Upper Atmosphere and Ionosphere of Saturn

  • Andrew F. Nagy
  • Arvydas J. Kliore
  • Michael Mendillo
  • Steve Miller
  • Luke Moore
  • Julianne I. Moses
  • Ingo Müller-Wodarg
  • Don Shemansky
Chapter

Abstract

This chapter summarizes our current understanding of the upper atmosphere and ionosphere of Saturn. We summarize the available observations and the various relevant models associated with these regions. We describe what is currently known, outline any controversies and indicate how future observations can help in advancing our understanding of the various controlling physical and chemical processes.

Keywords

Methane Magnesium Dust Attenuation Recombination 

References

  1. Atreya, S. K. and T. M. Donahue, The role of hydrocarbons in the ionospheres of the outer planets, Icarus, 25, 335–338, 1975.CrossRefADSGoogle Scholar
  2. Atreya, S. K., T. M. Donahue, and J. H. Waite Jr., An interpretation of the Voyager measurement of Jovian electron density profiles, Nature, 280, 795–796, 1979.CrossRefADSGoogle Scholar
  3. Atreya, S. K., J. H. Waite, Jr., T. M. Donahue, A. F. Nagy, J. C. McConnell, Theory, measurements, and models of the upper atmosphere and ionosphere of Saturn. In: Gehrels, T., Matthews, M.S. (Eds.), Saturn, Univ. Arizona Press, Tucson, pp. 239–277, 1984.Google Scholar
  4. Baron R. L., R. D. Joseph, T. Owen, J. Tennyson, S. Miller, and G. E. Ballester, Infrared imaging of H3 + in the ionosphere of Jupiter, Nature, 353, 539–542, 1991.CrossRefADSGoogle Scholar
  5. Bezard, B., J. J. Moses, J. Lacy, T. Greathouse, M. Richter, and C. Griffith, Detection of ethylene C2H4 on Jupiter and Saturn in non-auroral regions, Bull. Am. Astron. Soc., 33, 1079–1080, 2001.ADSGoogle Scholar
  6. Bjoraker, G.L., R.K. Achterberg, A.A. Simon-Miller, R.C. Carlson, and D.E. Jennings, Cassini/CIRS observations of water vapor in Saturn's stratosphere, Saturn After Cassini-Huygens, Imperial College, London, 28 July–1 August, 2008.Google Scholar
  7. Broadfoot, A.L., and 15 co-authors, Extreme ultraviolet observations from Voyager 1 encounter with Saturn, Science, 212, 206–211, 1981.CrossRefADSGoogle Scholar
  8. Capone, L. A., R. C. Whitten, S. S. Prasad, and J. Dubach, The ionospheres of Saturn, Uranus, and Neptune, Astrophys. J., 215, 977– 983, 1977.CrossRefADSGoogle Scholar
  9. Connerney, J. E. P. and J.H. Waite Jr., New model of Saturn's ionosphere with an influx of water from the rings, Nature, 312, 136–138, 1984.CrossRefADSGoogle Scholar
  10. Connerney, J. E. P., Magnetic connection for Saturn's rings and atmosphere, Geophys. Res. Lett., 13, 773, 1986.CrossRefADSGoogle Scholar
  11. Courtin, R., D. Gautier, A. Marten, B. Bezard, and R. Hanel, The composition of Saturn's atmosphere at northern temperate latitudes from Voyager IRIS spectra: NH3, PH3, C2H2, C2H6, CH3D, CH4, and the Saturnian D/H isotopic ratio, Astrophys. J., 287, 899–916, 1984.CrossRefADSGoogle Scholar
  12. Cowley S. W. H., E.J. Bunce, and R. Prange, Saturn's polar ionospheric flows and their relation to the main auroral oval. Ann. Geophys., 22, 1379–1394, 2004.CrossRefADSGoogle Scholar
  13. Cravens, T. E., Vibrationally excited molecular hydrogen in the upper atmosphere of Jupiter, J. Geophys. Res., 92, 11083, 1987.CrossRefADSGoogle Scholar
  14. Drossart P., J-P. Maillard, J. Caldwell, S. J. Kim, J. K. G. Watson, W. A. Majewski, J. Tennyson, S. Miller, S. K. Atreya, J. T. Clarke, J. H. Waite Jr, and R. Wagener, Detection of H3 + on Jupiter, Nature, 240, 539–541, 1989.CrossRefADSGoogle Scholar
  15. Dungey J. W., The interplanetary magnetic field and auroral zones. Phys. Rev. Lett., 6, 47, 1961.CrossRefADSGoogle Scholar
  16. Dyudina, U. A., A. P. Ingersoll, P. E. Shawn, C. C. Porco, G. Fischer, W. S. Kurth, M. D. Desch, A. Del Genio, J. Barbara, and J. Ferrier, Lightning storms on Saturn observed by Cassini ISS and RPWS in the years 2004–2006, Icarus, 190, 545–555, 2007.CrossRefADSGoogle Scholar
  17. Esposito, L. W., et al, The Cassini ultraviolet imaging spectrograph investigation, Space Sci. Rev., 115, 299–361, 2004.CrossRefADSGoogle Scholar
  18. Festou M. C. and S. K. Atreya, Voyager ultraviolet stellar occulation measurements of the composition and thermal profiles of the satur-nian upper atmosphere, Geophys. Res. Lett., 9, 1147–1152, 1982.CrossRefADSGoogle Scholar
  19. Festou, M. C., S. K. Atreya, T. M. Donahue, B. R. Sandel, D. E. She-mansky, and A. L. Broadfoot, Composition and thermal profiles of the Jovian upper atmosphere determined by the Voyager ultraviolet stellar occultation experiment, J. Geophys. Res., 86, 5715–5725, 1981.CrossRefADSGoogle Scholar
  20. Feuchtgruber, H., E. Lellouch, T. de Graauw, B. Bézard, T. Encrenaz, and M. Griffin, External supply of oxygen to the atmospheres of the giant planets, Nature, 389, 159–162, 1997.CrossRefADSGoogle Scholar
  21. Flasar, F. M., et al., Temperatures, winds and composition in the Saturnian system, Science, 307, 1247–1251, doi: 10.1126/sci-ence.1105806, 2005.CrossRefADSGoogle Scholar
  22. Fischer, G. et al., Atmospheric electricity at Saturn, Space Sci. Rev., 137, 271–285, doi:10.1007/s11214–008–9370-z, 2008.CrossRefADSGoogle Scholar
  23. Fletcher, L. N., et al., Characterizing Saturn's vertical temperature structure from Cassini/CIRS, Icarus, 189, 457–478, 2007.CrossRefADSGoogle Scholar
  24. Fouchet, T., et al.: Saturn composition and chemistry. Chapter 5, this book, 2009.Google Scholar
  25. Geballe T.R., M.-F. Jagod, and T. Oka, Detection of H3 + infrared emission lines in Saturn, Astrophys. J., 408, L109–L112, 1993.CrossRefADSGoogle Scholar
  26. Galand, M., J. Lilensten, D. Toublanc, and S. Maurice, The ionosphere of Titan: Ideal diurnal and nocturnal cases, Icarus, 140, 92–105, 1999.CrossRefADSGoogle Scholar
  27. Galand, M., R.V. Yelle, A. J. Coates, H. Backes, and J.-E. Wahlund, Electron temperature of Titan's sunlit ionosphere, Geophys. Res. Lett., 33, L21101, doi:10.1029/2006GL0247488, 2006.CrossRefADSGoogle Scholar
  28. Galand, M., L. Moore, B. Charney, I. C. F. Müller-Wodarg, and M. Mendillo, Solar primary and secondary ionization at Saturn, J. Geophys Res., 114, A06313, doi:10.1029/2008JA013981, 2009.CrossRefGoogle Scholar
  29. Glocer, A., T. I. Gombosi, G. Toth, K. C. Hansen, A.J. Ridley, and A. Nagy, Polar wind outflow model: Saturn results, J. Geophys. Res., 112, doi:10.1029/2006JA011755, 2007.Google Scholar
  30. Greathouse, T. K., J. H. Lacy, B. Bezard, J. I. Moses, C. A. Griffith, and M. J. Richter Meridional variations of temperature, C2H2 and C2H6 abundances in Saturn's stratosphere at southern summer solstice, Icarus, 177, 18–31, 2005.CrossRefADSGoogle Scholar
  31. Gurnett, D. A., et al., Radio and plasma wave observations at Saturn from Cassini's approach and first orbit, Science, 307, 1255–1259, 2005.CrossRefADSGoogle Scholar
  32. Hallett, J. T, D. E. Shemansky, and X. Liu, A rotational-level hydrogen physical chemistry model for general astrophysical application. Astrophys. J., 624, 448–461, 2005a.CrossRefADSGoogle Scholar
  33. Hallett, J. T, D. E. Shemansky, and X. Liu, Fine-structure physical chemistry modeling of Uranus H2 X quadrupole emission, Geophys. Res. Lett., 32, L02204, doi:10.1029/2004GL021327, 2005b.CrossRefGoogle Scholar
  34. Hubbard, W. B. and 27 colleagues, Structure of Saturn's mesosphere from the 28 Sgr occultations. Icarus, 130, 404–425, 1997.CrossRefADSGoogle Scholar
  35. Huestis, D. L., Hydrogen collisions in planetary atmospheres, ionospheres, and magnetospheres, Planet. Space Sci., 56, 1733, 2008.CrossRefADSGoogle Scholar
  36. Ichihara, A., O. Iwamoto, and R. K. Janev, 2000, Cross sections for the reaction H+ + H2 (v=0−14)−> H+H2 + J. Phys. B, 33, 4747, 2000.CrossRefADSGoogle Scholar
  37. Isbell J., A. J. Dessler, and J. H. Waite, Magnetospheric energisation by interaction between planetary spin and the solar wind, J. Geophys. Res., 89, 10716–10722, 1984.CrossRefADSGoogle Scholar
  38. Kaiser, M. L., J. E. P. Connerney, and M. D. Desch, Atmospheric storm explanation of saturnian electrostatic discharges, Nature, 303, 50– 53, 1983.CrossRefADSGoogle Scholar
  39. Jurac, S. and J.D. Richardson, A self-consistent model of plasma and neutrals at Saturn: Neutral cloud morphology, J. Geophys. Res., 110, A09220, doi:10.1029/2004JA010635, 2005.CrossRefGoogle Scholar
  40. Kaiser, M. L., M. D. Desch, and J. E. P. Connerney, Saturn's ionosphere -Inferred electron densities, J. Geophys. Res., 89, 2371–2376, 1984.CrossRefADSGoogle Scholar
  41. Killen, R., D.E. Shemansky, and N. Mouawad, Expected emission from Mercury's exospheric species, and their UV-Visible signatures, Ap. J. Suppl., 181, 351, 2009.CrossRefADSGoogle Scholar
  42. Kliore, A. J., J. D. Anderson, J. W. Armstrong, S. W. Asmar, C. L. Hamilton, N. J. Rappaport, H. D. Wahlquist, R. Ambrosini, F. M. Flasar, R. G. French, L. Iess, E. A. Marouf, and A. F. Nagy, Cassini Radio Science, Space Sci. Rev., 115, 1–70, 2004.CrossRefADSGoogle Scholar
  43. Kliore, A. J., et al., Midlatitude and high-latitude electron density profiles in the ionosphere of Saturn obtained by Cassini radio occultation observations. J. Geophys. Res., 114, A04315, doi:10.1029/2008JA0139000, 2009.CrossRefGoogle Scholar
  44. Lam H. A., N. Achilleos, S. Miller, J. Tennyson, L. M. Trafton, T. R. Geballe, and G. Ballester, A baseline spectroscopic study of the infrared aurorae of Jupiter, Icarus, 127, 379–393, 1997.CrossRefADSGoogle Scholar
  45. Lindal, G. F, D. N. Sweetnam, and V. R. Eshleman, The Atmosphere of Saturn: An Analysis of the Voyager Radio Occultation Measurements, Astron. J., 90, 1136–1146, 1985.CrossRefADSGoogle Scholar
  46. Lindal, G. F, The atmosphere of Neptune: An analysis of radio occultation data acquired with Voyager 2, Astron. J., 103, 967–982, 1992.CrossRefADSGoogle Scholar
  47. Majeed, T. and J. C. McConnell, The upper ionospheres of Jupiter and Saturn, Planet. Space Sci., 39, 1715–1732, 1991.CrossRefADSGoogle Scholar
  48. Majeed, T., R. V. Yelle, and J. C. McConnell, Vibrationally excited H2 in the outer planet thermospheres — Fluorescence in the Lyman and Werner bands, Planet. Space Sci., 39, 1591–1606, 1991.CrossRefADSGoogle Scholar
  49. Majeed, T. and J. C. McConnell, Voyager electron density measurements on Saturn: Analysis with a time dependent ionospheric model, J. Geophys. Res., 101, 7589–7598, 1996.CrossRefADSGoogle Scholar
  50. Matcheva, K.I., D.F. Strobel, and F.M. Flasar, Interaction of gravity waves with ionospheric plasma: Implications for Jupiter's ionosphere, Icarus, 152, 347–365, doi:10.1006/Icar.2001.6631, 2001.CrossRefADSGoogle Scholar
  51. McConnell, J. C., J. B. Holberg, G. R. Smith, B. R. Sandel, D. E. Shemansky, and A. L. Broadfoot, A new look at the ionosphere of Jupiter in light of the UVS occultation results, Planet. Space Sci., 30, 151–167, 1982.CrossRefADSGoogle Scholar
  52. McElroy, M. B, The ionospheres of the major planets, Space Sci. Rev., 14, 460–473, 1973.CrossRefADSGoogle Scholar
  53. Melin, H., S. Miller, T. Stallard, C. Smith, and D. Grodent, Estimated energy balance in the jovian upper atmosphere during an auroral heating event, Icarus, 181, 256–265, doi:10.1016/j.Icarus.2005.11.004, 2006.CrossRefADSGoogle Scholar
  54. Melin, H., S. Miller, T. Stallard, L. M. Trafton, and T. R. Geballe, Variability in the H3 + emission from Saturn: consequences for ionisa-tion rates and temperature, Icarus, 186, 234–241, 2007.CrossRefADSGoogle Scholar
  55. Melin, H., D. E. Shemansky, and X. Liu, The distribution of atomic hydrogen and oxygen in the magnetosphere of Saturn, Planet. Space Sci., doi: 101016/j.pss2009.04.014, 2009.Google Scholar
  56. Mendillo, M., L. Moore, J. Clarke, I. Müller-Wodarg, W.S. Kurth, and M.L. Kaiser, Effects of ring shadowing on the detection of electrostatic discharges at Saturn, Geophys. Res. Lett., 32, L05107, doi:10.1029/2004GL021934, 2005.CrossRefGoogle Scholar
  57. Miller S., H.A. Lam, and J. Tennyson, What astronomy has learned from observations of H3 +, Can. J. Phys., 72, 760–771, 1994.CrossRefADSGoogle Scholar
  58. Miller S. and 10 others, The role of H3+ in planetary atmospheres, Phil. Trans. Roy. Soc. 358, 2485–2502, 2000.CrossRefADSGoogle Scholar
  59. Miller S., A. Aylward, and G. Millward, Giant planet ionospheres and thermospheres: The importance of ion-neutral coupling, Space Sci. Rev., 116, 319–343, 2005.CrossRefADSGoogle Scholar
  60. Miller S., T. Stallard, C. Smith, G. Millward, H. Melin, M. Lystrup, and A. Aylward, H3 +: the driver of giant planet atmospheres, Phil. Trans. Roy. Soc., 364, 3121–3138, 2006.CrossRefADSGoogle Scholar
  61. Moore, L. and M. Mendillo, Ionospheric contribution to Saturn's inner plasmasphere, J. Geophys. Res., 110, A05310, doi:10.1029/ 2004JA010889, 2005.CrossRefGoogle Scholar
  62. Moore, L. and M. Mendillo, Are plasma depletions in Saturn's ionosphere a signature of time-dependent water input?, Geophys. Res. Lett., 34, L12202, doi:10.1029/2007GL029381, 2007.CrossRefADSGoogle Scholar
  63. Moore, L. E., M. Mendillo, I. C. F. Müller-Wodarg and D. L. Murr, Modeling of global variations and ring shadowing in Saturn's ionosphere, Icarus, 172, 503–520, 2004.CrossRefADSGoogle Scholar
  64. Moore, L., A. F. Nagy, A. J. Kliore, I. Müller-Wodarg, J. D. Richardson and M. Mendillo, Cassini radio occultations of Saturn's ionosphere: Model comparisons using a constant water flux, Geophys. Res. Lett., 33, L22202, 2006.CrossRefADSGoogle Scholar
  65. Moore, L., M. Galand, I. Müller-Wodarg, R. Yelle, and M. Mendillo, Plasma temperatures in Saturn's ionosphere, J. Geophys. Res., 113, A10, A10306, 10.1029/2008JA013373, 2008.Google Scholar
  66. Moore, L., M. Galand, I. Müller-Wodarg, and M. Mendillo, Response of Saturn's ionosphere to solar radiation: Testing parameterizations for thermal electron heating and secondary ionization processes, Planet. Space Sci., doi:10.1016/j.pss.2009.05.001, 2009.Google Scholar
  67. Moses, J.I. and S.F. Bass, The effects of external material on the chemistry and structure of Saturn's ionosphere, J. Geophys. Res., 105, 7013–7052, 2000.CrossRefADSGoogle Scholar
  68. Moses, J. I., B'ezard, B., Lellouch, E., Gladstone, G. R., Feuchtgruber, H., Allen, M., Photochemistry of Saturn's atmosphere. I. Hydrocarbon chemistry and comparisons with ISO observations. Icarus, 143, 244–298, 2000.CrossRefADSGoogle Scholar
  69. Moses, J. I., T. Fouchet, R. V. F. Yelle, A. J. Friedson, G. S. Orton, B. B'ezard, P. Drossart, G. R. Gladstone, T. Kostiuk, T. A. Livengood, The stratosphere of Jupiter. In: Bagenal, F., Dowling, T.E., McKin-non, W.B. (Eds.), Jupiter: The Planet, Satellites and Magnetosphere, Cambridge University Press, Cambridge, UK, pp. 129–157, 2004.Google Scholar
  70. Moses, J. I., T. Fouchet, B. B'ezard, G. R. Gladstone, E. Lellouch, H. Feuchtgruber, Photochemistry and diffusion in Jupiter's stratosphere: Constraints from ISO observations and comparisons with other giant planets, J. Geophys. Res., 110, E08001, doi:10.1029/ 2005JE002411 2005.CrossRefGoogle Scholar
  71. Moses, J. I. and R. J. Vervack, Jr., The structure of the upper atmosphere of Saturn, Lunar Planet. Sci. Conf., 37, #1803, 2006.ADSGoogle Scholar
  72. Müller-Wodarg, I. C. F., M. Mendillo, R. V. Yelle, and A. D. Aylward, A global circulation model of Saturn's thermosphere, Icarus, 180, 147–160, 2006.CrossRefADSGoogle Scholar
  73. Nagy, A. F., A. J. Kliore, E. Marouf, R. French, M. Flasar, N. Rappa-port, A. Anabtawi, S. W. Asmar, D. Johnston, E. Barbinis, and 2 coauthors, First results from the ionospheric radio occultations of Saturn by the Cassini spacecraft, J. Geophys. Res., 111, A06310, 2006.CrossRefGoogle Scholar
  74. Pierrard, V. and J. Lemaire, Lorentzian ion exosphere model, J. Geo-phys. Res., 101, 7923–7934, 1996.CrossRefADSGoogle Scholar
  75. Pierrard, V. and J. Lemaire, Erratum: Lorentzian ion exosphere model, J. Geophys. Res., 101, 7923–7934, 1996; 103, 4117–4118, 1998.CrossRefADSGoogle Scholar
  76. Prangé, R., T. Fouchet, R. Courtin, J.E.P. Connerney, and J.C. McConnell, Latitudinal variation of Saturn photochemistry deduced from spatially-resolved ultraviolet spectra, Icarus, 180, 379–392, 2006.CrossRefADSGoogle Scholar
  77. Sada, P. V., G. L. Bjoraker, D. E. Jennings, P. N. Romani, and G. H. McCabe, Observations of C2H6 and C2H2 in the stratosphere of Saturn, Icarus 173, 499–507, 2005.CrossRefADSGoogle Scholar
  78. Sandel, B.R., and 12 co-authors, Extreme ultraviolet observations from the Voyager 2 encounter with Saturn, Science, 215, 548–553, 1982.CrossRefADSGoogle Scholar
  79. Schunk, R. W. and A. F. Nagy, Ionospheres, 2nd edn, Cambridge University Press, 2009.Google Scholar
  80. Shemansky, D. E. and D. T. Hall, The distribution of atomic hydrogen in the magnetosphere of Saturn, J. Geophys. Res., 97, 4143–4161, 1992.CrossRefADSGoogle Scholar
  81. Shemansky, D. E., A. I. F. Stewart, R. A. West, L. W. Esposito, J. T. Hallett, and X. M. Liu, The Cassini UVIS Stellar probe of the Titan atmosphere, Science, 308, 978, 2005.CrossRefADSGoogle Scholar
  82. Shemansky, D. E., X. Liu, and H. Melin, The Saturn hydrogen plume, Planet. Space Sci., doi:101016/j.pss2009.05.002, 2009.Google Scholar
  83. Shemansky, D. E. and X. Liu, Saturn upper atmospheric structure from Cassini EUV/FUV occultations, Planet. Space Sci., under review, 2009.Google Scholar
  84. Smith, G. R., D. E. Shemansky, J. B. Holberg, A. L. Broadfoot, B. R. Sandel, Saturn's upper atmosphere from the Voyager 2 EUV solar and stellar occultations, J. Geophys. Res. 88, 8667–8678, 1983.CrossRefADSGoogle Scholar
  85. Smith, G. R. and D. M. Hunten, Study of planetary atmospheres by absorptive occultations, Rev. Geophys., 28, 117, 1990.CrossRefADSGoogle Scholar
  86. Smith, H.T., R.E. Johnson, and V.I. Shematovich, Titan's atomic and molecular nitrogen tori, Geophys. Res. Lett., 31 L16804, doi:10.1029/2004GL020580, 2004.CrossRefADSGoogle Scholar
  87. Smith, C. G. A., Aylward, A. D., Miller, S., Müller-Wodarg, I. C. F., Polar heating in the Saturn's thermosphere, Ann. Geophys., 23, 2465– 2477, 2005.CrossRefADSGoogle Scholar
  88. Smith C. G. A., A. D. Aylward, G. H. Millwrad, S. Miller and L. Moore, An unexpected cooling effect in Saturn's upper atmosphere, Nature, 445, 399–401, 2007.CrossRefADSGoogle Scholar
  89. Stallard T., S. Miller, G. E. Ballester, D. Rego, R. D. Joseph, and L. M. Trafton, The H3 + latitudinal profile of Saturn, Astrophys. J. Lett., 521, L149–L152, 1999.CrossRefADSGoogle Scholar
  90. Stallard, T., S. Miller, L. M. Trafton, T. R. Geballe, R. D. Joseph, Ion winds in Saturn's southern auroral/polar region, Icarus, 167, 204– 211, 2004.CrossRefADSGoogle Scholar
  91. Stallard T., et al., Complex structure within Saturn's infrared aurora, Nature, 456, 214, 2008.CrossRefADSGoogle Scholar
  92. Strobel, D. F. and G. R. Smith, On the temperature of the Jovian ther-mosphere, J. Atm. Sci., 30, 718, 1973.CrossRefADSGoogle Scholar
  93. Strobel, D. F., Photochemistry in outer solar system atmospheres, Space Sci. Rev., 116, 155–170, 2005.CrossRefADSGoogle Scholar
  94. Trafton L. M., T. R. Geballe, S. Miller, J. Tennyson, and G.E. Ballester, Detection of H3 + from Uranus, Astrophys. J., 405, 761–766, 1993.CrossRefADSGoogle Scholar
  95. Vasyliunas V. M., Plasma distribution and flow. In: Dessler A.J. (ed.), Physics of the Jovian Magnetosphere, Cambridge University Press, pp. 395–453, 1983.Google Scholar
  96. Vervack, R. J., Jr., and J. I. Moses, Saturn's upper atmosphere during the Voyager era: Reanalysis and modeling of the UVS occultations, Icarus, under review, 2009.Google Scholar
  97. Waite, J. H., S. K. Atreya, and A. F. Nagy, The ionosphere of Saturn — Predictions for Pioneer 11, Geophys. Res. Lett., 6, 723–726, 1979.CrossRefADSGoogle Scholar
  98. Waite, J. H., T. E. Cravens, J. U. Kozyra, A. F. Nagy, S. K. Atreya, and R. H. Chen, Electron precipitation and related aeronomy of the Jovian thermosphere and ionosphere, J. Geophys. Res., 88, 6143– 6163, 1983.CrossRefADSGoogle Scholar
  99. Waite, J.H., The ionosphere of Saturn, PhD Thesis, Univ. of Mich., Ann Arbor, 1981.Google Scholar
  100. Warwick, J. W., D. R. Evans, J. H. Romig, J. K. Alexander, M. D. Desch, M. L. Kaiser, M. G. Aubier, Y. Leblanc, A. Lecacheux, and B. M. Pedersen, Planetary radio astronomy observations from Voyager 2 near Saturn, Science, 215, 582–587, 1982.CrossRefADSGoogle Scholar
  101. West, R. A., D. F. Strobel, M. G. Tomasko, Clouds, aerosols, and photochemistry in the Jovian atmosphere, Icarus, 65, 161–217, 1986.CrossRefADSGoogle Scholar
  102. Wu, C. Y. R., F. Z. Chen, and D. L. Judge, Measurement of temperature-dependent absorption cross sections of C2H2 in the VUV-UV region, J. Geophys. Res, 106, 7629, 2001.CrossRefADSGoogle Scholar
  103. Yelle, R. V. and S. Miller, Jupiter's thermosphere and ionosphere. In: Bagenal, F., et al. (Ed.), Jupiter: The Planet, Satellites, and Magnetosphere, Cambridge Univ. Press, New York, pp. 185–218, 2004.Google Scholar
  104. Yelle, R. V., L. A. Young, R. J. Vervack, Jr., R. Young, L. Pfister, and B. R. Sandel, Structure of Jupiter's upper atmosphere: Predictions for Galileo, J. Geophys. Res. 101, 2149–2161, 1996.CrossRefADSGoogle Scholar
  105. Yung, Y. L. and W. B. DeMore, Photochemistry of Planetary Atmospheres, Oxford University Press, Oxford, 1999.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Andrew F. Nagy
    • 1
  • Arvydas J. Kliore
    • 2
  • Michael Mendillo
    • 3
  • Steve Miller
    • 4
  • Luke Moore
    • 3
  • Julianne I. Moses
    • 5
  • Ingo Müller-Wodarg
    • 6
  • Don Shemansky
    • 7
  1. 1.Department of Atmospheric Ocean and Space SciencesUniversity of MichiganAnn ArborUSA
  2. 2.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA
  3. 3.Center for Space PhysicsBoston UniversityBostonUSA
  4. 4.Department of Physics and AstronomyUniversity CollegeLondonUK
  5. 5.Lunar and Planetary InstituteHoustonUSA
  6. 6.Space and Atmospheric PhysicsImperial College LondonLondonUK
  7. 7.Planetary and Space Science DivisionSpace Environment TechnologiesPasadenaUSA

Personalised recommendations