Skip to main content

Ring Particle Composition and Size Distribution

  • Chapter
Book cover Saturn from Cassini-Huygens

Abstract

We review recent progress concerning the composition and size distribution of the particles in Saturn's main ring system, and describe how these properties vary from place to place. We discuss how the particle size distribution is measured, and how it varies radially. We note the discovery of unusually large “particles” in restricted radial bands. We discuss the properties of the grainy regoliths of the ring particles. We review advances in understanding of ring particle composition from spectrophotometry at UV, visual and near-IR wavelengths, multicolor photometry at visual wavelengths, and thermal emission. We discuss the observed ring atmosphere and its interpretation and, briefly, models of the evolution of ring composition. We connect the ring composition with what has been learned recently about the composition of other icy objects in the Saturn system and beyond. Because the rings are so thoroughly and rapidly structurally evolved, the composition of the rings may be our best clue as to their origin; however, the evolution of ring particle composition over time must first be understood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The ring opening angle B is the elevation angle of the observer from the ring plane. The phase angle α is the angle between the sun, the viewed target, and the observer, or the angle between the sun and observer as seen from the target. The phase angle is zero in direct backscattering.

  2. 2.

    Color images in multiple filters were obtained on 2004-day 347 as part of ISS observation RADCOLOR001 PRIME at phase angle = 45.2° elevation angle = 4.1°, and distance from Saturn of approximately 120000km (7.2km/pixel). The data were calibrated using standard techniques and scanned radially with approximately 100 pixel azimuthal averaging. See Porco et al (2005) for a description of the filter wavelengths and widths.

  3. 3.

    The data come from rings mosaic S36-SUBML001 acquired by VIMS on a CIRS-prime observation on 19–20 December 2007 with a solar phase angle of 32°, a solar elevation angle of —12° and from a mean distance of about 545000 km, giving a radial resolution of 125 km.

  4. 4.

    CIRS lit face scan, on the West Ansa, obtained in 2006 (day 349) near zero phase angle (~5.9deg) when the Sun was —14.6deg south of the ring plane. The radial distance between each CIRS footprint was ~100km on the ring plane, although the radial resolution was limited by the field of view to ~1700–1800km. For clarity, the data have been binned every 200 km.

  5. 5.

    Suspecting a temperature-dependent effect, Poulet et al. (2003) shifted the optical constants of ice by 0.07μm for wavelengths longer than 2.9 μ m — right where a glitch is seen in the models (F. Poulet, personal communication, 2008). More modeling work needs to be done using the most up to date optical constants of water ice at the appropriate temperature.

  6. 6.

    (LATPHASE001 in sequence S14 - VIS IFOV 166 × 166μrad, IR IFOV 250 × 500 μrad, with exposure times of 5.12 sec (VIS) and 80 msec (IR) from a distance of about 1,400,000 km from Saturn (inclination angle = 16ΰ, phase = 51°)

References

  • Akkermans, E., P. Wolf, R. Maynard, G. Maret (1988) Theoretical study of the coherent backscattering of light by disordered media. J. Phys. 49, 77–98.

    ADS  Google Scholar 

  • Altobelli, N., L. J. Spilker, C. Leyrat, S. Pilorz (2008) Thermal observations of Saturn's main rings by Cassini CIRS: Phase, emission and solar elevation dependence, Planetary and Space Science, 56, 134–146.

    ADS  Google Scholar 

  • Barucci, M. A., D. P. Cruikshank, E. Dotto, F. Merlin, F. Poulet, C. Dalle Ore, S. Fornasier, C. de Bergh (2005) Is Sedna another Triton? A&A 439, L1–L4.

    Google Scholar 

  • Barucci, M. A., M. E. Brown, J. P. Emery, F. Merlin (2008) Composition and surface properties of transneptunian objects and centaurs; in The Solar System Beyond Neptune, M. A. Barucci, H. Boehnhardt, D. P. Cruikshank, and A. Morbidelli eds., University of Arizona Press, Tucson, 143–160.

    Google Scholar 

  • Bauer, J. M., K. J. Meech, Y. R. Fernandez, T. L. Farnham, L. Ted, T. L. Roush (2002) Observations of the Centaur 1999 UG5: Evidence of a Unique Outer Solar System Surface. Publ. Astronom. Soc. Pacific 114, 1309–1321.

    ADS  Google Scholar 

  • Bernard, J.-M. and 9 coauthors (2006) Reflectance spectra and chemical structure of Titan's tholins: application to the analysis of Cassini-Huygens observations. Icarus 185, 301–307.

    ADS  Google Scholar 

  • Bouhram, M., R. E. Johnson, J.-J. Berthelier, J.-M. Illiano, R. L. Tokar, D. T. Young, F. J. Crary (2006) A test-particle model of the atmosphere/ionosphere system of Saturn's main rings, Geophys. Res. Lett., 33, L05106, doi:10.1029/2005GL025011.

    Google Scholar 

  • Bradley, E. T., J. E. Colwell, L.W. Esposito, H. Tollerud, L. Bruesch-Chambers, J. N. Cuzzi (2009) Far ultraviolet reflectance spectrum of Saturn's rings from Cassini UVIS; Icarus, submitted.

    Google Scholar 

  • Brahic, A (1977) Systems of colliding bodies in a gravitational field. I – Numerical simulation of the standard model. Astronom. Astrophys. 54, 895–907.

    ADS  Google Scholar 

  • Brown, R. H., D. P. Cruikshank, Y. Pendleton (1999). Water ice on Kuiper belt object 1996 TO66. Astrophys. J. 519(1), L101–L104.

    ADS  Google Scholar 

  • Buratti, B. J., D. P. Cruikshank, R. H. Brown, R. N. Clark, J. M. Bauer, R. Jaumann, T. B. McCord, D. P. Simonelli, C. A. Hibbitts, G. B. Hansen, T. C. Owen, K. H. Baines, G. Bellucci, J.-P. Bibring, F. Capaccioni, P. Cerroni, A. Coradini, P. Drossart, V. Formisano, Y. Langevin, D. L. Matson, V. Mennella, R. M. Nelson, P. D. Nicholson, B. Sicardy, C. Sotin, T. L. Roush, K. Soderlund, A. Muradyan (2005) Cassini visual and infrared mapping spectrometer observations of Iapetus: Detection of CO2. Astro-phys. J. 622, L149–L152.

    ADS  Google Scholar 

  • Buratti, B. J., J. D. Goguen, J. Gibson, J. Mosher, (1994) Historical photometric evidence for volatile migration on Triton. Icarus 110, 303–314.

    ADS  Google Scholar 

  • Canup, R. M., W. R. Ward (2002) Formation of the Galilean satellites: conditions of accretion. Astronom. J. 124, 3404–3423.

    ADS  Google Scholar 

  • Canup, R. M. and W. R. Ward (2006) A common mass scaling for satellite systems of gaseous planets; Nature, 441, 834–839.

    ADS  Google Scholar 

  • Carlson, R. W. (1980) Photosputtering of Saturn's rings. Nature 283, 461–462.

    ADS  Google Scholar 

  • Chambers, L. S., J. N. Cuzzi (2008) Beam: A ray-tracing Monte Carlo code for photometric studies of Saturn's Rings; American Geophysical Union, Fall Meeting 2008, abstract #P13A-1293.

    Google Scholar 

  • Clark, R. N. (1980) Ganymede, Europa, Callisto, and Saturn's rings: Compositional analysis from reflectance spectroscopy, Icarus, 44, 388–409.

    ADS  Google Scholar 

  • Clark, R. N. (1983) Spectral properties of mixtures of montmorillonite and dark carbon grains: Implications for remote sensing minerals containing chemically and physically adsorbed water, J. Geophys. Res., 88, 10635–10644.

    ADS  Google Scholar 

  • Clark, R. N., R. H. Brown, R. Jaumann, D. P. Cruikshank, R. M. Nelson, B. J. Buratti, T. B. McCord, J. Lunine, K. H. Baines, G. Bellucci, J.-P. Bibring, F. Capaccioni, P. Cerroni, A. Coradini, V. Formisano, Y. Langevin, D. L. Matson, V. Mennella, P. D. Nicholson, B. Sicardy, C. Sotin, T. M. Hoefen, J. M. Curchin, G. Hansen, K. Hibbits, K.-D. Matz (2005). Compositional maps of Saturn's moon Phoebe from imaging spectroscopy. Nature 435, 66–69.

    ADS  Google Scholar 

  • Clark, R. N., D. P. Cruikshank, R. Jaumann, G. Filacchione, P. D. Nicholson, R. H. Brown, K. Stephan, M. Hedman, B. J. Bu-ratti, J. M. Curchin, T. M. Hoefen, K. H. Baines, R. Nelson (2008b) Compositional mapping of Saturn's rings and icy satellites with Cassini VIMS, poster presented at Saturn after Cassini-Huygens, London, July, 2008a.

    Google Scholar 

  • Clark, R. N., J. M. Curchin, R. Jaumann, D. P. Cruikshank, R. H. Brown, T. M. Hoefen, K. Stephan, J. M. Moore, B. J. Buratti, K. H. Baines, P. D. Nicholson, R. M. Nelson (2008b) Compositional mapping of Saturn's satellite Dione with Cassini VIMS and implications of dark material in the Saturn system, Icarus 193, 372–386.

    ADS  Google Scholar 

  • Clark, R. N., P. G. Lucey (1984). Spectral properties of ice—particulate mixtures and implications for remote sensing. I. Intimate mixtures. J. Geophys. Res. 89, 6341–6348.

    ADS  Google Scholar 

  • Clark, R.N., T. Roush (1984) Reflectance spectroscopy — Quantitative analysis techniques for remote sensing applications; J. Geophys. Res. 89, 6329–6340.

    ADS  Google Scholar 

  • Colwell, J. E., W. Esposito (1990) A numerical model of the Uranian dust rings; Icarus 86, 530–560.

    ADS  Google Scholar 

  • Colwell, J. E., L. W. Esposito (1992) Origins of the rings of Uranus and Neptune. I — Statistics of satellite disruptions; J. Geophys. Res. 97, 10,227–10,241.

    ADS  Google Scholar 

  • Colwell, J. E., L. W. Esposito (1993) Origins of the rings of Uranus and Neptune. II — Initial conditions and ring moon populations. J. Geophys. Res. 98, E4, 7387–7401.

    ADS  Google Scholar 

  • Colwell, J. E., L. W. Esposito, M. Sremcevic (2006) Gravitational wakes in Saturn's A ring measured by stellar occultations from Cassini. Geophys. Res. Lett. 33, doi:10:1029/2005GL025163. L07201.

    Google Scholar 

  • Conel, J. (1969) Infrared emissivities of silicates: Experimental results and a cloudy atmosphere model of spectral emission from condensed particulate media. J. Geophys. Res. 74, 1614–1634.

    ADS  Google Scholar 

  • Connerney, J. E. P., J. H. Waite (1984) New model of Saturn's ionosphere with an influx of water from the rings. Nature 312, 136–138.

    ADS  Google Scholar 

  • Cook, A. F., F. A. Franklin (1970) The effect of meteoroidal bombardment on Saturn's tings. Astronom. J. 75, 195–205.

    ADS  Google Scholar 

  • Cooke, M. (1991) Saturn's rings: Photometric studies of the C ring and radial variation in the Keeler Gap; unpublished PhD thesis, Cornell University, Ithaca, NY.

    Google Scholar 

  • Cooper, J. (1983) Nuclear cascades in Saturn's rings: Cosmic ray Albedo neutron decay and origins of trapped protons in the inner magnetosphere. J. Geophys. Res. 88, 3945–3954.

    ADS  Google Scholar 

  • Coradini, A., F. Tosi, A. Gavrishin, F. Capaccioni, P. Cerroni, G. Filacchione, A. Adriani, R. H. Brown, G. Bellucci, V. Formisano, E. D'Aversa, J. I. Lunine, K. H. Baines, J.-P. Bibring, B. J. Buratti, R. N. Clark, D. P. Cruikshank, M. Combes, P. Drossart, R. Jaumann, Y. Langevin, D. L. Matson, T. B. McCord, V. Mennella, R. M. Nelson, P. D. Nicholson, B. Sicardy, C. Sotin, M. M. Hedmann, G. B. Hansen (2008) Identification of spectral units on Phoebe. Icarus 193, 233–251.

    ADS  Google Scholar 

  • Cruikshank, D. P., H. Imanaka, C. M. Dalle Ore (2005) Tholins as coloring agents on outer Solar System bodies. Adv. Space Res. 36, 178–183.

    ADS  Google Scholar 

  • Cruikshank, D. P., J. B. Dalton, C. M. Dalle Ore, J. Bauer, K. Stephan, G. Filacchione, A. R. Hendrix, C. J. Hansen, A. Coradini, P. Cerroni, F. Tosi, F. Capaccioni, R. Jaumann, B. J. Buratti, R. N. Clark, R. H. Brown, R. M. Nelson, T. B. McCord, K. H. Baines, P. D. Nicholson, C. Sotin, A. W. Meyer, G. Bellucci, M. Combes, J.-P. Bibring, Y. Langevin, B. Sicardy, D. L. Matson, V. Formisano, P. Drossart V. Mennella (2007). Surface composition of Hyperion. Nature 448, 54–56.

    ADS  Google Scholar 

  • Cuzzi, J. N., J. J. Lissauer, L. W. Esposito, J. B. Holberg, E. A. Marouf, G. L. Tyler, A. Boischot (1984) Saturn's rings: Properties and Processes; in Planetary Rings, R. Greenberg and A. Brahic, eds. University of Arizona Press, Tucson.

    Google Scholar 

  • Cuzzi, J. N. (1985) Rings of Uranus – Not so thick, not so black; Icarus 63, 312–316.

    ADS  Google Scholar 

  • Cuzzi, J. N. (1995) Evolution of planetary ring-moon systems; in Comparative Planetology, Kluwer Press; also, Earth, Moon, and Planets 67; 179–208.

    Google Scholar 

  • Cuzzi, J. N., R. H. Durisen (1990) Bombardment of planetary rings by meteoroids: General formulation and effects of Oort cloud projectiles. Icarus 84, 467.

    ADS  Google Scholar 

  • Cuzzi, J. N., P. R. Estrada (1998) Compositional evolution of Saturn's rings due to meteoroid bombardment. Icarus 132, 1–35.

    ADS  Google Scholar 

  • Cuzzi, J. N., J. E. Colwell, L. W. Esposito, C. C. Porco, C. E. Murray, P. D. Nicholson, L. Spilker, E. A. Marouf, R. C. French, N. Rappaport, D. Muhleman (2002) Saturn's rings: Pre-Cassini status and mission goals; Space Sci. Rev. 104, 209–251.

    ADS  Google Scholar 

  • Cuzzi, J.N., R.G. French, L. Dones (2002) HST multicolor (255–1042 nm) photometry of Saturn's main rings I: Radial profiles, phase and opening angle variations, and regional spectra. Icarus 158, 199–223.

    ADS  Google Scholar 

  • Deau, E., S. Charnoz, L. Dones, A. Brahic, C. Porco (2006) Sunshine on the rings: The opposition effect seen at high resolution with CASSINI-ISS; AAS/DPS meeting #38, paper #51.01; B. A. A. S. 38, 577.

    Google Scholar 

  • Dones, L., J. N. Cuzzi, M. R. Showalter (1989) Simulations of light scattering in planetary rings; in Dynamics of astrophysical discs; Proceedings of the Conference, Manchester, England, Dec. 13– 16, 1988 (A90-51451 23–90). Cambridge, England and New York, Cambridge University Press, 25–26.

    Google Scholar 

  • Dones, L. (1991) A recent cometary origin for Saturn's rings? Icarus 92, 194–203.

    ADS  Google Scholar 

  • Dones, L., J. N. Cuzzi, M. R. Showalter (1993) Voyager photometry of Saturn's A ring. Icarus 105, 184–215.

    ADS  Google Scholar 

  • Dones, L. (1998) The rings of the giant planets; in Solar System Ices, B. Schmitt, C. de Bergh, and M. Festou, eds. Kluwer, Dordrecht, pp. 711–734.

    Google Scholar 

  • Doyle, L. R., J. N. Cuzzi, L. Dones (1989) Radiative transfer modeling of Saturn's outer B ring. Icarus 80, 104–135.

    ADS  Google Scholar 

  • Draine, B. T., A. Li (2001) Infrared emission from interstellar dust. I. Stochastic heating of small grains. Astrophys. J. 551, 807–824.

    ADS  Google Scholar 

  • Durisen, R. H., P. W. Bode, J. N. Cuzzi, S. E. Cederbloom, B. W. Murphy (1992) Ballistic transport in planetary ring systems due to particle erosion mechanisms. II – Theoretical models for Saturn's A- and B-ring inner edges; Icarus 100, 364–393.

    ADS  Google Scholar 

  • Durisen, R. H., P. W. Bode, S. G. Dyck, J. N. Cuzzi, J. D. Dull, J. C. White, II (1996) Ballistic transport in planetary ring systems Due to particle erosion mechanisms; III. Torques and mass lsoading by meteoroid impacts; Icarus 124(1), 220–236.

    ADS  Google Scholar 

  • Esposito, L. W. (2008) Regolith Growth and Darkening of Saturn's Ring Particles; 21.01, AAS/DPS meeting, Ithaca, NY.

    Google Scholar 

  • Esposito, L. W., J. N. Cuzzi, J. B. Holberg, E. A. Marouf, G. L. Tyler, C. C. Porco (1984) Saturn's rings: Structure, dynamics, and particle properties; in Saturn, T. Gehrels and M. Matthews, eds. University of Arizona Press, Tucson.

    Google Scholar 

  • Esposito, L. W., M. O'Callaghan, K. E. Simmons, C. W. Hord, R. A. West, A. L. Lane, B. Pomphrey, D. L. Coffeen, M. Sato (1983) Voyager photopolarimeter stellar occultation of Saturn's rings. J. Geo-phys. Res. 88, 8643–8649.

    ADS  Google Scholar 

  • Estrada, P. R., J. N. Cuzzi (1996) Voyager observations of the color of Saturn's rings; Icarus 122, 251–272.

    ADS  Google Scholar 

  • Estrada, P. R., J. N. Cuzzi, M. R. Showalter(2003) Voyager color photometry of Saturn's main rings: a correction. Icarus 166, 212–222.

    ADS  Google Scholar 

  • Estrada, P., I. Mosqueira (2006) A gas-poor planetesimal capture model for the formation of giant planet satellite systems; Icarus 181(2) 486–509.

    ADS  Google Scholar 

  • Farmer, A. J., P. Goldreich (2007) How much oxygen is too much? Constraining Saturn's ring atmosphere. Icarus 188, 108–119.

    ADS  Google Scholar 

  • Farrell, W. M., M. L. Kaiser, D. A., Gurnett, W. S. Kurth, A. M. Persoon, J. E. Wahlund, P. Canu (2008) Mass unloading along the inner edge of the Enceladus plasma torus Geophys. Res. Lett. 35, CiteID L02203; doi:10.1029/2007GL032306

    Google Scholar 

  • Filacchione, G., F. Capaccioni, T. B. McCord, A. Coradini, P. Cerroni, G. Bellucci, F. Tosi, E. D'Aversa, V. Formisano, R. H. Brown, K. H. Baines, J. P. Bibring, B. J. Buratti, R. N. Clark, M. Combes, D. P. Cruikshank, P. Drossart, R. Jaumann, Y. Langevin, D. L. Matson, V. Mennella, R. M. Nelson, P. D. Nicholson, B. Sicardy, C. Sotin, G. Hansen, K. Hibbits, M. Showalter, S. Newman (2007) Saturn's icy satellites investigated by Cassini-VIMS. I. Full-disk properties: 350–5100 nm reflectance spectra and phase curves. Icarus 186, 259–290.

    ADS  Google Scholar 

  • Filacchione, G., F. Capaccioni, F. Tosi, A. Coradini, P. Cerroni, R. N. Clark, P. D. Nicholson, J. N. Cuzzi, M. H. Hedman, M. R. Showalter, R. Jaumann, K. Stephan, D. P. Cruikshank, R. H. Brown, K. H. Baines, R. M. Nelson, T. B. McCord (2008a) The diversity of Saturn's main rings: A Cassini-VIMS perspective. 39th Lunar and Planetary Science Conference (Lunar and Planetary Science XXXIX), held March 10–14, 2008 in League City, Texas. LPI Contribution No. 1391, p. 1294.

    Google Scholar 

  • Filacchione, G., F. Capaccioni, F. Tosi, A. Coradini, P. Cerroni, R. N. Clark, P. D. Nicholson, J. N. Cuzzi, M. M. Hedman, M. R. Showalter, R. Jaumann, K. Stephan, D. P. Cruikshank, R. H. Brown, K. H. Baines, R. M. Nelson, T. B. McCord (2008b) The diversity of Saturn's main rings investigated by Cassini-VIMS. Saturn After Cassini-Huygens symposium, Imperial College London, UK, 28 July–1 August 2008.

    Google Scholar 

  • Franklin, F. A., Cook, F. A. (1965) Optical properties of Saturn's rings. II. Two-color phase curves of the two bright rings. Astronom. J. 70, 704.

    ADS  Google Scholar 

  • French, R. G., P. D. Nicholson (2000). Saturn's rings II: Particle sizes inferred from stellar occultation data. Icarus 145, 502–523.

    ADS  Google Scholar 

  • French, R. G., H. Salo, C. A. McGhee, L. Dones (2007) HST observations of azimuthal asymmetry in Saturn's rings. Icarus 189, 493–522.

    ADS  Google Scholar 

  • French, R. G., A. Verbiscer, H. Salo, C. McGhee, L. Dones (2007) Saturn's rings at true opposition. Publ. Astronom. Soc. Pacific 119, 623–642.

    ADS  Google Scholar 

  • Gaffey, M. J., T. H. Burbine, R. P. Binzel (1993) Asteroid spectroscopy – Progress and perspectives. Meteoritics 28, 161–187.

    ADS  Google Scholar 

  • Goldreich, P. and S. D. Tremaine (1978) The velocity dispersion in Saturn's rings. Icarus 34, 227–239.

    ADS  Google Scholar 

  • Grundy, W. M., L. A. Young (2004) Near-infrared spectral monitoring of Triton with IRTF/SpeX I: Establishing a baseline for rotational variability. Icarus 172, 455–465.

    ADS  Google Scholar 

  • Hanel, R., B. Conrath, F. M. Flasar, V. Kunde, W. Maguire, J. C. Pearl, J. Pirraglia, R. Samuelson, D. P. Cruikshank, D. Gautier, P. J. Gierasch, L. Horn, C. Ponnamperuma (1982) Infrared observations of the Saturnian system from Voyager 2; Science 215, 544–548.

    ADS  Google Scholar 

  • Hansen, C. J., L. Esposito, A. I. F. Stewart, J. Colwell, A. Hendrix, W. Pryor, D. Shemansky, R. West (2006) Enceladus' water vapor plume. Science 311, 1422–1425.

    ADS  Google Scholar 

  • Hansen, G.B., T.B. McCord (2004). Amorphous and crystalline ice on the Galilean satellites: A balance between thermal and radi-olytic processes. J. Geophys. Res. 109, doi:10.1029/2003JE002149. E001012.

    Google Scholar 

  • Hapke, B. (1981) Bidirectional reflectance spectroscopy 1. Theory, J. Geophys. Res. 86, 3039–3054.

    ADS  Google Scholar 

  • Hapke, B. (1984) Bidirectional reflectance spectroscopy. III — Correction for macroscopic roughness. Icarus 59, 41–59.

    ADS  Google Scholar 

  • Hapke, B. (1986) Bidirectional reflectance spectroscopy. IV — The extinction coefficient and the opposition effect. Icarus 67, 264–280.

    ADS  Google Scholar 

  • Hapke, B. (1990) Coherent backscatter and the radar characteristics of outer planet satellites. Icarus 88, 407–417.

    ADS  Google Scholar 

  • Hapke, B. (1993) Introduction to the Theory of Reflectance and Emit-tance Spectroscopy, Cambridge University Press, New York.

    Google Scholar 

  • Hapke, B. (2002) Bidirectional reflectance spectroscopy 5. The coherent backscatter opposition effect and anisotropic scattering. Icarus 157, 523–534.

    ADS  Google Scholar 

  • Hapke, B., R. M. Nelson, R. H. Brown, L. J. Spilker, W. D. Smythe, L. Kamp, M. Boryta, F. Leader, D. L. Matson, S. Edgington, P. D. Nicholson, G. Filacchione, R. N. Clark, J. Bibring, K. H. Baines, B. J. Buratti, G. Bellucci, F. Capaccioni, P. Cerroni, M. Combes, A. Coradini, D. P. Cruikshank, P. Drossart, V. Formisano, R. Jaumann, Y. Langevin, T. McCord, V. Menella, B. Sicardy (2005) Physical Properties of the Saturnian ring system inferred from Cassini VIMS opposition observations. AGU Fall Meeting Abstracts 6.

    Google Scholar 

  • Hapke, B. W., M. K. Shepard, R. M. Nelson, W. D. Smythe, J. L. Piatek (2009) A quantitative test of the ability of models based on the equation of radiative transfer to predict the bidirectional reflectance of a well-characterized medium. Icarus 199, 210–218.

    ADS  Google Scholar 

  • Hapke, B., and 30 coauthors (2006) Cassini observations of the opposition effect of Saturn's rings 2. Interpretation: Plaster of paris as an analog of ring particles; 37th Annual Lunar and Planetary Science Conference, March 13–17, 2006, League City, Texas, abstract no. 1466.

    Google Scholar 

  • Hedman, M. M., P. D. Nicholson, H. Salo, B. D. Wallis, B. J. Buratti, K. H. Baines, R. H. Brown, R. N. Clark (2007) Self-gravity wake structures in Saturn's A ring revealed by Cassini VIMS. Astronom. J. 133, 2624–2629.

    ADS  Google Scholar 

  • Hedman, M. M., J. A. Burns, P. D. Nicholson, M. R. Showalter (2008) Backlit views of Saturn's dusty rings: Clues to their origins and evolution; Saturn after Cassini-Huygens symposium, Imperial College London, UK, 28 July — 1 August 2008.

    Google Scholar 

  • Hicks, M. D., B. J. Buratti (2004). The spectral variability of Triton from 1997–2000. Icarus 171, 210–218.

    ADS  Google Scholar 

  • Hillier, J. K., S. F. Green, N. McBride, N. Altobelli, F. Postberg, S. Kempf, J. Schwanethal, R. Srama, J. A. M. McDonnell, E. Grün (2007) Interplanetary dust detected by the Cassini CDA Chemical Analyser; Icarus 190, 643–654.

    ADS  Google Scholar 

  • Holberg, J. B., W. T. Forrester, J. J. Lissauer (1982) Identification of resonance features within the rings of Saturn. Nature. 297, 115–120.

    ADS  Google Scholar 

  • Hudson, R. L., M. E. Palumbo, G. Strazzulla, M. H. Moore, J. F. Cooper, S. J. Sturner (2008) Laboratory Studies of the Chemistry of Transneptunian Object Surface Materials; in The Solar System Beyond Neptune, M. A. Barucci, H. Boehnhardt, D. P. Cruikshank, and A. Morbidelli eds., University of Arizona Press, Tucson, 507–523.

    Google Scholar 

  • Ip, W.-H. (1984) The ring atmosphere of Saturn: Monte Carlo simulations of the ring source model. J. Geophys. Res. 89, 8843–8849.

    ADS  Google Scholar 

  • Ip, W.-H. (1995) Exospheric systems of Saturn's rings. Icarus 115, 295– 303.

    ADS  Google Scholar 

  • Ip W.-H. (2005) An update on the ring exosphere and plasma disc of Saturn. Geophys. Res. Lett. 32, doi:10.1029/2004GL022217. L13204.

    MathSciNet  ADS  Google Scholar 

  • Irvine, W. M. (1966) The shadowing effect in diffuse reflection. J. Geo-phys. Res. 71, 2931–2937.

    ADS  Google Scholar 

  • Irvine, W. M., J. B. Pollack (1968) Infrared optical properties of water and ice spheres. Icarus 8, 324–360.

    ADS  Google Scholar 

  • Johnson, B. R., S. Atreya (1996) Feasibility of determining the composition of planetary ices by far infrared observations: Application to Martian cloud and surface ices. Icarus 119, 405–426.

    ADS  Google Scholar 

  • Johnson, R. E., M. Nelson, T. McCord, J. Gradie (1988), ‘Analysis of Voyager Images of Europa: Plasma Bombardment’. Icarus 75, 423– 436.

    ADS  Google Scholar 

  • Johnson, R. E. (1998) Sputtering and desorption from icy satellite surfaces; in Solar System Ices, B. Schmitt and C. beBergh eds., Kluwer Acad. Pub., Netherlands, pp. 303–334.

    Google Scholar 

  • Johnson, R. E., R. W. Carlson, J. F. Cooper, C. Paranicas, M. H. Moore, M. C. Wong (2004) Radiation effects on the surface of the Galilean satellites; in Jupiter-The Planet, Satellites and Magnetosphere, F. Bagenal, T. Dowling, W. B. McKinnon, eds., Cambridge Univ. Press, Cambridge, Chapter 20, pp. 485–512.

    Google Scholar 

  • Johnson, R. E., J. G. Luhmann, R. L. Tokar, M. Bouhram, J. J. Berthelier, E. C. Sittler, J. F. Cooper, T. W. Hill, H. T. Smith, M. Michael, M. Liu, F. J. Crary, D.T. Young (2006a) Production, ionization and redistribution of O2 Saturn's ring atmosphere. Icarus180, 393–402.

    ADS  Google Scholar 

  • Johnson, R. E., T. I. Quickenden (1997) Photolysis and radiolysis of water ice on outer Solar System bodies. J. Geophys. Res. 102, 10985–10996.

    ADS  Google Scholar 

  • Johnson. R. E., H. T. Smith, O. J. Tucker, M. Liu, R. Tokar (2006b) The Enceladus and OH Tori at Saturn, Astrophys. J. Lett. 644, L137–L139.

    ADS  Google Scholar 

  • Jones, G. H. and 34 coauthors (2008) The dust halo of Saturn's largest icy moon Rhea; Science 319, 1380–1384.

    ADS  Google Scholar 

  • Jurac, S., M. A. McGrath, R. E. Johnson, J. D. Richardson, V. M. Vasyliûnas, A. Eviatar (2002) Saturn: Search for a missing water source. Geophys. Res. Lett. 29, 2172, 25–1–4.

    Google Scholar 

  • Jurac, S., J. D. Richardson (2007) Neutral cloud interaction with Saturn's main rings; Geophys. Res. Lett. 34, CiteID L08102; doi: 10.1029/2007GL029567

    Google Scholar 

  • Karkoschka E. (1994) Spectrophotometry of the jovian planets and Titan at 300- to 1000-nm wavelength: The methane spectrum. Icarus 111, 174–192.

    ADS  Google Scholar 

  • Kliore, A. J., et al. (2004). Cassini radio science. Space Sci. Rev. 115, 1–69.

    ADS  Google Scholar 

  • Karjalainen, R., Salo, H. (2004) Gravitational accretion of particles in Saturn's rings. Icarus 172, 328–348.

    ADS  Google Scholar 

  • Kempf, S., R. Srama, F. Postberg, M. Burton, S. F. Green, S. Helfert, J. K. Hillier, N. McBride, J. A. M. McDonnell, G. Moragas-Klostermeyer, M. Roy, E. Grün (2005) Composition of Saturnian stream particles. Science 307, 1274–1276.

    ADS  Google Scholar 

  • Li, A. (2009) PAHs in comets: an overview; in Deep Impact as a World Observatory Event — Synergies in Space, Time, and Wavelength, H. U. Kaufl, C. Sterken, eds., ESO Astrophys. Symp., ISBN 978-3-540-76958-3. Springer Berlin Heidelberg, p. 161.

    Google Scholar 

  • Licandro, J., W. M. Grundy, N. Pinilla-Alonso, P. Leisy (2006a) Visible spectroscopy of 2003 UB313: Evidence for N2 ice on the surface of the largest TNO? A&A, 458, L5–L8.

    Google Scholar 

  • Licandro, J., N. Pinilla-Alonso, M. Pedani, E. Oliva, G. P. Tozzi, W. M. Grundy, (2006b) The methane ice rich surface of large TNO 2005 FY9: A Pluto-twin in the trans-neptunian belt? A&A 445, L35–L38.

    Google Scholar 

  • Lissauer, J. J. (1985) Bending waves and the structure of Saturn's rings. Icarus 62, 433–447.

    ADS  Google Scholar 

  • Loeffler, M. J., U. Raut, R. A. Baragiola (2006) Enceladus: A source of nitrogen and an explanation for the water vapor plume observed by Cassini. Astrophys. J. 649, L133–L136.

    ADS  Google Scholar 

  • Luhmann, J. G., R. E. Johnson, R. L. Tokar, T. Cravens (2006) A model of the ionosphere of Saturn's toroidal ring atmosphere, Icarus 181, 465–474.

    ADS  Google Scholar 

  • Lumme, K., W. M. Irvine (1976) Photometry of Saturn's rings. Astronom. J. 81, 865–893.

    ADS  Google Scholar 

  • Lumme, K., W. M. Irvine, L. W. Esposito (1983) Theoretical interpretation of the ground-based photometry of Saturn's B ring. Icarus 53, 174–184.

    ADS  Google Scholar 

  • Marouf, E. A., G. L. Tyler, V. R. Eshleman (1982) Theory of radio occultation by Saturn's rings, Icarus 49, 161–193.

    ADS  Google Scholar 

  • Marouf, E. A., G. L. Tyler, H. A. Zebker, R. A. Simpson, V. R. Eshleman (1983) Particle size distribution in Saturn's rings from Voyager 1 radio occultation. Icarus 54, 189–211.

    ADS  Google Scholar 

  • Marouf, E. A., G. L. Tyler, P. A. Rosen (1986) Profiling Saturn's rings by radio occultation. Icarus 68, 120–166.

    ADS  Google Scholar 

  • Marouf, E., R. French, N. Rappaport, C. McGhee, K. Wong, F. Thomson, A. Anabtawi (2008a) Structure and physical properties of Saturn's rings from Cassini radio occultations. Abstracts for “Saturn after Cassini-Huygens” Symposium, Imperial College London, U.K., July 28 to August 1, p. 113.

    Google Scholar 

  • Marouf, E. A., R. French, N. Rappaport, K. Wong, C. McGhee, A. Anabtawi (2008b) Physical properties of Saturn's rings from Cassini radio occultation (Abstract). Bull. Am. Astronom. Soc. 40, 3, 23.03.

    Google Scholar 

  • Martens, H. R., D. B. Reisenfeld, J. D. Williams, M. F. Thomsen, H. T. Smith, A. Eviatar, R. E. Johnson, D. T. Young, E. C. Sittler, R. A. Baragiola (2008) Molecular oxygen ions in Saturn's inner magnetosphere for the first 24 Cassini orbits. Geophys. Res. Letts. 35, L20103, doi:10.1029/2008GL035433.

    ADS  Google Scholar 

  • Mastrapa, R. M., M. P. Bernstein, S. A. Sandford, T. L. Roush, D. P. Cruikshank, C. M. Dalle Ore (2008) Optical constants of amorphous and crystalline H2O-ice in the near infrared from 1.1 to 2:6 μm. Icarus 197, 307–320.

    ADS  Google Scholar 

  • Mastrapa, R. M., S. A. Sandford, T. L. Roush, D. P. Cruikshank, C. M. D. Ore (2009) Optical constants of amorphous and crystalline H2O-ice: 2.5 - 22 micrometers (4000 - 455 cm−1). Astrophysical Journal, in press.

    Google Scholar 

  • Mattioda, A., L. J. Allamandola, D. M. Hudgins (2005) The UV to far-IR optical properties of PAHs: A semiempirical model. Astrophys. J. 629, 1183–1187.

    ADS  Google Scholar 

  • Merlin, F, A. Guilbert, C. Duma, M. A. Barucci, C. de Bergh, P. Vernazza (2007) Properties of the icy surface of the TNO 136108 (2003EL61). Astronom. Astrophys. 466, 1185–1188.

    ADS  Google Scholar 

  • Mishchenko, M. I.,Z. M. Dlugach (1992) Can weak localization of photons explain the opposition effect of Saturn's rings? Monthly Notices of the Roy. Astronom. Soc. 254, 15P–18P

    Google Scholar 

  • Moersch, J. E., P. R. Christensen (1995) Thermal emission from particulate surfaces: A comparison of scattering models with measured spectra. J. Geophys. Res. 100, 7465–7477.

    ADS  Google Scholar 

  • Moore, L., A. F Nagy, A. J. Kliore, I. Müller-Wodarg, J. D. Richardson, M. Mendillo (2006) Cassini radio occultations of Saturn's ionosphere: Model comparisons using a constant water flux. Geophys. Res. Lett. 33, L22202, doi:10.1029/2006GL027375.

    ADS  Google Scholar 

  • Moore, L., M. Mendillo (2007) Are plasma depletions in Saturn's ionosphere a signature of time dependent water input? Geophys. Res. Lett. 34, L12202, doi:10.1029/2007GL029.

    ADS  Google Scholar 

  • Morfill, G. E., H. M. Thomas (2005) Spoke formation under moving plasma clouds - The Goertz Morfill model revisited. Icarus 179, 539–542.

    ADS  Google Scholar 

  • Morris, R. V., H. V. Lauer, C. A. Lawson, E. K. Jr. Gibson, G. A. Nace, C. Stewart (1985) Spectral and other physiochemical properties of submicron powders of hematite (-Fe2O3), maghemite (-Fe2O3), maghemite (Fe3O4), goethite (-FeOOH), and lepidochrosite (-FeOOH). J. Geophys. Res. 90, 3126–3144.

    ADS  Google Scholar 

  • Moses, J. I., E. Lellouch, B. Bezard, G. R. Gladstone, H. Feuchtgrube, M. Allen (2000) Photochemistry of Saturn's Atmosphere II. Effects of an influx of external oxygen. Icarus 145, 166–202.

    ADS  Google Scholar 

  • Mosqueira, I., P. R. Estrada (2003a) Formation of the regular satellites of giant planets in an extended gaseous nebula I: Subnebula model and accretion of satellites. Icarus 163, 198–231.

    ADS  Google Scholar 

  • Mosqueira, I., P. R. Estrada (2003b) Formation of the regular satellites of giant planets in an extended gaseous nebula II: Satellite migration and survival. Icarus 163, 232–255.

    ADS  Google Scholar 

  • Muinonen, K. O., A. H. Sihvola, I. V., Lindell, K. A. Lumme (1991) Scattering by a small object close to an interface. II. Study of backscattering. J. Opt. Soc. Am. A 8, 477–482.

    ADS  Google Scholar 

  • Mustard, J. F., C. M. Pieters (1987a) Quantitative abundance estimates from bidirectional reflectance measurements, Proc. 17th Lunar Planet. Sci. Conf., J. Geophys. Res. 92, E617–E626.

    ADS  Google Scholar 

  • Mustard, J. F., C. M. Pieters (1987b) Abundance and distribution of serpentinized ultramafic microbreccia in Moses Rock dike: Quantitative application of mapping spectrometer data, J. Geophys. Res. 92, 10376–10390.

    ADS  Google Scholar 

  • Mustard, J. F., C. M. Pieters (1989) Photometeric phase functions of common geologic minerals and applications to quantitative analysis of mineral mixture reflectance spectra, J. Geophys. Res. 94, 13619– 13634.

    ADS  Google Scholar 

  • Nelson, R. M., B. W. Hapke, W. D., Smythe, L. J., Spilker (2000) The opposition effect in simulated planetary regoliths. Reflectance and circular polarization ratio change at small phase angle. Icarus 147, 545–558.

    ADS  Google Scholar 

  • Nelson, R. M., W. D. Smythe, B. W. Hapke, A. S. (2002) Hale low phase angle laboratory studies of the opposition effect: search for wavelength dependence. Planet. Space Sci. 50, 849–856.

    ADS  Google Scholar 

  • Nelson, R. P. and 29 coauthors (2006) Cassini observations of the opposition effect of Saturn's rings-1; 37th Annual Lunar and Planetary Science Conference, March 13–17, 2006, League City, Texas, abstract no. 1461.

    Google Scholar 

  • Nicholson, P. D., M. M. Hedman, B. D., Wallis, Cassini-VIMS Team (2007) Cassini-VIMS observations of stellar occultations by Saturn's rings American astronomical society, DDA meeting #38, #12.05.

    Google Scholar 

  • Nicholson, P. D., M. M. Hedman, R. N. Clark, M. R. Showalter, D. P. Cruikshank, J. N. Cuzzi, G. Filacchione, F. Capaccioni, P. Cerroni, G. B. Hansen, B. Sicardy, P. Drossart, R. H. Brown, B. J. Buratti, K. H. Baines, A. Coradini (2008) A close look at Saturn's rings with Cassini VIMS. Icarus 193, 182–212.

    ADS  Google Scholar 

  • Northrop, T. G., J. R. Hill (1983) The inner edge of Saturn's B ring. J. Geophys. Res. 88, 6102–6108.

    ADS  Google Scholar 

  • Pollack, J. B. (1975) The Rings of Saturn; Space Science Reviews 18, 3–93.

    ADS  Google Scholar 

  • Pospieszalska, M. K., R. E. Johnson (1991) Micrometeorite erosion of the main rings as a source of plasma in the inner Saturnian Plasma Torus. Icarus 93, 45–52.

    ADS  Google Scholar 

  • Porco, C., J. Weiss, D. Richardson, L. Dones, T. Quinn, H. Throop (2008) Simulations of the dynamical and light-scattering behavior of Saturn's rings and the derivation of ring particle and disk properties. Astronom. J. 136, 2172–2200.

    ADS  Google Scholar 

  • Postberg, F., S. Kempf, J. K. Hillier, R. Srama, U. Beckmann, S.F. Green, N. McBride, and E. Grün (2007) Composition of submicron-sized particles in the Saturnian System; EPSC 2007-A-00221.

    Google Scholar 

  • Postberg, F., S. Kempf, J. K. Hillier, R. Srama, S. F. Green, N. McBride, E. Grün (2008) The E-ring in the vicinity of Enceladus. II. Probing the moon's interior – The composition of E-ring particles. Icarus 193, 438–454.

    ADS  Google Scholar 

  • Postberg, F., S. Kempf, J. Schmidt, N. Brillantov, A. Beinsen, B. Abel, U. Buck, R. Srama (2009) Sodium salts in E ring ice grains from an ocean below Enceladus' Surface; Nature 459, 1098–1101.

    ADS  Google Scholar 

  • Poulet, F., D. P. Cruikshank, J. N. Cuzzi, T. L. Roush, R. G. French (2003) Composition of Saturn's rings A, B, and C from high resolution near-infrared spectroscopic observations; Astronom. Astro-phys. 412, 305–316.

    ADS  Google Scholar 

  • Poulet, F., J. N. Cuzzi, R. G., French, L. Dones (2002) A study of Saturn's ring phase curves from HST observations. Icarus 158, 224–248.

    ADS  Google Scholar 

  • Quirico, E., S. Doutè, B. Schmitt, C. de Bergh, D. P. Cruikshank, T. C. Owen, T. R. Geballe, T. L. Roush (1999) Composition, physical state, and distribution of ices at the surface of triton. Icarus 139, 159–178.

    ADS  Google Scholar 

  • Richardson, D. C. (1994) Tree code simulations of planetary rings. Monthly Notices of the Roy. Astronom. Soc. 269, 493.

    ADS  Google Scholar 

  • Salama, F., E. L. O. Bakes, L. J. Allamandola, A. G. G. M. Tielens (1996) Assessment of the polycyclic aromatic hydrocarbon–diffuse intersttellar band proposal; Astrophys. J. 458, 621–636.

    ADS  Google Scholar 

  • Salo, H. (1987) Numerical simulations of collisions between rotating particles. Icarus 70, 37–51.

    ADS  Google Scholar 

  • Salo, H. (1992) Gravitational wakes in Saturn's rings. Nature 359, 619–621.

    ADS  Google Scholar 

  • Salo, H., R. G. French (2009) Photometric modeling of Saturn ring's opposition and tilt effects: Disentangling intrinsic and inter-particle contributions based on HST observations. Icarus, in review, 2009.

    Google Scholar 

  • Salo, H. and R. Karjalainen (2003) Photometric modeling of Saturn's rings I. Monte Carlo method and the effect of nonzero volume filling factor. Icarus 164, 428–460.

    ADS  Google Scholar 

  • Salo, H., R. Karjalainen (2003) Photometric modeling of Saturn's rings I. Monte Carlo method and the effect of nonzero volume filling factor. Icarus 164, 428–460.

    ADS  Google Scholar 

  • Salo, H., R. Karjalainen, R. G. French (2004) Photometric modeling of Saturn's rings. II. Azimuthal asymmetry in reflected and transmitted light. Icarus 170, 70–90.

    ADS  Google Scholar 

  • Salo, H. J., J. Schmidt, M. Sremcevic, M. Sremcevic, F. Spahn (2008) N-body survey of viscous overstability in Saturn's rings. AAS/Division for Planetary Sciences Meeting Abstracts 40, #30.03.

    Google Scholar 

  • Schutte, W., A., A. G. G. M. Tielens, L. J. Allamandola (1993) Theoretical modeling of the infrared fluorescence from interstellar polycyclic aromatic hydrocarbons. Astrophys. J. 415, 397–414.

    ADS  Google Scholar 

  • Shemansky, D. E., P. Matheson, D. T. Hall, H.-Y. Hu, T. M. Tripp, (1993) Detection of the hydroxyl radical in the Saturn magnetosphere. Nature 363, 329.

    ADS  Google Scholar 

  • Shepard, M. K., P. Helfenstein (2007) A test of the Hapke photometric model. J. Geophys. Res. (Planets) 112, 3001.

    Google Scholar 

  • Shimizu, M. (1980) Strong interaction between the ring system and the ionosphere of Saturn. Moon Planets 22, 521–522.

    ADS  Google Scholar 

  • Shipman, H., J.B. Adams (1987) Detectability of minerals on desert alluvial fans using reflectance spectra, J. Geophys. Res. 92, 10391– 10402.

    ADS  Google Scholar 

  • Shkuratov. Y. G., D. G. Stankevich, D. V. Petrov, P. C. Pinet, A, M. Cord, Y. H. Daydou, S. D. Chevrel (2005) Interpreting photometry of regolith-like surfaces with different topographies: shadowing and multiple scattering. Icarus 173, 3–15.

    ADS  Google Scholar 

  • Shkuratov, Y., L. Starukhina, H. Hoffmann, G. Arnold (1999) A model of spectral albedo of particulate surfaces: Implications for optical properties of the Moon. Icarus 137, 235–246.

    ADS  Google Scholar 

  • Showalter, M. R., P. D. Nicholson (1990) Saturn's rings through a microscope- Particle size distribution from the Voyager PPS scan. Icarus 87, 285–306.

    ADS  Google Scholar 

  • Showalter, M. R., J. B. Pollack, M. E. Ockert, L. R. Doyle, J. B. Dalton (1992) A Photometric study of Saturn's F ring. Icarus 100, 394–411.

    ADS  Google Scholar 

  • Smith, B. A. and 26 coauthors (1981) Encounter with Saturn – Voyager 1 imaging science results. Science, 212, 163–191.

    ADS  Google Scholar 

  • Spilker, L. J., S. H. Pilorz, S. G. Edgington, B. D. Wallis, S. M. Brooks, J. C. Pearl, F. M. Flasar (2005) Cassini CIRS observations of a rolloff in the Saturn ring spectra at submillimeter wavelengths. Earth Moon Planets 96, 149–163.

    ADS  Google Scholar 

  • Spilker, L. J., S. H. Pilorz, B. D. Wallis, J. C. Pearl, J. N. Cuzzi, S. M. Brooks, N. Altobelli, S. G. Edgington, M. Showalter, F. M. Flasar, C. Ferrari, C. Leyrat (2006) Cassini thermal observations of Saturn's main rings: Implications for particle rotation and vertical mixing, Planet. Space Sci. 54(12), 1167–1176.

    ADS  Google Scholar 

  • Srama, R. and 41 coauthors (2006) In situ dust measurements in the inner Saturnian system. Planet. Space Sci. 54, 967–987.

    ADS  Google Scholar 

  • Sremcevic, M., A. V. Krivov, H. Krueger, F. Spahn (2005) Impact-generated dust clouds around planetary satellites: models vs Galileo data. Planet. Space Sci. 53, 625–641.

    ADS  Google Scholar 

  • Sremcevic, M., J. Schmidt, H. Salo, M. Seiss, F. Spahn, N. Albers (2007) A belt of moonlets in Saturn's A ring; Nature 449, 1019– 1021.

    ADS  Google Scholar 

  • Sunshine, J. M., C. M. Pieters (1990) Extraction of compositional information from olivine reflectance spectra: new capability for lunar exploration (abstract), in Lunar and Planetary Science XXI, 962– 963, Lunar and Planetary Institute, Houston.

    Google Scholar 

  • Sunshine, J. M., C. M. Pieters, S. R. Pratt (1990) Deconvolution of mineral absorption bands: an improved approach, J. Geophys. Res. 95, 6955–6966.

    ADS  Google Scholar 

  • Sunshine, J.M., C.M. Pieters (1991) Identification of modal abundances in spectra of natural and laboratory pyroxene mixtures: a key component for remote analysis of lunar basalts (abstract), in Lunar and Planetary Science XXII, 1361–1362, Lunar and Planetary Instute, Houston.

    Google Scholar 

  • Teolis, B. D., R. A. Vidal, J. Shi, R. A. Baragiola (2005) Mechanisms of O2 sputtering from water ice by keV ions; Phys. Rev. B, 72, 245422 (9 pages).

    ADS  Google Scholar 

  • Thomson, F. S., E. A. Marouf, G. L. Tyler, R. G. French, N. J. Rappoport (2007) Periodic microstructure in Saturn's rings A and B. Geophys. Res. Lett. 34, L24203, doi:10.1029/2007GL032526.

    ADS  Google Scholar 

  • Tiscareno, M. S., J. A. Burns, M. M. Hedman, C. C. Porco, J. W. Weiss, L. Dones, D. C. Richardson, C. D. Murray (2006) 100-metre-diameter moonlets in Saturn's A ring from observations of ‘propeller' structures. Nature 440, 648–650.

    ADS  Google Scholar 

  • Tiscareno, M. S., J. A. Burns, M. M. Hedman, C. C. Porco (2009) The population of propellers in Saturn's A ring. Astronom. J. 135, 1083–1091.

    ADS  Google Scholar 

  • Tiscareno, M. S., J. A. Burns, P. D. Nicholson, M. M. Hedman, C. C. Porco (2007) Cassini imaging of Saturn's rings II. A wavelet technique for analysis of density waves and other radial structure in the rings. Icarus 189, 14–34.

    ADS  Google Scholar 

  • Tokar, R. L. and 12 authors (2005) Cassini observations of the thermal plasma in the vicinity of Saturn's main rings and the F and G rings, GRL 32, L14S04, doi:10.1029/2005GL022690 (2005).

    Google Scholar 

  • Tryka, K. A., A. S. Bosh (1999). A visual spectrum of Triton from the Hubble space telescope. Icarus 142, 571–574 (1999).

    ADS  Google Scholar 

  • Tseng, W.-L., W.-H. Ip, R. E. Johnson, T. A. Cassidy M. K. Elrod (2009) The structure and time variability of the ring atmosphere and ionosphere; Icarus, in press.

    Google Scholar 

  • Tyler, G. L., E. A. Marouf, R. A. Simpson, H. A. Zebker, V. R. Eshleman (1983) The microwave opacity of Saturn's rings at wavelengths of 3.6 and 13 cm from Voyager 1 radio occultation. Icarus 54, 160–188.

    ADS  Google Scholar 

  • Vahidinia, S., J. N. Cuzzi, M. Hedman, R. Clark, B. Draine, G. Filacchione, P. Nicholson (2008) Modeling the F ring's aggregates; 29.02, AAS/DPS meeting, Ithaca, NY.

    Google Scholar 

  • van de Hulst, H. C. (1957). Light Scattering by Small Particles. Wiley, New York (also available as a Dover Publication, 1981).

    Google Scholar 

  • Waite, J. H., T. E. Cravens, W.-H. Ip, W. T. Kasprzak, J. G. Luhmann, R. L. Mc-Nutt, H. B. Niemann, R. V. Yelle, I. Müller-Wodarg, S. A. Ledvina, S. Scherer (2005) Cassini ion and neutral mass spectrometer measurements of oxygen ions near Saturn's A-ring. Science 307, 1260–1262.

    ADS  Google Scholar 

  • Waite, J. H. and 13 authors (2006) Cassini ion and neutral mass spectrometer: Enceladus plume composition and structure. Science 311, 1419–1422.

    ADS  Google Scholar 

  • Warren, S. G. (1984) Optical constants of ice from the ultraviolet to the microwave. Appl. Opt. 23, 1206–1225.

    ADS  Google Scholar 

  • Westley, M. S., R. A. Baragiola, R. E., Johnson, G. A., Barrata (1995). Ultraviolet photodesorption from water ice. Planet. Space Sci. 43, 1311–1315.

    ADS  Google Scholar 

  • Wisdom, J., S. Tremaine (1988) Local simulations of planetary rings. Astronom. J. 95, 925–940.

    ADS  Google Scholar 

  • Wu, C. Y. R, T. Nguyen, D. L. Judge, H.-C. Lu, H.-K. Chen, B.-M. Cheng (2006) Destruction yields of NH3 produced by EUV photolysis of various mixed cosmic ice analogs. Adv. Geosci. Planet. Sci. 7, 101–113.

    Google Scholar 

  • Young, D. T., et al. (2005) Composition and dynamics of plasma in Saturn's magnetosphere, Science 307, 1262–1266.

    ADS  Google Scholar 

  • Zebker, H. A., E. A. Marouf, G. L. Tyler (1985) Saturn's rings: Particle size distribution for thin layer models. Icarus 64, 531–548.

    ADS  Google Scholar 

Download references

Acknowledgments

All of us are very grateful to the hundreds of engineers and analysts who have worked so tirelessly over the last three decades to make Cassini such a huge success. We especially thank all our science planning colleagues at JPL, especially Brad Wallis and Kelly Perry, who have guided the integration and implementation of the many complicated ring observations made by Cassini. JC thanks James Gearhart and Kari Magee for critical early help regarding integration, Bill Owen for his star catalog, and Pauline Helfenstein, Emma Birath, Ken Bollinger, Emily Baker, Rich Achterberg, and Alain Couchoux for help with observation design. We also thank L. Allamandola, T. Bradley, M. Brown, B. Buratti, J. Colwell, D. Cruikshank, B. Draine, S. Edgington, W. Grundy, M. Hedman, M. Hicks, K. Mjaseth, R. Nelson, F. Postberg, F. Poulet, T. Roush, F. Salama, M. Tiscareno, and W. Tseng for conversations, insights, data analysis, and material in advance of, or addition to, its publication. We thank our reviewers (B. Hapke and F. Poulet) for their helpful comments. This paper was partially supported by grants from the Cassini project and from the Italian Space Agency (ASI).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

15.1 Appendix 15: The Zero-Phase Opposition Effect

An entirely separate subset of scattering theory must be considered for very small phase angles (less than a degree or so), characterized by very strong brightening with the approach of true opposition. This so-called ‘opposition effect’ was initially interpreted in terms of shadow hiding in the regolith surface, and porosities were derived from the strength and width of the opposition surge. Early measurements of the opposition effect in Saturn's rings were obtained by Franklin and Cook (1965) and Lumme and Irvine (1976). Lumme et al. (1983) concluded that the opposition effect resulted from shadow hiding (SH) amongst different ring particles in a classical many-particle-thick layer (Irvine 1966) with a very low volume filling factor. This was at odds with dynamical studies (Brahic 1977, Goldreich and Tremaine 1978) indicating that the rings should be only a few particles thick, as shown by N-body dynamical simulations (Salo 1987, 1992; Wisdom and Tremaine 1988, Richardson 1994, Salo et al. 2004, Karjalainen and Salo 2004; see Chapters 13 and 14). A partial resolution to the apparent contradiction between the photometric observations and the simulations was work by Salo and Karjalainen (2003), who used Monte Carlo ray tracing studies in dense particle layers. Interparticle shadowing can even produce a narrow, sharp opposition brightening for broad particle size distributions (French et al. 2007, Salo et al. 2008 DPS).

In addition however, SH within the regolith of an individual ring particle can contribute to the opposition brightening (Hapke 1986) and coherent backscattering (CB), or the constructive interference of incoming and outgoing light rays (Muinonen et al. 1991; Mishchenko and Dlugach 1992; Hapke 1990; Mishchenko 1993), can also contribute. Both SH in regoliths and CB are complicated functions of the surface structure of the particles and the optical properties of the grains, and have been the subjects of extensive theoretical and laboratory studies (Nelson et al. 2000, Nelson et al. 2002, Hapke et al. 2005, 2009).

Fig. 15.41

Comparison of the observed A ring phase curves (crosses) to the mutual shadowing opposition effect calculated by photometric Monte Carlo simulations (curves). Dynamical simulations with seven different particle size distributions were conducted, ranging from q = 3 power laws for 0.05–5 m radius, to simulations with identical 5 m particles, (shown by different line types). At left, the two extreme size distribution models are compared to observations at different wavelengths. The single scattering albedos for the models, indicated in the middle panel, are chosen to fit the observed I/F at α ~ 6°. At right, the observations and single-scattering models are normalized to α = 6.35°. Also shown is the contribution from the adopted power-law phase function alone, (lowest dashed line) amounting to about 1.1 for the interval ° = 0° to 6.35°. The color code refers to the wavelength of the observation, as shown in the center panel

Clearly, the narrow core of the opposition surge cannot be explained by interparticle shadowing alone. French et al. (2007) fitted the opposition measurements to the composite model of Hapke (2002), which incorporates a wavelength-dependent CB component based on the theoretical predictions of Akkermans et al. (1988) and an explicit representation of SH by a particulate surface. The fits imply that the porosities of the ring particle regoliths are very high, ranging from 93% to 99%, and that the width of the narrow CB surge actually decreases with wavelength, rather than increasing. However, current CB models are somewhat idealized, and thus far, agreement between theory and experiments has been imperfect (Shepard and Helfenstein 2007, Hapke et al. 2009).

Fig. 15.42

Radial variations in the amplitude, width, and slope of the opposition surge from linear-exponential model fits to HST WFPC2 observations of Saturn's rings at five wavelengths, taken during Cycles 10–13. The colors are the same as in Fig. 15.41 The amplitude of the opposition effect (top) is nearly independent of wavelength except for the F336W filter (violet line), especially in the A and B rings, where the amplitude increases sharply at short wavelengths. (The gap in the F336W profiles between 107,000–118,000 km results from saturation of a unique low phase angle image, making the model fits unreliable in this region for this filter.) The width of the opposition surge varies strongly with ring region at short wavelengths in the A and B rings, and shows strong correlations with optical depth in the inner and outer C ring. The normalized slope (third panel) is most shallow for the optically thick central B ring. A radial profile of ring brightness is shown in the fourth panel, taken near true opposition (α = 0.0043° on January 14, 2005). The bottom panel shows the Voyager PPS optical depth profile, truncated at optical depth = 2 because of limited signal to noise at high optical depths.

It seems likely that most of these variations are attributable to differences in the degree of interparticle shadowing and to the relative widths of particle size distributions, rather than to strong regional variations in the intrinsic particle or regolith scattering properties. In the C ring, the detailed variations correlate strongly with the optical depth variations, which affects the amount of interpar-ticle shadowing. The opposition effect changes markedly at the boundary between the outer C and inner B ring, while (as shown in Section 15.4.5), the particle albedo and color, and thus presumably regolith properties, do not. Over the least opaque (inner) part of the B ring, the amplitude exceeds 0.5, decreasing gradually with increasing radius and optical depth. The Cassini division resembles the C ring in optical depth, composition and color, and possibly in particle size distribution, and these similarities are also seen in the opposition effects of these two separated ring regions. The A ring and the inner B ring have comparable optical depths, and the overall characteristics of the opposition effect are similar, including significant strengthening and broadening at short wavelengths. The particle size distribution in the inner A ring is similar as well. There is a striking contrast between the inner and outer A ring opposition effect. Salo and French (2009) used the wavelength-dependence of the opposition effect, its variation with ring tilt, and numerical modeling, to disentangle the interparticle and intraparticle oppositions effects using HST observations, and concluded that there is a very narrow, wavelength-dependent CB contribution to the opposition effect.

Cassini observations: In June 2005 (B = −21°) and July 2006 (B = −21°), Cassini conducted remote sensing observations of the opposition spot traversing the rings over a range of phase angles restricted by the angular half-width of the VIMS and ISS fields of view. Only preliminary analyses are available at the time of this writing (Nelson et al. 2006, Hapke et al. 2005, 2006, Deau et al. 2006). Based on thermal infrared observations from CIRS, Altobelli et al. (2008) measured temperature phase curves of the rings. For the C ring and Cassini Division, they interpret the opposition effect as caused by regolith on the surface of individual grains, whereas for the more optically thick A and B rings, the opposition surge is attributed to interparticle shadowing.

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Cuzzi, J. et al. (2009). Ring Particle Composition and Size Distribution. In: Dougherty, M.K., Esposito, L.W., Krimigis, S.M. (eds) Saturn from Cassini-Huygens. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9217-6_15

Download citation

Publish with us

Policies and ethics