGoogle Scholar
  65. Standfuss J, Van Scheltinga1 ACT, Lamborghini M and Kühlbrandt W (2005) Mechanisms of photoprotection and nonphotochemical quenching in pea light harvesting complex at 2.5 Å resolution. EMBO J 24: 919–928PubMedCrossRefGoogle Scholar
  66. Sumi H (1999) Theory on rates of excitation-energy transfer between molecular aggregates through distributed transition dipoles with application to the antenna system in bacterial photosynthesis. J Phys Chem B 103: 252–260CrossRefGoogle Scholar
  67. Tietz C, Chekhlov O, Dräbenstedt A, Schuster J and Wrachtrup J (1999) Spectroscopy on single light-harvesting complexes at low temperature. J Phys Chem B 103: 6328–6333CrossRefGoogle Scholar
  68. Van Amerongen H and Dekker JP (2003) Light-harvesting in photosystem II. In: Green BR and Parson WW (ed) Light-Harvesting Antennas in Photosynthesis. Kluwer, Dordrecht, pp. 219–251Google Scholar
  69. Van Amerongen H, Valkunas L and Van Grondelle R (2000) Photosynthetic Excitons. World Scientific Publishers, SingaporeGoogle Scholar
  70. Van Grondelle R and Gobets B (2004) Transfer and trapping of excitations in plant photosystems. In: Papageorgiou GC and Govindjee (eds) Chlorophyll a Fluorescence: A Signature of Photosynthesis, pp. 107–132. Springer, The NetherlandsGoogle Scholar
  71. Van Grondelle R and Novoderezhkin V (2006) Energy transfer in photosynthesis: Experimental insights and quantitative models. Phys Chem Chem Phys 8: 793–807PubMedCrossRefGoogle Scholar
  72. Van Grondelle R, Dekker JP, Gilbro T and Sundstroem V (1994) Energy transfer and trapping in photosynthesis. Biochim Biophys Acta 1187: 1–65CrossRefGoogle Scholar
  73. Van Mieghem FJE, Satoh K and Rutherford AW (1991) A chlorophyll tilted 30° relative to the membrane in the pho-tosystem II reaction centre. Biochim Biophys Acta 1058: 379–385CrossRefGoogle Scholar
  74. Van Oijen AM, Ketelaars M, Köhler J, Aartsma TJ and Schmidt J (1999) Unraveling the electronic structure of individual photosynthetic pigment-protein complexes. Science 285: 400–402PubMedCrossRefGoogle Scholar
  75. VisserHM,KleimaFJ,VanStokkumIHM,VanGrondelleRand Van Amerongen H (1996) Probing of many energy-transfer processes in the photosynthetic light-harvesting complex II at 77 K by energy-selective sub-picosecond transient absorption spectroscopy. Chem Phys 210: 297–312CrossRefGoogle Scholar
  76. Yang M and Fleming GR (2002) Influence of phonons on exciton transfer dynamics: comparison of the Redfield, Förster, and modified Redfield equations. Chem Phys 275: 355–372CrossRefGoogle Scholar
  77. Yang M, Damjanović A, Harsha M. Vaswani and Graham R. Fleming (2003) Energy transfer in photosystem I of cyanobacteria Synechococcus elongatus: Model study with structure-based semi-empirical hamiltonian and experimental spectral density. Biophys J 85: 140–158PubMedCrossRefGoogle Scholar
  78. Yoder LM, Cole AG and Sension RJ (2002) Structure and function in the isolated reaction center complex of pho-tosystem II: Energy and charge transfer dynamics and mechanism. Photosynth Res 72: 147–158PubMedCrossRefGoogle Scholar
  79. Zazubovich V, Matsuzaki S, Johnson TW, Hayes JM, Chitnis PR and Small GJ (2002) Red antenna states of pho-tosystem I from cyanobacterium Synechococcus elon-gatus: A spectral hole-burning study. Chem Phys 275: 47–59CrossRefGoogle Scholar
  80. Zhang WM, Meier T, Chernyak V and Mukamel S (1998) Exciton-migration and three-pulse femtosecond optical spectroscopies of photosynthetic antenna complexes. J Chem Phys 108: 7763–7774CrossRefGoogle Scholar
  81. Zouni A, Witt HT, Kern J, Fromme P, Krauß N, Saenger W and Orth P (2001) Crystal structure of photosystem II from Synechococcus elongatus at 3.8 Å resolution. Nature 409: 739–743PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Rienk van Grondelle
    • 1
  • Vladimir I. Novoderezhkin
    • 2
  • Jan P. Dekker
    • 3
  1. 1.Department of Biophysics, Faculty of SciencesVrije UniversiteitAmsterdamThe Netherlands
  2. 2.A. N. Belozersky Institute of Physico-Chemical BiologyMoscow State UniversityLeninskie GoryRussia
  3. 3.Department of Biophysics, Faculty of SciencesVrije UniversiteitAmsterdamThe Netherlands

Personalised recommendations