Advertisement

On the Multiscale Computation of Confined Granular Media

  • H. A. Meier
  • P. Steinmann
  • E. Kuhl
Part of the Computational Methods in Applied Sciences book series (COMPUTMETHODS, volume 14)

This contribution sets the focal point on the macroscopic impact of microscopic boundary conditions of discrete granular assemblies. We propose a two scale homogenization approach, containing a micro and a macro level. The microscale, describing the mechanical behavior of the single grains, is modeled by a discrete element method. On the macroscale, a continuum is assumed, discretized by a standard finite element method. Each point on the macroscale is assumed to have a corresponding micro structure, linked by the concept of a representative volume element. As a representative quantity, we focus on the Reynolds principle of dilatancy. Representative numerical examples include a slope-stability test as well as a bi-axial compression test.

Keyword

Granular materials computational homogenization discrete elements 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    BORJA, R. I., AND WREN, J. R. Micromechanics of granular media part I: Generation of overall constitutive equation for assemblies of circular disks. Computer Methods in Applied Mechanics and Engineering 127 (1995), 13–36zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    BORN, M. Dynamik der Kristallgitter. Teubner, Leipzig (1915)zbMATHGoogle Scholar
  3. 3.
    CAUCHY, A. L. De la pression ou tension dans un systeme de points matÉriels. Exercises De Mathematiques(1828), 253–277Google Scholar
  4. 4.
    CAUCHY, A. L. Sur l'Équilibre et le mouvement d'un systeme de points matÉriels sollicitÉs par des forces d'attraction ou de repulsion mutuelle. Exercises De Mathematiques(1828), 227–252Google Scholar
  5. 5.
    CUNDALL, P. A., AND STRACK, O. D. L. The distinct element method as a tool for research in granular media. Tech. Rep., Report to the National Science Foundation Concerning NSF Grant ENG76-20711, PART I, 1978Google Scholar
  6. 6.
    CUNDALL, P. A., AND STRACK, O. D. L. A discrete numerical model for granular assemblies. Geotechnique 29, 1 (1979), 47–65CrossRefGoogle Scholar
  7. 7.
    CUNDALL, P. A., AND STRACK, O. D. L. The distinct element method as a tool for research in granular media. Tech. Rep., Report to the National Science Foundation Concerning NSF Grant ENG76-20711, PART II, 1979Google Scholar
  8. 8.
    D'ADDETTA, G., RAMM, E., DIEBELS, S., AND EHLERS, W. A particle center based homogenization strategy for granular assemblies. Engineering Computations 21, 2/3/4 (2004), 360–383zbMATHCrossRefGoogle Scholar
  9. 9.
    EHLERS, W., RAMM, E., DIEBELS, S., AND D'ADDETTA, G. A. From particle ensembles to cosserat continua: Homogenization of contact forces towards stresses and couple stresses. International Journal of Solids and Structures 40, 24 (2003), 6681–6702zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    GRYTZ, R., AND MESCHKE, G. Consistent micro-macro transitions at large objective strains in curvilinear convective coordinates. International Journal for numerical Methods in Engineering 73(6) (2008), 805–824CrossRefMathSciNetGoogle Scholar
  11. 11.
    KANEKO, K., TERADA, K., KYOYA, T., AND KISHINO, Y. Global-local analysis of granular media in quasi-static equilibrium. International Journal of Solids and Structures 40 (2003), 4043–4069zbMATHCrossRefGoogle Scholar
  12. 12.
    KOUZNETSOVA, V., BREKELMANS, W. A. M., AND BAAIJENS, F. P. T. An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27, 1 (2004), 37–48CrossRefGoogle Scholar
  13. 13.
    LARSSON, F., AND RUNESSON, K. RVE computations with error control and adaptivity: the power of duality. Computational Mechanics 39 (2007), 647–661CrossRefMathSciNetzbMATHGoogle Scholar
  14. 14.
    LUBACHEVSKY, B. D. How to simulate billiards and similar systems? Journal of Computational Physics 94 (1991), 255–283zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    LUBACHEVSKY, B. D., AND STILLINGER, F. H. Geometric properties of random disk packings. Journal of Statistical Physics 60 (1990), 561–583zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    MEIER, H. A., KUHL, E., AND STEINMANN, P. Failure of granular materials at different scales — microscale approach. In Proceedings in Applied Mathematics and Mechanics(2006), WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, pp. 399–400Google Scholar
  17. 17.
    MEIER, H. A., KUHL, E., AND STEINMANN, P. A note on the generation of periodic granular microstructures based on grain size distributions. International Journal for Numerical and Analytical Methods in Geomechanics 32, 5 (2008), 509–522CrossRefGoogle Scholar
  18. 18.
    MEIER, H. A., STEINMANN, P., AND KUHL, E. Towards multiscale computation of confined granular media — Contact forces, stresses and tangent operators. Technische Mechanik 28, 1 (2008), 32–42Google Scholar
  19. 19.
    MIEHE, C. Strain-driven homogenization of inelastic microstructures and composites based on an incremental variational formulation. International Journal for Numerical Methods in Engineering 55, 11 (2002), 1285–1322zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    MIEHE, C., AND DETTMAR, J. A framework for micro — macro transitions in periodic particle aggregates of granular materials. Computer Methods in Applied Mechanics and Engineering 193 (2004), 225–256zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    MIEHE, C., AND KOCH, A. Computational micro-to-macro transitions of discretized microstructures undergoing small strains. Archive of Applied Mechanics (Ingenieur Archiv) 72, 4–5 (2002), 300–317CrossRefGoogle Scholar
  22. 22.
    TAYLOR, G. I. Plastic strain in metals. Journal Institute of Metals 62 (1938), 307–324Google Scholar
  23. 23.
    VOIGT, W. Lehrbuch der Kristallphysik. Teubner, Leipzig, (1910)Google Scholar
  24. 24.
    ZIENKIEWICZ, O. C., AND PANDE, G. N. Time-dependent multilaminate model of rocks — A numerical study of deformation and failure rock masses. International Journal for Numerical and Analytical Methods in Geomechanics 1 (1977), 219–247CrossRefGoogle Scholar
  25. 25.
    ZOHDI, T. I., AND WRIGGERS, P. Introduction to computational micromechanics. Springer, Berlin, Heidelberg, New York (2005)zbMATHGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2009

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of KaiserslauternKaiserslauternGermany
  2. 2.Department of Mechanical EngineeringUniversity of Erlangen-NurembergErlangenGermany
  3. 3.Department of Mechanical EngineeringStanford UniversityStanfordUSA

Personalised recommendations