Advertisement

Saturn's Exploration Beyond Cassini-Huygens

  • Tristan Guillot
  • Sushil Atreya
  • Sébastien Charnoz
  • Michele K. Dougherty
  • Peter Read

Abstract

For its beautiful rings, active atmosphere and mysterious magnetic field, Saturn is a fascinating planet. It also holds some of the keys to understanding the formation of our Solar System and the evolution of giant planets in general. While the exploration by the Cassini-Huygens mission has led to great advances in our understanding of the planet and its moons, it has left us with puzzling questions: What is the bulk composition of the planet? Does it have a helium core? Is it enriched in noble gases like Jupiter? What powers and controls its gigantic storms? We have learned that we can measure an outer magnetic field that is filtered from its non-axisymmetric components, but what is Saturn's inner magnetic field? What are the rings made of and when were they formed?

These questions are crucial in several ways: a detailed comparison of the compositions of Jupiter and Saturn is necessary to understand processes at work during the formation of these two planets and of the Solar System: was the pro-tosolar disk progressively photoevaporated of its hydrogen and helium while forming its planets? Did Jupiter and Saturn form at the same time from cores of similar masses? Saturn is also a unique laboratory for studying the meteorology of a planet in which, in contrast to the Earth, the vapor of any condensing species (in particular water) is heavier than the surrounding air. A precise measurement of its magnetic field is needed to constrain dynamo theories and apply it to other contexts, from our Earth to extrasolar planets. Finally, the theory behind the existence of its rings is still to be confirmed, and has consequences for a variety of subjects from theories of accretion of grains to the study of physical mechanisms at work in protoplanetary systems.

All in all, this calls for the continued exploration of the second largest planet in our Solar System, with a variety of means including remote observations and space missions. Measurements of gravity and magnetic fields very close to the planet's cloud tops would be extremely valuable. Very high spatial resolution images of the rings would provide details on their structure and the material that form them. Last but not least, one or several probes sent into the atmosphere of the planet would provide the critical measurements that would allow a detailed comparison with the same measurements at Jupiter.

Keywords

Polar Vortex Giant Planet Protoplanetary Disk Extrasolar Planet Late Heavy Bombardment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Alibert, Y., Mordasini, C., Benz, W. Migration and giant planet formation. A&A 417, L25–L28 (2004).CrossRefADSGoogle Scholar
  2. Alibert, Y., Mousis, O., Benz, W.: On the volatile enrichments and composition of Jupiter. Astrophys. J. 622, L145–L148 (2005).CrossRefADSGoogle Scholar
  3. Anderson, J. D., Schubert, G.: Saturn's gravitational field, internal rotation, and interior structure, Science, 317, 1384–1387 (2007).CrossRefADSGoogle Scholar
  4. Atreya, S.K., Wong, A.S.: Coupled chemistry and clouds of the giant planets — A case for multiprobes. Space Sci. Rev. 116 (1–2), 121–136 (2005).CrossRefADSGoogle Scholar
  5. Atreya, S.K., Wong, M.H., Owen, T.C., Mahaffy, P.R., Niemann, H.B., de Pater, I., Drossart, P., Encrenaz, Th.: A comparison of the atmospheres of Jupiter and Saturn: Deep atmospheric composition, cloud structure, vertical mixing, and origin. Planet. Space Sci. 47, 1243–1262 (1999).CrossRefADSGoogle Scholar
  6. Baines, K. H.., Momary, T. W., Fletcher, L. N., Showman, A. P., Roos-Serote, M., Brown, R. H., Buratti, B. J., Clark, R. N.: Saturn's north polar cyclone and hexagon at depth revealed by Cassini/VIMS. Planet. Space Sci. submitted (2009).Google Scholar
  7. Bakos, G.A., et al.: HAT-P-1b: A large-radius, low-density exoplanet transiting one member of a stellar binary. Astrophys. J. 656, 552–559 (2007).CrossRefADSGoogle Scholar
  8. Blanc M., Bolton, S. Bradley, J. Burton, M. Cravens, T. E. Dandouras, I. Dougherty, M. K. Festou, M. C. Feynman, J. Johnson, R. E. Gombosi, T. G. Kurth, W. S. Liewer, P. C. Mauk, B. H. Maurice, S. Mitchell, D. Neubauer, F. M. Richardson, J. D. Shemansky, D. E. Sittler, E. C. Tsurutani, B. T. Zarka, Ph. Esposito, L. W. Gruen, E. Gurnett, D. A. Kliore, A. J. Krimigis, S. M. Southwood, D. Waite, J. H., Young, D. T. Magnetospheric and plasma science with Cassini-Huygens. Space Sci. Rev. 104, 253–346 (2004).CrossRefADSGoogle Scholar
  9. Briggs, F. H.: Sackett, P. D.: Radio observations of Saturn as a probe of its atmosphere and cloud structure. Icarus 80, 77–103 (1989).CrossRefADSGoogle Scholar
  10. Burton, M. E., Dougherty, M. K., Russell, C. T.: Model of Saturn's internal planetary magnetic field based on Cassini observations, Planet. Space Sci., doi:10.1016 (2009).Google Scholar
  11. Canup R. M., Esposito L. W.: Accretion in the Roche zone: Coexistence of rings and ring moons, Icarus 113, 331–352 (1995).CrossRefADSGoogle Scholar
  12. Cassen, P.: Protostellar disks and planet formation. In Extrasolar Planets, M. Mayor, et al. eds., Saas-Fee adv courses, vol. 31, pp. 369–448 (2006), Springer, Berlin.CrossRefGoogle Scholar
  13. Chambers, J. E.: Planetary accretion in the inner Solar System. Earth Planet. Sci. Lett. 223, 241–252 (2004).CrossRefADSGoogle Scholar
  14. Charbonneau, D., Brown, T.M., Burrows, A., Laughlin, G.: When extra-solar planets transit their parent stars. Protostars Planets V, 701–716 (2007).Google Scholar
  15. Charnoz, S., Brahic, A., Thomas, P.C., Porco, C.C. The equatorial ridges of Pan & Atlas: Terminal accretionary ornaments? Science 318, 1622 (2007).CrossRefADSGoogle Scholar
  16. Charnoz, S., Morbidelli, A., Dones, L., Salmon, J.: Did Saturn rings form during the Late Heavy Bombardment? Icarus 199, 413–428 (2009).CrossRefADSGoogle Scholar
  17. Colwell, J.E., Esposito, L.W.: Origins of the rings of Uranus and Neptune. II — Initial conditions and ring moon populations, JGR 98, 7387–7401 (1993).CrossRefADSGoogle Scholar
  18. Colwell, J. E., Esposito, L. W., Sremčević, M.: Self-gravity wakes in Saturn's A ring measured by stellar occultations from Cassini. GeoRL 33, L07201 (2006).Google Scholar
  19. Colwell, J. E., Esposito, L. W., Sremčević, M., Stewart, G. R., McClin-tock, W. E.: Self-gravity wakes and radial structure of Saturn's B ring. Icarus 190,127–144 (2007).CrossRefADSGoogle Scholar
  20. Conrath, B., Gautier, D.: Saturn helium abundance: A reanalysis of the Voyager measurements. Icarus 144, 124–134 (2000).CrossRefADSGoogle Scholar
  21. Cresswell, P., Nelson, R.P.: Three-dimensional simulations of multiple protoplanets embedded in a protostellar disc. A&A 482, 677–690 (2008).CrossRefADSGoogle Scholar
  22. Cuzzi, J.N., Estrada, P.R.: Compositional evolution of Saturn's rings due to meteoroid bombardment. Icarus 132, 1–35. (1998).CrossRefADSGoogle Scholar
  23. de Pater, I., Dickel, R.: Multifrequency radio observations of Saturn at ring inclination angles between 5 and 26 degrees. Icarus 94, 474–492 (1991).CrossRefADSGoogle Scholar
  24. Daisaka H., Tanaka H., Ida S.: Viscosity in a dense planetary ring with self-gravitating particles. Icarus 154, 296–312 (2001).CrossRefADSGoogle Scholar
  25. Dougherty, M. K., Kellock, S., Southwood, D. J., Balogh, A., Smith, E. J., Tsurutani, B. T., Gerlach, B., Glassmeier, K.-H., Gleim, F., Russell, C. T., Erdos, G, Neubauer, F. M. and Cowley, S. W. H., The Cassini magnetic field investigation. Space Sci. Rev. 114, 331–383 (2004).CrossRefADSGoogle Scholar
  26. Esposito, L.W., O'Callaghan, M., West, R.A. The structure of Saturn's rings: Implications from the Voyager stellar occultation. Icarus 56, 439–452 (1983).CrossRefADSGoogle Scholar
  27. Esposito, L.W., Meinke, B.K., Colwell, J.E., Nicholson, P.D., Hedman, M.H.: Moonlets and clumps in Saturn's F ring. Icarus 194, 278–289 (2008).CrossRefADSGoogle Scholar
  28. Flasar, M., and the CIRS Team: Temperature, winds, and composition in the Saturnian system. Science 307, 1247–1251 (2005).CrossRefADSGoogle Scholar
  29. Fletcher, L. N., Irwin, P. G. J., Teanby, N. A., Orton, G. S., Parrish, P. D., Calcutt, S. B., Bowles, N., Kok, R. de, Howett, C., Taylor, F. W.: The meridional phosphine distribution in Saturn's upper troposphere from Cassini/CIRS observations. Icarus 188, 72–88 (2007).CrossRefADSGoogle Scholar
  30. Fortney, J.J., Hubbard, W.B.: Phase separation in giant planets: inhomo-geneous evolution of Saturn. Icarus 164, 228–243 (2003).CrossRefADSGoogle Scholar
  31. Fortney, J.J., Hubbard, W.B.: Effects of helium phase separation on the evolution of extrasolar giant planets. Astrophys. J. 608, 1039–1049 (2004).CrossRefADSGoogle Scholar
  32. Gautier, D., Hersant, F.: Formation and composition of planetesimals–Trapping volatiles by clathration. Space Sci. Rev. Space Sci. Rev. 116, 25–52 (2005).ADSGoogle Scholar
  33. Gomes, R., Levison, H. F., Tsiganis, K., Morbidelli, A.: Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature 435, 466–469 (2005).CrossRefADSGoogle Scholar
  34. Grevesse, N., Asplund, M., Sauval, J.: The new solar composition. In Element Stratification in Stars: 40 Years of Atomic Diffusion, Ale-cian, G., Richard, O., Vauclair, S. eds., pp. 21–30, EAS Publications Series (2005).Google Scholar
  35. Grossman, A.W.: Microwave imaging of Saturns deep atmosphere and rings. PhD Thesis, California Institute of Technology (1990).Google Scholar
  36. Guillot, T.: The interiors of giant planets: models and outstanding questions. Ann. Rev. Earth Planet. Sci. 33, 493–530 (2005).CrossRefADSGoogle Scholar
  37. Guillot, T.: The composition of transiting giant extrasolar planets. Phys-ica Scripta T 130, 014023 (2008).CrossRefADSGoogle Scholar
  38. Guillot, T., Hueso, R.: The composition of Jupiter: Sign of a (relatively) late formation in a chemically evolved protosolar disc. Mon. Not. R. Astron. Soc. 367, L47–L51 (2006).CrossRefADSGoogle Scholar
  39. Harris, A.: The origin and evolution of planetary rings. In Planetary Rings, Greenberg, R., Brahic, A. eds., University of Arizona Press, Tucson, pp. 641–659 (1984).Google Scholar
  40. Hedman, M.M., Burns, J.A., Tiscareno, M.S., Porco, C.C., Jones, G.H., Roussos, E., Krupp, N., Paranicas, C., Kempf, S.: The source of Saturn's G ring. Science 317, 653–656 (2007).CrossRefADSGoogle Scholar
  41. Hubbard, W.B.: Gravitational signature of Jupiter's deep zonal flows. Icarus 137, 357–359 (1999).CrossRefADSGoogle Scholar
  42. Hubbard, W. B., Guillot, T., Marley, M. S., Burrows, A., Lunine, J. I., Saumon, D. S.: Comparative evolution of Jupiter and Saturn. Plan. Space Sci. 47, 1175–1182 (1999).CrossRefADSGoogle Scholar
  43. Ida, S., Lin, D.N.C.: Toward a deterministic model of planetary formation. I. A desert in the mass and semimajor axis distributions of extrasolar planets. ApJ 604, 388–413 (2004).CrossRefADSGoogle Scholar
  44. Ida, S., Guillot, T., Morbidelli, A.: Accretion and destruction of plan-etesimals in turbulent disks. ApJ 686, 1292–1301 (2008).CrossRefADSGoogle Scholar
  45. Ikoma, M., Guillot, T., Genda, H., Tanigawa, T., Ida, S.: On the Origin of HD 149026b. Astrophys. J. 650, 1150–1159 (2006).CrossRefADSGoogle Scholar
  46. Janssen, M. A., Hofstadter, M.D., Gulkis, S., Ingersoll, A. P., Allison, M., Bolton, S. J., Levin, S.M., Kamp, L.W. Microwave remote sensing of Jupiter's atmosphere from an orbiting spacecraft, Icarus, 173, 447–453 (2005).CrossRefADSGoogle Scholar
  47. Krimigis, S. M., Mitchell, D. G., Hamilton, D. C., Livi, S. Dandouras, J. Jaskulek, S. Armstrong, T. P. Cheng, A. F. Gloeckler, G. Hsieh, K. C. Ip, W.-H. Keath, E. P. Kirsch, E. Krupp, N. Lanzerotti, L. J. Mauk, B. H. McEntire, R. W. Roelof, E. C. Tossman, B. E. Wilken, B., Williams, D. J.: Magnetosphere Imaging Instrument (MIMI) on the Cassini Mission to Saturn/Titan. Space Sci. Rev. 114(1–4), 233–329 (2004).CrossRefADSGoogle Scholar
  48. Lian, Y., Showman, A. P. Deep jets on gas-giant planets. Icarus 194, 597–615 (2007).CrossRefADSGoogle Scholar
  49. Marouf, E. A., Tyler, G. L., Zebker, H. A., Simpson, R. A., Eshleman, V. R.: Particle size distributions in Saturn's rings from Voyager 1 radio occultation. Icarus 54, 189–211 (1983).CrossRefADSGoogle Scholar
  50. Marty, B., Guillot, T., Coustenis, A., Kronos consortium: Achilleos, N., Alibert, Y., Asmar, S., Atkinson, D., Atreya, S., Babasides, G., Baines, K., Balint, T., Banfield, D., Barber, S., Bézard, B., Bjoraker, G. L., Blanc, M., Bolton, S., Chanover, N., Charnoz, S., Chassefière, E., Colwell, J. E., Deangelis, E., Dougherty, M., Drossart, P., Flasar, F. M., Fouchet, T., Frampton, R., Franchi, I., Gautier, D., Gurvits, L., Hueso, R., Kazeminejad, B., Krimigis, T., Jambon, A., Jones, G., Langevin, Y., Leese, M., Lellouch, E., Lunine, J., Milillo, A., Mahaffy, P., Mauk, B., Morse, A., Moreira, M., Moussas, X., Murray, C., Müller-Wodarg, I., Owen, T. C., Pogrebenko, S., Prangé, R., Read, P., Sanchez-Lavega, A., Sarda, P., Stam, D., Tinetti, G., Zarka, P., Zarnecki J.: Kronos: exploring the depths of Saturn with probes and remote sensing through an international mission. Exp. Astron. 23, 977–980 (2009).CrossRefADSGoogle Scholar
  51. Masset, F., Snellgrove, M.: Reversing type II migration: Resonance trapping of a lighter giant protoplanet. MNRAS 320, L55–L59 (2001).CrossRefADSGoogle Scholar
  52. Morbidelli, A., Crida, A., Masset, F., Nelson, R.P.: Building giant-planet cores at a planet trap. A&A 478, 929–937 (2008).CrossRefADSGoogle Scholar
  53. Nicholson, P.D., Showalter, M.R., Dones, L., French, R.G., Larson, S.M., Lissauer, J.J., McGhee, C.A., Seitzer, P., Sicardy, B., Danielson, G.E.: Observations of Saturn's ring-plane crossing in August and November 1995. Science 272, 509–515 (1996).CrossRefADSGoogle Scholar
  54. Nicholson, P.D., Hedman, M.M., Clark, R.N., Showalter, M.R., Cruikshank, D.P., Cuzzi, J.N., Filacchione, G., Capaccioni, F., Cerroni, P., Hansen, G.B., Sicardy, B., Drossart, P., Brown, R.H., Buratti, B.J., Baines, K.H., Coradini A.: A close look at Saturn's rings with Cassini VIMS. Icarus 193, 182–212 (2008).CrossRefADSGoogle Scholar
  55. Owen, T., et al.: A low-temperature origin for the planetesimals that formed Jupiter. Nature 402, 269–270 (1999).CrossRefADSGoogle Scholar
  56. Pollack, J.B., Hubickyj, O., Bodenheimer, P., Lissauer, J.J., Podolak, M., Greenzweig, Y.: Formation of the giant planets by concurrent accretion of solids and gas. Icarus 124, 62–85 (1996).CrossRefADSGoogle Scholar
  57. Porco, C. C., Thomas, P. C., Weiss, J. W., Richardson, D. C.: Saturn's small inner satellites: Clues to their origins. Science 318, 1602 (2007).CrossRefADSGoogle Scholar
  58. Poulet, F., Cruikshank, D.P., Cuzzi, J.N., Roush, T.L., French, R.G.: Composition of Saturn's rings A, B, and C from high resolution near-infrared spectroscopic observations. Astron. Astrophys. 412, 305–316 (2003).CrossRefADSGoogle Scholar
  59. Salo, H.: Simulations of dense planetary rings. III. Self-gravitating identical particles. Icarus 117, 287–312 (1995).CrossRefADSGoogle Scholar
  60. Sato, B., et al.: The N2K consortium. II. A transiting hot Saturn around HD 149026 with a large dense core. Astrophys. J. 633, 465–473 (2005).CrossRefADSGoogle Scholar
  61. Saumon, D., Guillot, T.: Shock Compression of deuterium and the interiors of Jupiter and Saturn. Astrophys. J. 609, 1170–1180 (2004).CrossRefADSGoogle Scholar
  62. Shepelyansky, D.L., Pikovsky, A.S., Schmidt, J., Spahn, F. Synchronization mechanism of sharp edges in rings of Saturn. MNRAS 395, 1934–1940 (2009).CrossRefADSGoogle Scholar
  63. Stevenson, D.J.: Interiors of the giant planets. Ann. Rev. Earth Planet. Sci. 10, 257–295 (1982).CrossRefADSGoogle Scholar
  64. Stevenson, D.J., Salpeter, E.E.: The phase diagram and transport properties for hydrogen-helium fluid planets. Astrophys. J. Suppl. Ser. 35, 221–237 (1977).CrossRefADSGoogle Scholar
  65. Stewart, G. R., Robbins, S. J., Colwell, J. E.: Evidence for a primordial origin of Saturn's rings. 39th DPS meeting, abstract no. 7.06 (2007).Google Scholar
  66. Thommes, E.W., Matsumura, S., Rasio, F.A.: Gas disks to gas giants: Simulating the birth of planetary systems. Science 321, 814 (2008).CrossRefADSGoogle Scholar
  67. Tiscareno, M.S., Burns, J.A., Hedman, M.M., Porco, C.C.: The population of propellers in Saturn's A ring. Astron. J. 135, 1083–1091 (2008).CrossRefADSGoogle Scholar
  68. Toomre, A.: On the gravitational stability of a disk of stars. ApJ 139, 1217–1238 (1964).CrossRefADSGoogle Scholar
  69. Tsiganis, K., Gomes, R., Morbidelli, A., Levison, H. F.: Origin of the orbital architecture of the giant planets of the Solar System. Nature 435, 459–461 (2005).CrossRefADSGoogle Scholar
  70. Wuchterl, G., Guillot, T., Lissauer, J.J.: The formation of giant planets. In Protostars & Planets IV, Mannings, V., Boss, A.P., Russell, S. S., eds., p. 1081, Tucson: University of Arizona Press (2000).Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Tristan Guillot
    • 1
  • Sushil Atreya
    • 2
  • Sébastien Charnoz
    • 3
  • Michele K. Dougherty
    • 4
  • Peter Read
    • 5
  1. 1.Observatoire de la Côte d'AzurNiceFrance
  2. 2.Department of Atmospheric, Oceanic, and Space SciencesUniversity of MichiganAnn ArborUSA
  3. 3.Equipe AIM, CEA/SAp, Université Paris DiderotGif-Sur-Yvette CedexFrance
  4. 4.Imperial CollegeLondonUK
  5. 5.Clarendon LaboratoryUniversity of OxfordOxfordUK

Personalised recommendations