Enceladus: An Active Cryovolcanic Satellite

  • John R. Spencer
  • Amy C. Barr
  • Larry W. Esposito
  • Paul Helfenstein
  • Andrew P. Ingersoll
  • Ralf Jaumann
  • Christopher P. McKay
  • Francis Nimmo
  • J. Hunter Waite

Abstract

Enceladus is one of the most remarkable satellites in the solar system, as revealed by Cassini's detection of active plumes erupting from warm fractures near its south pole. This discovery makes Enceladus the only icy satellite known to exhibit ongoing internally driven geological activity. The activity is presumably powered by tidal heating maintained by Enceladus' 2:1 mean-motion resonance with Dione, but many questions remain. For instance, it appears difficult or impossible to maintain the currently observed radiated power (probably at least 6 GW) in steady state. It is also not clear how Enceladus first entered its current self-maintaining warm and dissipative state- initial heating from non-tidal sources is probably required. There are also many unanswered questions about Enceladus' interior. The silicate fraction inferred from its density of 1:68gcm−2 is probably differentiated into a core, though we have not direct evidence for differentiation. Above the core there is probably a global or regional liquid water layer, inferred from several models of tidal heating, and an ice shell thick enough to support the ~1 km amplitude topography seen on Enceladus. It is possible that dissipation is largely localized beneath the south polar region. Enceladus' surface geology, ranging from moderately cratered terrain to the virtually crater-free active south polar region, is highly diverse, tectonically complex, and remarkably symmetrical about the rotation axis and the direction to Saturn. South polar activity is concentrated along the four “tiger stripe” fractures, which radiate heat at temperatures up to at least 167K and are the source of multiple plumes ejecting ~200kgs−2 of H2O vapor along with significant N2 (or C2H4), CO2, CH4, NH3, and higher-mass hydrocarbons. The escaping gas maintains Saturn's neutral gas torus, and the plumes also eject a large number of micron-sized H2O ice grains that populate Saturn's E-ring. The mechanism that powers the plumes is not well understood, and whether liquid water is involved is a subject of active debate. Enceladus provides perhaps the most promising potential habitat for life in the outer solar system, and the active plumes allow the unique opportunity for direct sampling of that zone. Enceladus is thus a prime target for Cassini's continued exploration of the Saturn system, and will be a tempting target for future missions.

Keywords

Biomass Depression Attenuation Titan Hydrocarbon 

Notes

Acknowledgments

We wish to thank everyone who has made these discoveries possible, by contributing to the success of the Cassini/Huygens project. This work was funded by the Cassini Project and by NASA.

References

  1. Abramov, O., Spencer J.R.: Endogenic heat from Enceladus' south polar fractures: New observations, and models of conductive surface heating. Icarus 199, 189–196 (2009).ADSCrossRefGoogle Scholar
  2. Anderson, D.L.: Theory of the Earth. Blackwell, London (1989).Google Scholar
  3. Barr, A.C., McKinnon, W.B.: Convection in Enceladus' ice shell: Conditions for initiation. Geophys. Res. Lett. 34, L09202. (2007a).CrossRefGoogle Scholar
  4. Barr, A.C., McKinnon, W.B.: Convection in ice I shells and mantles with self-consistent grain size, J. Geophys. Res. 112, E02012 (2007b). doi: 10.1029/2006JE002781.CrossRefGoogle Scholar
  5. Barr, A.C.: Mobile lid convection beneath Enceladus' south polar terrain, J. Geophys. Res. 113, E07009 (2008). doi: 10.1029/2008JE003114.CrossRefGoogle Scholar
  6. Baum, W.A., Kreidl, T., Westphal, J.A., Danielson, G.E., Seidelmann, P.K., Pascu, D., Currie, D.G.: Saturn's E ring. Icarus 47, 84–96 (1981).ADSCrossRefGoogle Scholar
  7. Benjamin, D., Wahr, J., Ray, R.D., Egbert, G.D. Desai, S.D.: Constraints on mantle anelasticity from geodetic observations, and implications for the J(2) anomaly, Geophys. J. Int. 165, 3–16 (2006).ADSCrossRefGoogle Scholar
  8. Bills, B.G.: Free and forced obliquities of the Galilean satellites of Jupiter. Icarus 175, 233–247 (2005).ADSCrossRefGoogle Scholar
  9. Bills, B.G. Nimmo, F.: Forced obliquity and moments of inertia of Titan. Icarus 196, 293–297 (2008).ADSCrossRefGoogle Scholar
  10. Bills, B.G., Nimmo F., Karatekin O., Van Hoolst, T., Rambaux, N, Levrard B., Laskar, J.: Rotational dynamics of Europa. In: Pappalardo, R., McKinnon, W. Khurana, K (eds.) Europa, Univ. Ariz. Press., Tucson, in press (2009).Google Scholar
  11. Bland, M.T., Beyer R.A., Showman A.P: Unstable extension of Enceladus' lithosphere. Icarus 192, 92–105 (2007).ADSCrossRefGoogle Scholar
  12. Brilliantov, N.V., Schmidt, J., Spahn, F.: Geysers of Enceladus: Quantitative analysis of qualitative models. Planet. Space Sci. 56, 1596–1606 (2008).ADSCrossRefGoogle Scholar
  13. Brown, R.H. and 24 co-authors: Composition and physical properties of Enceladus' surface. Science 311, 1425–1428 (2006).ADSCrossRefGoogle Scholar
  14. Buratti, B. J.: Enceladus — Implications of its unusual photometric properties. Icarus 75, 113–126 (1988).ADSCrossRefGoogle Scholar
  15. Buratti, B., Veverka, J.: Voyager photometry of Rhea, Dione, Tethys, Enceladus and Mimas. Icarus 58, 254–264 (1984).ADSCrossRefGoogle Scholar
  16. Buratti, B.J., Mosher, J.A., Nicholson, P.D., McGhee, C.A., French, R.G.: Near-infrared photometry of the Saturnian satellites during ring plane crossing. Icarus 136, 223–231 (1998).ADSCrossRefGoogle Scholar
  17. Chapelle, F.H., O'Neill K., Bradley P.M., Methe B.A., Ciufo S.A., Knobel L.L., Lovley D.R.: A hydrogen-based subsurface microbial community dominated by methanogens. Nature 415, 312–315 (2002).ADSCrossRefGoogle Scholar
  18. Chyba, C.F., Phillips, C.B.: Possible ecosystems and the search for life on Europa. Proc. Natl Acad. Sci. 98, 801–804 (2001).ADSCrossRefGoogle Scholar
  19. Clark, R.N.: Water frost and ice: The near-infrared spectral reflectance 0:65–2:5 μm. J. Geophys. Res. 86, 3087–3096 (1981).ADSCrossRefGoogle Scholar
  20. Clark, R.N., Lucey, P.G.: Spectral properties of ice-particulate mixtures and implications for remote sensing. I. Intimate mixtures. J. Geophys. Res. 89, 6341–6348 (1984).ADSCrossRefGoogle Scholar
  21. Collins, G.C., Goodman, J.C.: Enceladus' south polar sea Icarus 189, 72–82 (2007).ADSCrossRefGoogle Scholar
  22. Corliss, J.B., Baross, J.A., Hoffman, S.E.: An hypothesis concern-ing_the relationship between submarine hot springs and the origin of life. Oceanologica Acta 4. suppl. C4, 59–69 (1981).Google Scholar
  23. Coustenis, A. and 155 co-authors: TandEM: Titan and Enceladus mission. Exper. Astron. 23(2008). doi: 10.1007/s10686–008-9103-zGoogle Scholar
  24. Cruikshank, D.P: Near-infrared studies of the satellites of Saturn and Uranus. Icarus 41, 246–258 (1980).ADSCrossRefGoogle Scholar
  25. Cruikshank, D.P, Owen, T.B., Dalle Ore, C, Geballe, T.R., Roush, T.L., de Bergh, C, Sandford, S.A., Poulet, F., Benedix, G.K., Emery, J.P: A spectroscopic study of the surface of Saturn's large satellites: H2O ice, tholins, and minor constituents. Icarus 175, 268–283 (2005).ADSCrossRefGoogle Scholar
  26. Czechowski, L.: Parameterized model of convection driven by tidal and radiogenic heating. Adv. Space Res. 38, 788–793 (2006).ADSCrossRefGoogle Scholar
  27. Davis, W.L., McKay, C.P: Origins of life: A comparison of theories and application to Mars. Origins Life Evol. Biosph. 26, 61–73 (1996).ADSCrossRefGoogle Scholar
  28. Dermott, S.F., Thomas PC: The shape and internal structure of Mimas, Icarus 73, 25–65 (1988).ADSCrossRefGoogle Scholar
  29. Dermott, S.F., Malhotra, R., Murray, CD.: Dynamics of the Uranian and Saturnian satellite systems: A chaotic route to melting Miranda? Icarus 76, 295–334 (1988).ADSCrossRefGoogle Scholar
  30. Dougherty, M.K., Khurana, K.K., Neubauer, F.M., Russell, C.T., Saur, J., Leisner, J.S., Burton, M.E.: Identification of a dynamic atmosphere at Enceladus with the Cassini magnetometer. Science 311, 1406–1409 (2006).ADSCrossRefGoogle Scholar
  31. Durham, W. B., Kirby S.H., Stern, L.A.: Effect of dispersed particulates on the rheology of water ice at planetary conditions, J. Geophys. Res. 97, 20,883–20,897 (1992).ADSCrossRefGoogle Scholar
  32. Durham, W.B., Stern, L.A.: Rheological properties of water ice-Applications to satellites of the outer planets. Ann. Rev. Earth Planet. Sci. 29, 295–330 (2001).ADSCrossRefGoogle Scholar
  33. Emery, J.P, Burr, D.M., Cruikshank, D.P, Brown, R.H., Dalton, J.B.: Near-infrared.0:8–4:0 (im/ spectroscopy of Mimas, Enceladus, Tethys, and Rhea. Astron. Astrophys. 435, 353–362 (2005).ADSCrossRefGoogle Scholar
  34. Esposito, L.W., and 15 co-authors: Ultraviolet imaging spectroscopy shows an active Saturnian system. Science 307, 1251–1255 (2005).ADSCrossRefGoogle Scholar
  35. Feibelman, W. A.: Concerning the “D” ring of Saturn. Nature 214, 793–794 (1967).ADSCrossRefGoogle Scholar
  36. Friedson, A.J., Stevenson, D.J.: Viscosity of rock ice mixtures and applications to the evolution of icy satellites, Icarus 56, 1–14 (1983).ADSCrossRefGoogle Scholar
  37. Gaidos, E.J., Nealson, K.H., Kirschvink, J.L.: Life in ice-covered oceans. Science 284, 1631–1633 (1999).CrossRefGoogle Scholar
  38. Giese, B., Wagner, R., Hussmann, H., Neukum, G., Perry, J., Helfen-stein, P, Thomas, PC: Enceladus: An estimate of heat flux and litho-spheric thickness from flexurally supported topography. Geophys. Res. Lett. 35, L24204 (2008).ADSCrossRefGoogle Scholar
  39. Gioia, G., Chakraborty, P., Marshak, S., Kieffer, S.W: Unified model of tectonics and heat transport in a frigid Enceladus. Proc. Natl Acad. Sci. 104, 13578–13581 (2007).ADSCrossRefGoogle Scholar
  40. Gladman, B., Dones, L., Levison, H.F., Burns, J.A.: Impact seeding and reseeding. in the inner solar system. Astrobiology 5, 483–496 (2005).ADSCrossRefGoogle Scholar
  41. Glein, C.R., Zolotov, M.Y., Shock, E.: The oxidation state of hydrother-mal systems on early Enceladus, Icarus 197, 157–163 (2008).ADSCrossRefGoogle Scholar
  42. Goldsby, D.L., Kohlstedt, D.L.: Superplastic deformation in ice: Exper-imental observations. J. Geophys. Res. 106, 11,017–11,030 (2001).ADSCrossRefGoogle Scholar
  43. Gribb, T.T., Cooper, R.F.: Low frequency shear attenuation in polycrys-talline olivine: Grain boundary diffusion and the physical significance of the Andrade model for viscoelastic rheology J. Geophys. Res. 103, 27,267–27,279 (1998).ADSCrossRefGoogle Scholar
  44. Grott, M., Sohl, F, Hussmann, H.: Degree-one convection and the origin of Enceladus' dichotomy, Icarus 191, 203–210 (2007). doi:10.1016/j.icarus.2007.05.001.ADSCrossRefGoogle Scholar
  45. Grundy, W.M., Buie, M.W, Stansberry, J.A., Spencer, J.R., Schmitt, B.: Near-infrared spectra of icy outer Solar System surfaces: Remote determination of H2O ice temperatures. Icarus 142, 536–549 (1999).ADSCrossRefGoogle Scholar
  46. Haff, P.K., Siscoe, G.L., Eviatar, A.: Ring and plasma — The enigmae of Enceladus. Icarus 56, 426–438 (1983).ADSCrossRefGoogle Scholar
  47. Halevy, I., and Stewart S.T.: Is Enceladus' plume tidally controlled?, Geophys. Res. Lett. 35, L12203 (2008). doi: 10.1029/2008GL034349.ADSCrossRefGoogle Scholar
  48. Hamilton, D.P, Burns, J.A.: Origin of Saturn's E-ring: Self-sustained, naturally. Science 264, 5158 (1994).CrossRefGoogle Scholar
  49. Han, L., Showman, A.P: Implications of shear heating and fracture zones for ridge formation on Europa, Geophys. Res. Lett. 35, L03202 (2008). doi: 10.1029/2007GL031957.CrossRefGoogle Scholar
  50. Hand, K.P., Carlson, R.W., Chyba, C.F.: Energy, chemical disequilibrium, and geological constraints on Europa. Astrobiology 7, 1006–1022 (2007).ADSCrossRefGoogle Scholar
  51. Hansen, C. J., Esposito L., Stewart, A.I.F., Colwell, J., Hendrix, A., Pryor, W., Shemansky, D., West R.: Enceladus' water vapor plume. Science 311, 1422–1425 (2006).ADSCrossRefGoogle Scholar
  52. Hansen, C.J., Esposito, L.W., Stewart, A.I.F., Meinke, B., Wallis, B., Colwell, J.E., Hendrix, A.R., Larsen, K., Pryor, W., Tian, F.: Water vapor jets inside the plume of gas leaving Enceladus. Nature 456, 477–479 (2008).ADSCrossRefGoogle Scholar
  53. Hedman, M.M., Nicholson, P.D., Showalter, M.R., Brown, R.H., Buratti, B.J., Clark R.N.: Spectral observations of the Enceladus plume with Cassini-VIMS. Astron. J. 693, 1749–1762 (2009).ADSGoogle Scholar
  54. Helfenstein, P., Thomas, P.C., Veverka, J., Burns, J.A., Roatsch, T., Giese, B., Wagner, R., Denk, T., Neukum, G., Turtle, E.P., Perry, J., Bray, V., Rathbun, J., Porco, C.C.: Tectonism and terrain evolution on Enceladus,. Icarus, in press (2009).Google Scholar
  55. Hoppa, G.V., Tufts, R., Greenberg, R., Geissler, P.E.: Formation of cy-cloidal features on Europa, Science 285, 1899–1902 (1999).ADSCrossRefGoogle Scholar
  56. Howett, C.J.A., Spencer, J.R., Pearl, J.C., Segura, M.: Thermal inertia and bolometric albedo for Mimas, Enceladus, Dione, Rhea and Iapetus as derived from Cassini/CIRS measurements. Icarus: doi: 10.1016/j.icarus.2009.07.016 (2009).Google Scholar
  57. Hurford, T.A., Helfenstein, P., Hoppa, B.V., Greenberg, R., Bills, B.: Eruptions arising from tidally controlled periodic openings of rifts on Enceladus. Nature 447, 292–294 (2007).ADSCrossRefGoogle Scholar
  58. Hussmann, H., Spohn, T.: Thermal-orbital evolution of Io and Europa. Icarus 171, 391–410 (2004).ADSCrossRefGoogle Scholar
  59. Ingersoll, A.P., Pankine, A.A.: Models of the Enceladus plumes: Criteria for melting. Icarus, submitted (2009).Google Scholar
  60. Jackson I., Faul, U.H., Gerald, J.D.F., Tan B.H.: Shear wave attenuation and dispersion in melt-bearing olivine polycrystals 1. Specimen fabrication and mechanical testing, J. Geophys. Res. 109, B06201 (2004).CrossRefGoogle Scholar
  61. Jacobson, R.A., and 13 co-authors: The gravity field of the Saturnian system from satellite observations and spacecraft tracking data. As-tron. J. 132, 2520–2526 (2006).ADSGoogle Scholar
  62. Jaumann, R., and 18 co-authors: Distribution of icy particles across Enceladus' surface as derived from Cassini-VIMS measurements. Icarus 193, 407–419 (2008).ADSCrossRefGoogle Scholar
  63. Johnson, R.E., Famá, M., Liu, M., Baragiola, R.A., Sittler, E.C., Smith, H.T.: Sputtering of ice grains and icy satellites in Saturn's inner magnetosphere. Planet. Space Sci. 56, 1238–1243 (2008).ADSCrossRefGoogle Scholar
  64. Johnson, R.E., Smith, H.T., Tucker, O.J., Liu, M., Burger, M.H., Sittler, E.C., Tokar R. L.: The Enceladus and OH tori at Saturn. Astrophys. J. 644, L137–L139 (2006).ADSCrossRefGoogle Scholar
  65. Jones, G.H. and 20 co-authors: Fine jet structure of electrically charged grains in Enceladus's plume. Geophys. Res. Lett., in press (2009).Google Scholar
  66. Juhász, A., Horányi, M.: Saturn's E ring: A dynamical approach. J. Geo-phys. Res. 107, 1066 (2002).CrossRefGoogle Scholar
  67. Juhász, A., Horányi, M., Morfill, G.E.: Signatures of Enceladus in Saturn's E ring. Geophys. Res. Lett. 34, L09104 (2007).CrossRefGoogle Scholar
  68. Jurac, S., Johnson, R.E., Richardson, J.D.: Saturn's E Ring and production of the neutral torus. Icarus 149, 384–396 (2001).ADSCrossRefGoogle Scholar
  69. Jurac, S., Richardson, J.D.: A self-consistent model of plasma and neutrals at Saturn: Neutral cloud morphology. J. Geophys. Res. 110, A09220 (2005).CrossRefGoogle Scholar
  70. Jurac, S., McGrath, M.A., Johnson, R.E., Richardson, J.D., Vasyliunas, V.M., Eviatar, A.: Saturn: Search for a missing water source. Geo-phys. Res. Lett. 29, 25–1 (2002).Google Scholar
  71. Karato, S.: A dislocation model of seismic wave attenuation and micro-creep in the Earth: Harold Jeffreys and the rheology of the solid Earth. Pure Appl. Geophys. 153, 239–256 (1998).ADSCrossRefGoogle Scholar
  72. Kargel J. and Pozio, S. (1996) The volcanic and tectonic history of Enceladus. Icarus 119, 385–404.ADSCrossRefGoogle Scholar
  73. Kargel, J.S.: Enceladus: Cosmic gymnast, volatile miniworld. Science 311, 1389–1391 (2006).ADSCrossRefGoogle Scholar
  74. Kempf, S., Beckmann, U., Moragas-Klostermeyer, G., Postberg, F., Srama, R., Economou, T., Schmidt, J., Spahn, F., Grün, E.: The E ring in the vicinity of Enceladus. I. Spatial distribution and properties of the ring particles. Icarus 193, 420–437 (2008).ADSCrossRefGoogle Scholar
  75. Khurana, K.K., Dougherty, M.K., Russell, C.T., Leisner, J.S.: Mass loading of Saturn's magnetosphere near Enceladus. J. Geophys. Res. 112, A08203 (2007).CrossRefGoogle Scholar
  76. Kieffer, S. W.: Dynamics and thermodynamics of volcanic eruptions: Implications for the plumes of Io. In: Morrison, D. (ed.) Satellites of Jupiter, pp. 647–723. Univ. Ariz. Press, Tucson (1982).Google Scholar
  77. Kieffer, S., Lu, X., Bethke, C.M., Spencer, J.R., Marshak, S., Navrotsky, A.: A clathrate reservoir hypothesis for Enceladus' south polar plume. Science 314, 1764–1766 (2006).ADSCrossRefGoogle Scholar
  78. Kieffer, S.W., Lu, X., McFarquhar, G., Wohletz, K.H.: A redetermina-tion of the ice/vapor ratio of Enceladus' plumes: Implications for sublimation and the lack of a liquid water reservoir. Icarus, submitted (2009).Google Scholar
  79. Kirk, R.L., Soderblom, L.A., Brown, R.H., Kieffer, S.W., Kargel, J.S.: Triton's plumes: Discovery, characteristics, and models. In: Cruikshank, D.P. (ed.) Neptune and Triton, pp. 949–989. Univ. Ariz. Press, Tucson (1995).Google Scholar
  80. Lazcano, A., Miller, S.L.: How long did it take for life to begin and evolve to cyanobacteria? Journal of Molecular Evolution 39, 546–554 (1994).CrossRefGoogle Scholar
  81. Lin, L.-H., and 13 co-authors: Long-term sustainability of a high-energy, low-diversity crustal biome. Science 314, 479–482 (2006).ADSCrossRefGoogle Scholar
  82. Lissauer, J.J., Peale, S.J., Cuzzi J.N.: Ring torque on Janus and the melting of Enceladus, Icarus 58, 159–168 (1984).ADSCrossRefGoogle Scholar
  83. Lissauer, J.J., Squyres, S.W., Hartmann, W.K.: Bombardment history of the Saturn system. J. Geophys. Res. 93, 13776–13804 (1988).ADSCrossRefGoogle Scholar
  84. Lunine, J.I., Gautier, D.: Coupled physical and chemical evolution of volatiles in the protoplanetary disk: A tale of three elements. In: Festou, M.C., Keller, H.U., Weaver, H.A. (eds.), Comets II, pp. 105–113, Univ. Ariz. Press, Tucson (2004).Google Scholar
  85. Manga, M., Wang, C.-Y.: Pressurized oceans and the eruption of liquid water on Europa and Enceladus. Geophys. Res. Lett. 34, L07202 (2007).CrossRefGoogle Scholar
  86. Matson, D.L., Castillo, J.C., Lunine, J., Johnson, T.V.: Enceladus' plume: Compositional evidence for a hot interior. Icarus 187569–573 (2007).ADSCrossRefGoogle Scholar
  87. Matsuyama, I., Nimmo, F.: Tectonic patterns on reoriented and despun planetary bodies. Icarus 195, 459–473 (2008).ADSCrossRefGoogle Scholar
  88. McCollom, T.M.: Methanogenesis as a potential source of chemical energy for primary biomass production by autotrophic organisms in hydrothermal systems on Europa. J. Geophys. Res. 104, 30,729–30,742 (1999).ADSCrossRefGoogle Scholar
  89. McCord, T.B., and 11 co-authors: Salts on Europa's surface detected by Galileo's Near Infrared Mapping Spectrometer. Science 280, 1242 (1998).ADSCrossRefGoogle Scholar
  90. McKay, C.P., Porco, C.C., Altheide, T. Davis, W.L., Kral, T.A.: The possible origin and persistence of life on Enceladus and detection of biomarkers in the plume. Astrobiology 8, 909–919 (2008).ADSCrossRefGoogle Scholar
  91. McKinnon, W. B.: On convection in ice I shells of outer solar system bodies, with specific application to Callisto. Icarus 183, 435–450 (2006).ADSCrossRefGoogle Scholar
  92. Melosh, H.J.: The rocky road to panspermia. Nature 332, 687–688 (1988).ADSCrossRefGoogle Scholar
  93. Meyer, J., Wisdom, J.: Tidal heating in Enceladus. Icarus 188, 535–539 (2007).ADSCrossRefGoogle Scholar
  94. Meyer, J., Wisdom, J.: Tidal evolution of Mimas, Enceladus, and Dione. Icarus 193, 213–223 (2008).ADSCrossRefGoogle Scholar
  95. Miller, D.J., Barnash, A.N., Bray, V.J., Turtle, E. P., Helfenstein, P., Squyres, S. W., Rathbun, J. A.: Interactions between impact craters and tectonic fractures on Enceladus and Dione. Workshop on Ices, Oceans, and Fire: Satellites of the Outer Solar System, held August 13–15, 2007. Boulder, Colorado, LPI Contribution No. 1357, pp. 95–96 (2007).Google Scholar
  96. Miller, S.L.: A production of amino acids under possible primitive Earth conditions. Science 117, 528–529 (1953).ADSCrossRefGoogle Scholar
  97. Mitri, G., Showman, A.P.: A model for the temperature-dependence of tidal dissipation in convective plumes on icy satellites: Implications for Europa and Enceladus, Icarus 195, 758–764 (2008).ADSCrossRefGoogle Scholar
  98. Moore, J.M., Schenk, P.M., Bruesch, L.S., Asphaug, E., McKinnon, W.B.: Large impact features on middle-sized icy satellites. Icarus 171, 421–443 (2004).ADSCrossRefGoogle Scholar
  99. Mousis, O, Gautier, D., Bockelee-Morvan, D.: An evolutionary turbulent model of Saturn's subnebula: Implications for the origin of the atmosphere of Titan. Icarus 156, 162–175 (2002). doi:10.1016/icar.2001.6782.ADSCrossRefGoogle Scholar
  100. Murray, C., Dermott, S.: Solar System Dynamics. Cambridge Univ. Press, Cambridge (1999).MATHGoogle Scholar
  101. Nash, D.B., Carr, M.H., Gradie, J., Hunten, D.M., Yoder, C.F.: Io. In: Burns J.A., Matthews, M.S. (eds.) Satellites, pp. 629–688. Univ. Ariz. Press, Tucson (1986).Google Scholar
  102. Neukum, G.: Cratering records of the satellites of Jupiter and Saturn. Adv. Space Res. 5, 107–116 (1985).ADSCrossRefGoogle Scholar
  103. Newman, S.F., Buratti, B.J., Jaumann, R., Bauer, J.M., Momary, T.W.: Hydrogen peroxide on Enceladus. Astrophys. J. 670, L143–L146 (2007).ADSCrossRefGoogle Scholar
  104. Newman, S.F., Buratti, B.J., Brown, R.H., Jaumann, R., Bauer, J., Momary, T.: Photometric and spectral analysis of the distribution of crystalline and amorphous ices on Enceladus as seen by Cassini. Icarus 193, 397–406 (2008).ADSCrossRefGoogle Scholar
  105. Nicholson, P.D., Showalter, M.R., Dones, L., French, R.G., Larson, S.M., Lissauer, J.J., McGhee, C.A., Sicardy, B., Seitzer, P., Danielson, G.E.: Observations of Saturn's ring plane crossings in August and November 1995. Science 272, 509–515 (1996).ADSCrossRefGoogle Scholar
  106. Nimmo, F., Pappalardo, R.T.: Diapir-induced reorientation of Saturn's moon Enceladus. Nature 441, 614–616 (2006).ADSCrossRefGoogle Scholar
  107. Nimmo, F., Gaidos E.: Thermal consequences of strike-slip motion on Europa. J. Geophys. Res. 107, 5021 (2002).CrossRefGoogle Scholar
  108. Nimmo, F., Spencer, J.R., Pappalardo, R.T., Mullen, M.E.: Shear heating as the origin of the plumes and heat flux on Enceladus. Nature 447, 289–291 (2007).ADSCrossRefGoogle Scholar
  109. Ojakangas, G.W., Stevenson, D.J.: Thermal state of an ice shell on Eu-ropa. Icarus 81, 220–241 (1989).ADSCrossRefGoogle Scholar
  110. Ojakangas, G.W., Stevenson, D.J.: Episodic volcanism of tidally-heated satellites with application to Io. Icarus 66, 341–358 (1986).ADSCrossRefGoogle Scholar
  111. Orgel, L.E.: The origin of life – how long did it take? Origins Life Evol. Biosphere. 28, 91–96 (1998).CrossRefGoogle Scholar
  112. Pang, K.D., Voge, C.C., Rhoads, J.W., Ajello, J.M.: The E ring of Saturn and satellite Enceladus. J. Geophys. Res. 89, 9459–9470 (1984).ADSCrossRefGoogle Scholar
  113. Pappalardo, R.T., Barr A.C., The origin of domes on Europa: The role of thermally induced compositional diapirism. Geophys. Res. Lett. 31, L01701 (2004).CrossRefGoogle Scholar
  114. Parkinson, C.D., Liang, M.-C., Hartman, H., Hansen, C.J., Tinetti, G., Meadows, V., Kirschvink, J.L., Yung Y.L.: Enceladus: Cassini observations and implications for the search for life. Astron. Astro-phys. 463, 353–357 (2007).ADSGoogle Scholar
  115. Parkinson, C.D., Liang, M.-C., Yung, Y.L., Kirschvink, J.L.: Habitabil-ity of Enceladus: Planetary conditions for life. Origins Life Evol. Biospheres (2008). doi:10.1007/s11084-008-9135-4.Google Scholar
  116. Passey, Q.: Viscosity of the lithosphere of Enceladus. Icarus 53, 105–120 (1983).ADSCrossRefGoogle Scholar
  117. Peale S.J., Cassen P.: Contribution of tidal dissipation to lunar tidal history, Icarus 36, 245–269 (1978).ADSCrossRefGoogle Scholar
  118. Plescia, J.B., Boyce, J.M.: Crater numbers and geological histories of Iapetus, Enceladus, Tethys and Hyperion. Nature 301, 666–670 (1983).ADSCrossRefGoogle Scholar
  119. Porco, C. C., and 24 co-authors: Cassini observes the active south pole of Enceladus. Science 311, 1393–1401 (2006).ADSCrossRefGoogle Scholar
  120. Postberg, F., Kempf, S., Hillier, J.K., Srama, R., Green, S.F., McBride, N., Grün, E.: The E-ring in the vicinity of Enceladus II. Probing the moon's interior—The composition of E-ring particles. Icarus 193, 438–454 (2008).ADSCrossRefGoogle Scholar
  121. Postberg, F., Kempf, S., Schmidt, J., Brillantov, N., Beinsen, A., Abel, B., Buck, U., Srama, R.: Sodium salts in E Ring ice grains from an ocean below Enceladus' surface. Nature 459, 1098–1101 (2009).ADSCrossRefGoogle Scholar
  122. Rappaport, N.J., Iess, L., Tortora, P., Anabtawi, A., Asmar, S., Somenzi, L., Zingoni, F.: Mass and interior of Enceladus from Cassini data analysis, Icarus 190, 175–178 (2007).ADSCrossRefGoogle Scholar
  123. Razzaghi, A., Di Pietro, D., Simon-Miller, A., Spencer, J.: Ence-ladus Flagship Mission Concept Study. NASA-Goddard Spaceflight Center, http://www.lpi.usra.edu/opag/Enceladus_Public_Report.pdf (2007). Accessed 9 April 2009.
  124. Reh, K., Elliot, J., Spilker, T., Jorgensen, E., Spencer, J., Lorenz, R.: Titan and Enceladus $1B mission feasibility study report. JPL D-37401B (2007).Google Scholar
  125. Roatsch, T., Wählisch, M., Giese, B., Hoffmeister, A., Matz, K.-D., Scholten, F., Kuhn, A., Wagner, R., Neukum, G., Helfenstein, P., Porco, C.: High-resolution Enceladus atlas derived from Cassini-ISS images. Planet. Space Sci. 56, 109–116 (2008).ADSCrossRefGoogle Scholar
  126. Roberts, J.H., Nimmo F.: Tidal heating and the long-term stability of a subsurface ocean on Enceladus. Icarus 194, 675–689 (2008a).ADSCrossRefGoogle Scholar
  127. Roberts, J.H., Nimmo F.: Near-surface heating on Enceladus and the south polar thermal anomaly. Geophys. Res. Lett. 35L09201 (2008b).CrossRefGoogle Scholar
  128. Roddier, C., Roddier, F., Graves, J.E., Northcott M.: Discovery of an arc of particles near Enceladus' orbit: A possible key to the origin of the E ring. Icarus 136, 50–59 (1998).ADSCrossRefGoogle Scholar
  129. Ross, M., Schubert, G.: Tidal dissipation in a viscoelastic planet. Proc. 16th Lunar Planet Sci. Conf. Pt 2, J. Geophys Res. 91, D447–D452 (1986).ADSCrossRefGoogle Scholar
  130. Ross, M.N., Schubert, G.: Viscoelastic models of tidal heating in Ence-ladus, Icarus 78, 90–101 (1989).ADSCrossRefGoogle Scholar
  131. Rudolph, M.L., Manga, M.: Fracture penetration in planetary ice shells. Icarus 199, 536–541 (2009).ADSCrossRefGoogle Scholar
  132. Saur, J., Schilling, N., Neubauer, F.M., Strobel, D.F., Simon, S., Dougherty, M.K., Russell, C.T., Pappalardo, R.T.: Evidence for temporal variability of Enceladus' gas jets: Modeling of Cassini observations. Geophys. Res. Lett. 35, 20105 (2008).ADSCrossRefGoogle Scholar
  133. Schmidt, J., Brilliantov, N., Spahn, F., Kempf, S.: Slow dust in Ence-ladus' plume from condensation and wall collisions in tiger stripe fractures. Nature 451, 685–688 (2008).ADSCrossRefGoogle Scholar
  134. Schneider, N.M., Burger, M.H., Schaller, E.L., Brown, M.E., Johnson, R.E., Kargel, J.S., Dougherty, M., Achilleos N.: No sodium in Ence-ladus' vapor plumes. Nature 459, 1102–1104 (2009).ADSCrossRefGoogle Scholar
  135. Schubert, G., Anderson, J.D., Travis, B.J., Palguta, J.: Enceladus: Present internal structure and differentiation by early and long-term radiogenic heating. Icarus 188, 345–355 (2007).ADSCrossRefGoogle Scholar
  136. Segatz, M.T., Spohn, T., Ross, M.N., Schubert G.: Tidal dissipation, surface heat flow, and figure of viscoelastic models of Io. Icarus 75, 187–206 (1988).ADSCrossRefGoogle Scholar
  137. Shemansky, D.E., Matheson, P., Hall, D.T., Hu, H.-Y., Tripp, T.M.: Detection of the hydroxyl radical in the Saturn magnetosphere. Nature 363, 329–331 (1993).ADSCrossRefGoogle Scholar
  138. Shock, E.L.: Geochemical constraints on the origin of organic compounds in hydrothermal systems. Origins Life Evol Biosphere 20, 331–367 (1990).ADSCrossRefGoogle Scholar
  139. Showalter, M.R., Cuzzi, J.N., Larson, S.M.: Structure and particle properties of Saturn's E Ring. Icarus 94, 451–473 (1991).ADSCrossRefGoogle Scholar
  140. Showman A.P., Stevenson, D.J., Malhotra, R.: Coupled orbital and thermal evolution of Ganymede. Icarus 129, 367–383 (1997).ADSCrossRefGoogle Scholar
  141. Showman, A.P., Han, L.J.: Effects of plasticity on convection in an ice shell: Implications for Europa. Icarus 177, 425–437 (2005).ADSCrossRefGoogle Scholar
  142. Smith, B.A., and 28 co-authors: A new look at the Saturn system: The Voyager 2 images, Science 215, 504–537 (1982).ADSCrossRefGoogle Scholar
  143. Smith, H.T., Shappirio, M., Johnson, R.E., Reisenfeld, D., Sittler, E.C., Crary, F.J., McComas, D.J., Young, D.T.: Enceladus: The likely dominant nitrogen source in Saturn's magnetosphere. Icarus 188, 356–366 (2008a).ADSCrossRefGoogle Scholar
  144. Smith, H.T., Shappirio, M., Johnson, R.E., Reisenfeld, D., Sittler, E.C., Crary, F.J., McComas, D.J., Young, D.T.: Enceladus: A potential source of ammonia products and molecular nitrogen for Saturn's magnetosphere. J. Geophys. Res. 113, A11206 (2008b).ADSCrossRefGoogle Scholar
  145. Smith-Konter, B., Pappalardo R.T.: Tidally driven stress accumulation and shear failure of Enceladus's tiger stripes. Icarus 198, 435–451 (2008).ADSCrossRefGoogle Scholar
  146. Solomatov, V.S., Barr A.C.: Onset of convection in fluids with strongly temperature-dependent, power-law viscosity 2. Dependence on the initial perturbation. Phys. Earth and Planet. Int. 165, 1–13 (2007).ADSCrossRefGoogle Scholar
  147. Sotin, C., Head, J.W., Tobie G.: Europa: Tidal heating of upwelling thermal plumes and the origin of lenticulae and chaos melting. Geophys. Res. Lett. 29, 1233 (2002).ADSCrossRefGoogle Scholar
  148. Spahn, F. and 15 co-authors: Cassini dust measurements at Ence-ladus and implications for the origin of the E ring. Science 311, 1416–1418 (2006a).ADSCrossRefGoogle Scholar
  149. Spahn, F. Albers, N., Hörning, M., Kempf, S., Krivov, A.V., Makuch, M., Schmidt, J., Seiß, M., Miodrag, S.: E ring dust sources: Implications from Cassini's dust measurements. Planet. Space Sci. 54, 1024–1032 (2006b).ADSCrossRefGoogle Scholar
  150. Spencer, J.R., Pearl, J.C., Segura, M., Flasar, F.M., Mamoutkine, A., Romani, P., Buratti, B.J., Hendrix, A.R., Spilker, L.J., Lopes, R.M.C.: Cassini Encounters Enceladus: Background and the discovery of a south polar hot spot, Science 311, 1401–1405 (2006).ADSCrossRefGoogle Scholar
  151. Spitale, J.N., Porco, C.C.: Association of the jets of Enceladus with the warmest regions on its south-polar fractures. Nature 449, 695–697 (2007).ADSCrossRefGoogle Scholar
  152. Squyres, S.W., Reynolds, R.T., Cassen P.M., Peale, S.J.: The evolution of Enceladus, Icarus 53, 319–331 (1983).ADSCrossRefGoogle Scholar
  153. Stevens, T.O., McKinley J.P.: Lithoautotrophic microbial ecosystems in deep basalt aquifers. Science 270, 450–454 (1995).ADSCrossRefGoogle Scholar
  154. Thomas, P.C. Burns, J.A., Helfenstein, P., Squyres, S., Veverka, J., Porco, C., Turtle, E.P., McEwen, A., Denk, T., Giese, B., Roatsch, T., Johnson, T.V., Jacobson, R.A.: Shapes of the Saturnian icy satellites and their significance. Icarus 190, 573–584 (2007).ADSCrossRefGoogle Scholar
  155. Tian, F., Stewart, A.I.F., Toon, O.B., Larsen, K.W., Esposito, L.W.: Monte Carlo simulations of the water vapor plumes on Enceladus. Icarus 188, 154–161 (2007).ADSCrossRefGoogle Scholar
  156. Tice, M.M., Lowe, D.R.: Photosynthetic microbial mats in the 3,416-Myr-old ocean. Nature 431, 549–552 (2004).ADSCrossRefGoogle Scholar
  157. Tobie, G., Mocquet, A., Sotin, C.: Tidal dissipation within large icy satellites: Applications to Europa and Titan. Icarus 177, 534–549 (2005).ADSCrossRefGoogle Scholar
  158. Tobie, G., Cadek, O., Sotin, C.: Solid tidal friction above a liquid water reservoir as the origin of the south pole hotspot on Enceladus, Icarus 196, 642–652 (2008). doi:10.1016/j.icarus.2008.03.008.ADSCrossRefGoogle Scholar
  159. Tyler, R. H.: Strong ocean tidal flow and heating on moons of the outer planets. Nature 456, 770–772 (2008).ADSCrossRefGoogle Scholar
  160. Verbiscer, A.J., French, R.G., McGhee, C.A.: The opposition surge of Enceladus: HST observations 338–1022nm. Icarus 173, 66–83 (2005).ADSCrossRefGoogle Scholar
  161. Verbiscer, A.J., Peterson, D.E., Skrutskie, M.F., Cushing, M., Helfen-stein, P., Nelson, M.J. Smith, J.D., Wilson J. C.: Near-infrared spectra of the leading and trailing hemispheres of Enceladus. Icarus 182, 211–223 (2006).ADSCrossRefGoogle Scholar
  162. Verbiscer, A., French, R., Showalter, M., Helfenstein, P.: Ence-ladus: Cosmic graffiti artist caught in the act. Science 315, 815 (2007).ADSCrossRefGoogle Scholar
  163. Wächtershäuser, G.: The case for the chemoautotrophic origin of life in an iron-sulfur world. Origins Life Evol. Biosphere 20,173–176 (1990).CrossRefGoogle Scholar
  164. Waite, J. H., and 16 co-authors: Ammonia, radiogenic Ar, organics, and deuterium measured in the plume of Saturn's icy moon Enceladus. Nature 460, 487–490 (2009).ADSCrossRefGoogle Scholar
  165. Waite, J. H., and 13 co-authors: Cassini Ion and Neutral Mass Spectrometer: Enceladus plume composition and structure. Science 311, 1419–1422 (2006).ADSCrossRefGoogle Scholar
  166. Weiss, B.P., Kirschvink, J.L., Baudenbacher, F.J., Vali, H., Peters, N.T., Macdonald, F.A., Wikswo J.P.: A low temperature transfer of ALH84001 from Mars to Earth. Science 290, 791–795 (2000).ADSCrossRefGoogle Scholar
  167. Wisdom, J.: Spin-orbit secondary resonance dynamics of Enceladus. Astron. J. 128, 484–491 (2004).ADSCrossRefGoogle Scholar
  168. Zahnle, K., Schenk, P., Levison, H., Dones L.: Cratering rates in the outer Solar System. Icarus 163, 263–289 (2003).ADSCrossRefGoogle Scholar
  169. Zolotov, M. Y.: An oceanic composition on early and today's Enceladus, Geophys. Res. Lett. 34, L23203 (2007). doi:10. 1029/2007GL031234.ADSCrossRefGoogle Scholar
  170. Zschau, J. Tidal friction in the solid Earth: Loading tides versus body tides. In: Brosche P., Sundermann, J. (eds.) Tidal Friction and the Earth's Rotation. Springer, Berlin (1978).Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • John R. Spencer
    • 1
  • Amy C. Barr
    • 1
  • Larry W. Esposito
    • 3
  • Paul Helfenstein
    • 4
  • Andrew P. Ingersoll
    • 5
  • Ralf Jaumann
    • 6
  • Christopher P. McKay
    • 7
  • Francis Nimmo
    • 8
  • J. Hunter Waite
    • 2
  1. 1.Southwest Research InstituteBoulderUSA
  2. 2.Southwest Research InstituteSan AntonioUSA
  3. 3.LASP, University of ColoradoBoulderUSA
  4. 4.Center for Radiophysics and Space ResearchCornell UniversityUSA
  5. 5.Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaUSA
  6. 6.Institute of Planetary Research, DLRBerlinGermany
  7. 7.NASA Ames Research CenterMountain ViewUSA
  8. 8.Dept. Earth and Planetary SciencesUniversity of California Santa CruzSanta CruzUSA

Personalised recommendations