Skip to main content

A Model of the Generalized Stoichiometry of Electron Transport Limited C3 Photosynthesis: Development and Applications

  • Chapter
Photosynthesis in silico

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 29))

We describe an extended Farquhar, Von Caemmerer and Berry (FvCB) model for the RuBP regeneration-limited or electron transport-limited steady-state C3 photosynthesis. Analytical algorithms are presented to account for (i) the effects of Photosystem (PS) I and II photochemical efficiencies and of cyclic electron transport around PS I (CET) on the photosynthetic quantum yields and related interphotosys-tem excitation partitioning, and (ii) CET and pseudocyclic electron transport (PET) that may act in concert with linear electron transport (LET, with or without the Q-cycle) to permit flexibility in the ratio of NADPH and ATP synthesis to meet the variable demands of the carbon reduction cycle and photorespiration. The two widely used forms of the original FvCB model represent the most and least efficient electron transport stoichiometry, respectively, of special cases covered by the extended model. The generalized model integrates most basic elements of C3 photosynthesis. The model implies that even within the electron transport-limited range the relationship between quantum yields of CO2 assimilation and PS II photochemical efficiency is linear only if the latter varies in proportion with PS I photochemical efficiency. The model can be used (i) to assess any occurrence of alternative electron transport and to answer ‘what-if’ questions with respect to uncertain or unmeasured parameters, and (ii) to estimate photosynthetic parameters by curve-fitting to combined gas exchange and biophysical measurements (e.g. chlorophyll fluorescence) under various irradiance and CO2 levels. As long as current biophysical measurements were accurate, our analyses support (i) the possible in vivo occurrence of CET and basal PET even under limiting irradiance, (ii) CET as a ‘brake’ for LET to accommodate the balance between quantum yields of electron transport and CO2 assimilation, and (iii) the mode of a variable Q-cycle to obtain a correct NADPH/ATP ratio with varying light and CO2 levels if no ATP from chloroplast is used for processes other than carbon reduction and photorespiration. Our model provides a tool to facilitate understanding the stoichiometries, bioenergetics and regulation of photosynthesis under different environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albertsson P-Å (2001) A quantitative model of the domain structure of the photosynthetic membrane. Trends Plant Sci 6: 349–354

    Article  PubMed  CAS  Google Scholar 

  • Allen JF (2003) Cyclic, pseudocyclic and noncyclic pho-tophosphorylation: new links in the chain. Trends Plant Sci 8: 15–19

    Article  PubMed  CAS  Google Scholar 

  • Arnon DI (1959) Conversion of light into chemical energy in photosynthesis. Nature 184: 10–21

    PubMed  CAS  Google Scholar 

  • Asada K (1999) The water-water cycle in chloroplasts: Scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50: 601–639

    Article  PubMed  CAS  Google Scholar 

  • Avenson TJ, Cruz JA, Kanazawa A and Kramer DM (2005a) Regulating the proton budget of higher plant photosynthesis. Proc Natl Acad Sci USA 102: 9709–9713

    Article  CAS  Google Scholar 

  • Avenson TJ, Kanazawa A, Cruz JA, Takizawa K, Ettinger WE and Kramer DM (2005b) Integrating the proton circuit into photosynthesis: progress and challenges. Plant Cell Environ 28: 97–109

    Article  CAS  Google Scholar 

  • Backhausen JE, Emmerlich A, Holtgrefe S, Horton P, Nast G, Rogers JJM, Müller-Röber B and Scheibe R (1998) Transgenic potato plants with altered expression levels of chloroplast NADP-malate dehydrogenase: interactions between photosynthetic electron transport and malate metabolism in leaves and in isolated intact chloroplasts. Planta 207: 105–114

    Article  CAS  Google Scholar 

  • Backhausen JE, Kitzmann C, Horton P and Scheibe R (2000) Electron acceptors in isolated intact spinach chloroplasts act hierarchically to prevent over-reduction and competition for electrons. Photosynth Res 64: 1–13

    Article  PubMed  CAS  Google Scholar 

  • Baker NR, Harbinson J and Kramer DM (2007) Determining the limitations and regulation of photosynthetic energy transduction in leaves. Plant Cell Environ 30: 1107–1125

    Article  PubMed  CAS  Google Scholar 

  • Bernacchi CJ, Portis AR, Nakano H, Von Caemmerer S and Long SP (2002) Temperature response of mesophyll conductance. Implication for the determination of Rubisco enzyme kinetics and for limitations to photosynthesis in vivo. Plant Physiol 130: 1992–1998

    Article  PubMed  CAS  Google Scholar 

  • Bj ö rkman O and Demmig B (1987) Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 170: 489–504

    Article  Google Scholar 

  • Brooks A and Farquhar GD (1985) Effect of temperature on the CO2/O2 specificity of ribulose-1,5-bisphosphate carboxylase/oxygenase and the rate of respiration in the light. Planta 165: 397–406

    Article  CAS  Google Scholar 

  • Cannell MGR and Thornley JHM (2000) Modelling the components of plant respiration: Some guiding principles. Ann Bot 85: 45–54

    Article  CAS  Google Scholar 

  • Cape JL, Bowman MK and Kramer DM (2006) Understanding the cytochrome bc complexes by what they don't do. The Q-cycle at 30. Trends Plant Sci 11: 46–55

    Article  PubMed  CAS  Google Scholar 

  • Cheng L, Fuchigami LH and Breen PJ (2001) The relationship between photosystem II efficiency and quantum yield for CO2 assimilation is not affected by nitrogen content in apple leaves. J Exp Bot 52: 1865–1872

    Article  PubMed  CAS  Google Scholar 

  • Chow WS, Melis A and Anderson JM (1990) Adjustments of photosystem stoichiometry in chloroplasts improve the quantum efficiency of photosynthesis. Proc Natl Acad Sci USA 87: 7502–7506

    Article  PubMed  CAS  Google Scholar 

  • Cornic G and Briantais J-M (1991) Partitioning of photo-synthetic electron flow between CO2 and O2 reduction in a C3 leaf (Phaseolus vulgaris L.) at different CO2 concentrations and during drought stress. Planta 183: 178–184

    Article  CAS  Google Scholar 

  • Cornic G and Ghashghaie J (1991) Effect of temperature on net CO2 assimilation and photosystem II quantum yield of electron transport of French bean (Phaseolus vulgaris L.) leaves during drought stress. Planta 185: 255–260

    Article  CAS  Google Scholar 

  • Cornic G, Bukhov NG, Wiese C, Bligny R and Heber U (2000) Flexible coupling between light-dependent electron and vectorial proton transport in illuminated leaves of C3 plants. Role of photosystem I-dependent proton pumping. Planta 210: 468–477

    Article  PubMed  CAS  Google Scholar 

  • Cruz JA, Avenson TJ, Kanazawa A, Takizawa K, Edwards GE and Kramer DM (2005) Plasticity in light reactions of photosynthesis for energy production and photoprotec-tion. J Exp Bot 56: 395–406

    Article  PubMed  CAS  Google Scholar 

  • Delgado E, Medrano H, Keys AJ and Parry MAJ (1995) Species variation in Rubisco specificity factor. J Exp Bot 46: 1775–1777

    Article  CAS  Google Scholar 

  • Epron D, Godard G, Cornic G and Genty B (1995) Limitation of net CO2 assimilation rate by internal resistances to CO2 transfer in leaves of two tree species (Fagus sylvat-ica L. and Castanea sativa Mill.). Plant Cell Environ 18: 43–51

    Article  Google Scholar 

  • Ethier GJ and Livingston NJ (2004) On the need to incorporate sensitivity to CO2 transfer conductance into the Farquhar-Von Caemmerer-Berry leaf photosynthesis model. Plant Cell Environ 27: 137–153

    Article  CAS  Google Scholar 

  • Ethier GJ, Livingston NJ, Harrison DL, Black TA and Moran JA (2006) Low stomatal and internal conductance to CO2 versus Rubisco deactivation as determinants of the pho-tosynthetic decline of ageing evergreen leaves. Plant Cell Environ 29: 2168–2184

    Article  PubMed  CAS  Google Scholar 

  • Evans JR (1987) The dependence of quantum yield on wavelength and growth irradiance. Aust J Plant Physiol 14: 69–79

    Article  Google Scholar 

  • Evans JR (1993) Photosynthetic acclimation and nitrogen partitioning within a lucerne canopy. II. Stability through time and comparison with a theoretical optimum. Aust J Plant Physiol 20: 69–82

    CAS  Google Scholar 

  • Evans JR and Von Caemmerer S (1996) Carbon dioxide diffusion inside leaves. Plant Physiol 110: 339–346

    PubMed  CAS  Google Scholar 

  • Farquhar GD and Von Caemmerer S (1981) Electron transport limitations in the CO2 assimilation rate of leaves: A model and some observations in Phaseolus vulgaris L. In: Akoyunoglou G (ed) Photosynthesis, Vol. IV: Regulation of Carbon Metabolism, pp 163–175. Balaban International Science Services, Philadelphia, PA

    Google Scholar 

  • Farquhar GD and Von Caemmerer S (1982) Modelling of photosynthetic response to environmental conditions. In: Lange OL, Nobel PS, Osmond CB and Ziegler H (eds) Physiological Plant Ecology II, Water Relations and Carbon Assimilation. Encyclopedia of Plant Physiology, New Series, Vol. 12 B, pp 549–588. Springer, Berlin

    Google Scholar 

  • Farquhar GD and Wong SC (1984) An empirical model of stomatal conductance. Aust J Plant Physiol 11: 191–210

    CAS  Google Scholar 

  • Farquhar GD, Von Caemmerer S and Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149: 78–90

    Article  CAS  Google Scholar 

  • Field TS, Nedbal L and Ort DR (1998) Nonphotochem-ical reduction of the plastoquinone pool in sunflower leaves originates from chlororespiration. Plant Physiol 116: 1209–1218

    Article  Google Scholar 

  • Flexas J, Diaz-Espejo A, Galmes J, Kaldenhoff R, Medrano H and Ribas-Carbó M (2007) Rapid variation of meso-phyll conductance in response to changes in CO2 concentration around leaves. Plant Cell Environ 30: 1284–1298

    Article  PubMed  CAS  Google Scholar 

  • Fridlyand LE and Scheibe R (1999) Controlled distribution of electrons between acceptors in chloroplasts: a theoretical consideration. Biochim Biophys Acta 1413: 31–42

    Article  CAS  Google Scholar 

  • Furbank RT, Jenkins CLD and Hatch MD (1990) C4 photosynthesis: Quantum requirement, C4 acid overcycling and Q-cycle involvement. Aust J Plant Physiol 17: 1–7

    CAS  Google Scholar 

  • Galmés J, Flexas J, Keys AJ, Cifre J, Mitchell RAC, Madg-wick PJ, Haslam RP, Medrano H and Parry MAJ (2005) Rubisco specificity factor tends to be larger in plant species from drier habitats and in species with persistent leaves. Plant Cell Environ 28: 571–579

    Article  Google Scholar 

  • Genty B and Harbinson J (1996) Regulation of light utilization for photosynthetic electron transport. In: Baker NR (ed) Advances in Photosynthesis, Vol 5, Photosynthesis and the Environment, pp 66–99. Kluwer, Dordrecht

    Google Scholar 

  • Genty B, Briantais J and Baker N (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990: 87–92

    CAS  Google Scholar 

  • Genty B, Wonders J and Baker NR (1990) Non-photochemical quenching of Fo in leaves is emission wavelength dependent consequences for quenching analysis and its interpretation. Photosynth Res 26: 133–139

    Article  CAS  Google Scholar 

  • Groth G and Junge W (1993) Proton slip of the chloroplast ATPase: its nucleotide dependence, energetic threshold, and relation to an alternating site mechanism of catalysis. Biochemistry 32: 8103–8111

    Article  PubMed  CAS  Google Scholar 

  • Haldrup A, Jensen PE, Lunde C and Scheller HV (2001) Balance of power: a view of the mechanism of photosynthetic state transitions. Trends Plant Sci 6: 301–305

    Article  PubMed  CAS  Google Scholar 

  • Harbinson J and Foyer CH (1991) Relationships between the efficiencies of photosystems I and II and stromal rodex state in CO2-free air: Evidence for cyclic electron flow in vivo. Plant Physiol 97: 41–49

    Article  PubMed  CAS  Google Scholar 

  • Harbinson J and Woodward FI (1987) The use of light induced absorbance change at 820 nm to monitor the oxidation state of P700 in leaves. Plant Cell Environ 10: 131–140

    CAS  Google Scholar 

  • Harley PC, Loreto F, Di Marco G and Sharkey TD (1992a) Theoretical considerations when estimating the mesophyll conductance to CO2 flux by analysis of the response of photosynthesis to CO2. Plant Physiol 98: 1429–1436

    Article  CAS  Google Scholar 

  • Harley PC, Thomas RB, Reynolds JF and Strain BR (1992b) Modelling photosynthesis of cotton grown in elevated CO2. Plant Cell Environ 15: 271–282

    Article  CAS  Google Scholar 

  • Hauska G, Sch ü tz M and B ü ttner M (1996) The cytochrome b 6 f complex — composition, structure and function. In: Ort DR and Yocum CF (eds) Oxygenic Photosynthesis: The Light Reactions. Advances in Photosynthesis Vol 4, pp 377–398. Kluwer, Dordrecht

    Chapter  Google Scholar 

  • Heber U (2002) Irrungen, Wirrungen? The Mehler reaction in relation to cyclic electron transport in C3 plants. Photo-synth Res 73: 223–231

    Article  CAS  Google Scholar 

  • Holtgrefe S, Bader KP, Horton P, Scheibe R, Von Schaewen A and Backhausen JE (2003) Decreased content of leaf ferredoxin changes electron distribution and limits photosynthesis in transgenic potato plants. Plant Physiol 133: 1768–1778

    Article  PubMed  CAS  Google Scholar 

  • Inada K (1976) Action spectra for photosynthesis in higher plants. Plant Cell Physiol 17: 355–365

    Google Scholar 

  • Johnson GN (2005) Cyclic electron transport in C3 plants: facts or artefacts? J Exp Bot 56: 407–416

    Article  PubMed  CAS  Google Scholar 

  • Joliot P and Joliot A (2005) Quantification of cyclic and linear flows in plants. Proc Natl Acad Sci USA 102: 4913– 4918

    Article  PubMed  CAS  Google Scholar 

  • Jordan DB and Ogren WL (1981) Species variation in the specificity of ribulose biphosphate carboxylase/ oxygenase. Nature 291: 513–515

    Article  CAS  Google Scholar 

  • Junge W, Panke O, Cherepanov DA, Gumbiowski K, Muller M and Engelbrecht S (2001) Inter-subunit rotation and elastic power transmission in F0F1-ATPase. FEBS Lett 504: 152–160

    Article  PubMed  CAS  Google Scholar 

  • Juretić D and Westerhoff HV (1987) Variation of efficiency with free-energy dissipation in models of biological energy transduction. Biophys Chem 28: 21–34

    Article  PubMed  Google Scholar 

  • Kramer DM, Avenson TJ and Edwards GE (2004) Dynamic flexibility in the light reactions of photosynthesis governed by both electron and proton transfer reactions. Trends Plant Sci 9: 349–357

    Article  PubMed  CAS  Google Scholar 

  • Laisk A and Loreto F (1996) Determining photosyn-thetic parameters from leaf CO2 exchange and chlorophyll fluorescence. Ribulose-1,5-bisphosphate carboxy-lase/oxygenase specificity factor, dark respiration in the light, excitation distribution between photosystems, alternative electron transport rate, and mesophyll diffusion resistance. Plant Physiol 110: 903–912

    PubMed  CAS  Google Scholar 

  • Laisk A, Oja V, Rasulov B, R ä mma H, Eichelmann H, Kas-parova I, Pettai H, Padu E and Vapaavuori E (2002) A computer-operated routine of gas exchange and optical measurements to diagnose photosynthetic apparatus in leaves. Plant Cell Environ 25: 923–943

    Article  CAS  Google Scholar 

  • Laisk A, Eichelmann H, Oja V and Peterson RB (2005) Control of cytochrome b 6 f at low and high light intensity and cyclic electron transport in leaves. Biochim Biophys Acta 1708: 79–90

    Article  PubMed  CAS  Google Scholar 

  • Laisk A, Eichelmann H, Oja V, Rasulov B and R ä mma H (2006) Photosystem II cycle and alternative electron flow in leaves. Plant Cell Physiol 47: 972–983

    Article  PubMed  CAS  Google Scholar 

  • Laisk A, Eichelmann H, Oja V, Talts E and Scheibe R (2007) Rates and roles of cyclic and alternative electron flow in potato leaves. Plant Cell Physiol 48: 1575–1588

    Article  PubMed  CAS  Google Scholar 

  • Lavergne J and Trissl HW (1995) Theory of fluorescence induction in photosystem II: derivation of analytical expressions in a model including exciton-radical-pair equilibrium and restricted energy transfer between photo-synthetic units. Biophys J 68: 2474–2492

    Article  PubMed  CAS  Google Scholar 

  • Long SP and Bernacchi CJ (2003) Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. J Exp Bot 54: 2393–2401

    Article  PubMed  CAS  Google Scholar 

  • Long SP, Postl WF and Bolh á r-Nordenkampf HR (1993) Quantum yields for uptake of carbon dioxide in C3 vascular plants of contrasting habitats and toxonomic groupings. Planta 189: 226–234

    Article  CAS  Google Scholar 

  • McCree KJ (1972) The action spectrum, absorptance and quantum yield of photosynthesis in crop plants. Agric Meteorol 9: 191–216

    Article  Google Scholar 

  • Makino A, Miyake C and Yokota A (2002) Physiological functions of the water-water cycle (Mehler reactions) and the cyclic electron flow around PS I in rice leaves. Plant Cell Physiol 43: 1017–1026

    Article  PubMed  CAS  Google Scholar 

  • Mitchell P (1975) The proton motive Q-cycle: a general formulation. FEBS Lett 59: 137–139

    Article  PubMed  CAS  Google Scholar 

  • Miyake C and Yokota A (2001) Cyclic flow of electrons within PS II in thylakoid membranes. Plant Cell Physiol 42: 508–515

    Article  PubMed  CAS  Google Scholar 

  • Miyake C, Miyata M, Shinzaki Y and Tomizawa K (2005) CO2 response of cyclic electron flow around PS I (CEF-PS I) in tobacco leaves — Relative electron fluxes through PS I and PS II determine the magnitude of non-photochemical quenching (NPQ) of Chl fluorescence. Plant Cell Physiol 46: 629–637

    Article  PubMed  CAS  Google Scholar 

  • Nelson N, Sacher A and Nelson H (2002) The significance of molecular slips in transport systems. Nat Rev Mol Cell Biol 3: 876–881

    Article  PubMed  CAS  Google Scholar 

  • Noctor G and Foyer CH (1998) A re-evaluation of the ATP:NADPH budget during C3 photosynthesis: a contribution from nitrate assimilation and its associated respiratory activity? J Exp Bot 49: 1895–1908

    Article  CAS  Google Scholar 

  • Öquist G and Chow WS (1992) On the relationship between the quantum yield of Photosystem II electron transport, as determined by chlorophyll fluorescence and the quantum yield of CO2-dependent O2 evolution. Photosynth Res 33: 51–62

    Article  Google Scholar 

  • Ort DR and Baker NR (2002) A photoprotective role for O2 as an alternative electron sink in photosynthesis? Curr Opin Plant Biol 5: 193–198

    Article  PubMed  CAS  Google Scholar 

  • Osyczka A, Moser CC and Dutton PL (2005) Fixing the Q cycle. Trends Biochem Sci 30: 176–182

    Article  PubMed  CAS  Google Scholar 

  • Peterson RB (1989) Partitioning of noncyclic photosynthetic electron transport to O2-dependent dissipative processes as probed by fluorescence and CO2 exchange. Plant Phys-iol 90: 1322–1328

    Article  CAS  Google Scholar 

  • Pettigrew WT and Turley RB (1998) Variation in photo-synthetic components among photosynthetically diverse cotton genotypes. Photosynth Res 56: 15–25

    Article  CAS  Google Scholar 

  • Pf ü ndel E (1998) Estimating the contribution of photosystem I to total leaf chlorophyll fluorescence. Photosynth Res 56: 185–195

    Article  Google Scholar 

  • Ruuska SA, Badger MR, Andrews TJ and Von Caemmerer S (2000) Photosynthetic electron sinks in transgenic tobacco with reduced amounts of Rubisco: little evidence for significant Mehler reaction. J Exp Bot 51: 357–368

    Article  PubMed  CAS  Google Scholar 

  • Sacksteder CA and Kramer DM (2000) Dark interval relaxation kinetics of absorbance changes as a quantitative probe of steady-state electron transfer. Photosynth Res 66: 145–158

    Article  PubMed  CAS  Google Scholar 

  • Sacksteder CA, Kanazawa A, Jacoby ME and Kramer DM (2000) The proton to electron stoichiometry of steady-state photosynthesis in living plants: A proton-pumping Q cycle is continuously engaged. Proc Natl Acad Sci USA 97: 14283–14288

    Article  PubMed  CAS  Google Scholar 

  • Seaton GGR and Walker DA (1990) Chlorophyll fluorescence as a measure of photosynthetic carbon assimilation. Proc R Soc Lond Ser B Biol Sci 242: 29–35

    Article  Google Scholar 

  • Seelert H, Poetsch A, Dencher NA, Engel A, Stahlberg H and M ü ller DJ (2000) Proton powered turbine of a plant motor. Nature 405: 418–419

    Article  PubMed  CAS  Google Scholar 

  • Sharkey TD (1985) Photosynthesis in intact leaves of C3 plants: physics, physiology and rate limitations. Bot Rev 51: 53–105

    Article  Google Scholar 

  • Sharkey TD, Berry JA and Sage RF (1988) Regulation of photosynthetic electron-transport in Phaseolus vulgaris L., as determined by room-temperature chlorophyll a fluorescence. Planta 176: 415–424

    Article  CAS  Google Scholar 

  • Trebst A (1974) Energy conservation in photosynthetic electron transport of chloroplasts. Annu Rev Plant Physiol 25: 423–458

    Article  CAS  Google Scholar 

  • Trissl H-W and Wilhelm C (1993) Why do thylakoid membranes from higher plants form grana stacks? Trends Biochem Sci 18: 415–419

    Article  PubMed  CAS  Google Scholar 

  • Von Caemmerer S (2000) Biochemical models of leaf photosynthesis. Techniques in Plant Sciences No. 2. CSIRO Publishing, Collingwood, Victoria

    Google Scholar 

  • Von Caemmerer S and Evans JR (1991) Determination of the average partial pressure of CO2 in chloroplasts from leaves of several C3 plants. Aust J Plant Physiol 18: 287–305

    Google Scholar 

  • Von Caemmerer S, Evans JR, Hudson GS and Andrews TJ (1994) The kinetics of ribulose-1,5-bisphosphate carboxy-lase/oxygenase in vivo inferred from measurements of photosynthesis in leaves of transgenic tobacco. Planta 195: 88–97

    Article  Google Scholar 

  • Warren CR (2004) The photosynthetic limitation posed by internal conductance to CO2 movement is increased by nutrient supply. J Exp Bot 55: 2313–2321

    Article  PubMed  CAS  Google Scholar 

  • Warren CR (2006) Estimating the internal conductance to CO2 movement. Funct Plant Biol 33: 431–442

    Article  CAS  Google Scholar 

  • Warren CR and Adams MA (2006) Internal conductance does not scale with photosynthetic capacity: implications for carbon isotope discrimination and the economics of water and nitrogen use in photosynthesis. Plant Cell Environ 29: 192–201

    Article  PubMed  CAS  Google Scholar 

  • Wong S-C and Woo KC (1986) Simultaneous measurements of steady-state chlorophyll a fluorescence and CO2 assimilation in leaves. The relationship between fluorescence and photosynthesis in C3 and C4 plants. Plant Physiol 80: 877–883

    Article  PubMed  CAS  Google Scholar 

  • Wullschleger SD (1993) Biochemical limitations to carbon assimilation in C3 plants — A retrospective analysis of the A/C i curves from 109 species. J Exp Bot 44: 907–920

    Article  CAS  Google Scholar 

  • Yin X, Van Oijen M and Schapendonk AHCM (2004) Extension of a biochemical model for the generalized stoi-chiometry of electron transport limited C3 photosynthesis. Plant Cell Environ 27: 1211–1222

    Article  CAS  Google Scholar 

  • Yin X, Harbinson J and Struik PC (2006) Mathematical review of literature to assess alternative electron transports and interphotosystem excitation partitioning of steady-state C3 photosynthesis under limiting light. Plant Cell Environ 29: 1771–1782 (with corrigendum in Plant Cell Environ 29: 2252)

    Article  PubMed  CAS  Google Scholar 

  • Yin X, Struik PC, Romero P, Harbinson J, Evers JB, Van der Putten PEL and Vos J (2009) Using combined measurements of gas exchange and chlorophyll fluorescence to estimate parameters of a biochemical C3 photosynthesis model: A critical appraisal and a new integrated approach applied to leaves in a wheat (Triticum aestivum) canopy. Plant Cell Environ 32: 448–464

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Yin, X., Harbinson, J., Struik, P.C. (2009). A Model of the Generalized Stoichiometry of Electron Transport Limited C3 Photosynthesis: Development and Applications. In: Laisk, A., Nedbal, L., Govindjee (eds) Photosynthesis in silico . Advances in Photosynthesis and Respiration, vol 29. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9237-4_11

Download citation

Publish with us

Policies and ethics