Skip to main content

Some Observations on the Role of Trophodynamic Models for Ecosystem Approaches to Fisheries

  • Chapter
The Future of Fisheries Science in North America

Part of the book series: Fish & Fisheries Series ((FIFI,volume 31))

  • 1688 Accesses

Useful trophodynamic models within an ecosystem approach to fisheries need to be simple enough that we can actually learn from them, but complex enough that we can believe that their results are reliable. Reliability is commonly assessed by comparing model outputs with data, but many food web models grow in complexity very quickly while the sources of information to parameterize and evaluate them do not grow as fast. Within the diversity of modeling frameworks currently available, their adequacy for addressing management issues largely depends on the scope and specific goals of the modeling exercise (e.g., exploration of competing hypotheses, strategic advice, tactical advice). Nonetheless, any management-oriented implementation needs to attain a balance between uncertainty and realism, and optimal model performance is expected to be achieved at some intermediate level of complexity. Furthermore, trophodynamic models can capture key aspects of ecosystem dynamics, but implementing ecosystem approaches to fisheries will also require integrating this dynamics and its uncertainty with all other aspects of the management process. One natural way of doing this is by considering trophody-namic models as operating models within a management strategy evaluation framework. Highly complex ecosystem models can be used to fulfill this role, but simpler models (e.g., “minimum realistic models [MRM]”) are likely to be a better starting point. Recent advances in food web theory can provide useful building blocks and guidance for developing these “minimum realistic models.” Although these models can be good candidates for capturing the joint dynamics of core components of the system, we can never be that we are not missing something important. Due to this fundamental uncertainty, embedding these simple trophodynamic models into management strategy evaluation frameworks and pursuing multiple modeling approaches can provide a sensible venue for assessing the robustness of management strategies to our alternative ways of representing trophodynamic effects. Also, because “minimum realistic models” are focused on a relatively small number of ecosystem components, they are well suited for matching their data requirements with operationally feasible monitoring programs. Despite the specific modeling approaches we choose, developing these operating models in conjunction with field programs that can provide the appropriate data to parameterize them and to assess their performance is fundamental to achieve reliable trophodynamic models for ecosystem approaches to fisheries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersen, K.H. and Beyer, J.E. 2006. Asymptotic size determines species abundance in the marine size spectrum. Am Nat 168: 54–61.

    Article  Google Scholar 

  • Arkema, K.K., Abramson, S.C., and Dewsbury, B.M. 2006. Marine ecosystem-based management: from characterization to implementation. Front Ecol Environ 4: 525–532.

    Article  Google Scholar 

  • Aydin, K.Y., McFarlane, G.A., King, J.R., Megrey, B.A., and Myers, K.W. 2005. Linking oceanic food webs to coastal production and growth rates of Pacific salmon (Oncorhynchus spp.), using models on three scales. Deep-Sea Res II 52: 757–780.

    Article  Google Scholar 

  • Bax, N.J. 1998. The significance and prediction of predation in marine fisheries. ICES J Mar Sci 55: 997–1030.

    Article  Google Scholar 

  • Begley, J. and Howell, D. 2004. An overview of Gadget, the Globally applicable Area-Disaggregated General Ecosystem Toolbox. ICES CM 2004/FF:13: 1–15.

    Google Scholar 

  • Bender, E.A., Case, T.J., and Gilpin, M.E. 1984. Perturbation experiments in community ecology: theory and practice. Ecology 65: 1–13.

    Article  Google Scholar 

  • Benoît, E. and Rochet, M.-J. 2004. A continuous model of biomass size spectra governed by predation and the effects of fishing on them. J Theor Biol 226: 9–21.

    Article  PubMed  Google Scholar 

  • Berlow, E.L. 1999. Strong effects of weak interactions in ecological communities. Nature 398: 330–334.

    Article  CAS  Google Scholar 

  • Berlow, E.L., Neutel, A.-M., Cohen, J.E., de Ruiter, P.C., Ebenman, B., Emmerson, M., Fox, J.W., Jansen, V.A.A., Jones, J.I., Kokkoris, G.D., Logofet, D.O., McKane, A.J., Montoya, J.M., and Petchey, O. 2004. Interaction strengths in food webs: issues and opportunities. J Anim Ecol 73: 585–598.

    Article  Google Scholar 

  • Berryman, A.A. 1992. The origins and evolution of predator-prey theory. Ecology 73: 1530–1535.

    Article  Google Scholar 

  • Berryman, A.A. 1999. Alternative perspectives on consumer-resource dynamics: a reply to Ginzburg. J Anim Ecol 68: 1263–1266.

    Article  Google Scholar 

  • Berryman, A.A., Michalski, J., Gutierrez, A.P., and Arditi, R. 1995. Logistic theory of food web dynamics. Ecology 76: 336–343.

    Article  Google Scholar 

  • Bianchi, G., Gislason, H., Graham, K., Hill, L., Jin, X., Koranteng, K., Sanchez, F., and Zwanenburg, K. 2000. Impact of fishing on size composition and diversity of demersal fish communities. ICES J Mar Sci 57: 558–571.

    Article  Google Scholar 

  • Brown, J.H., Allen, A.P., Savage, V.M., and West, G.B. 2004. Toward a metabolic theory of ecology. Ecology 85: 1771–1789.

    Article  Google Scholar 

  • Bundy, A. 2001. Fishing on ecosystems: the interplay of fishing and predation in Newfoundland-Labrador. Can J Fish Aquat Sci 58: 1153–1167.

    Article  Google Scholar 

  • Butterworth, D.S. and Harwood, J. 1991. Report on the Benguela Ecology Programme workshop on seal-fishery biological interactions. Rep Benguela Ecol Prog S Afr 22: 1–22.

    Google Scholar 

  • Butterworth, D.S. and Plaganyi, E.E. 2004. A brief introduction to some approaches to multispecies/ ecosystem modelling in the context of their possible application in the management of South African fisheries. Afr J Mar Sci 53–61.

    Google Scholar 

  • Butterworth, D.S. and Punt, A.E. 1999. Experiences in the evaluation and implementation of management procedures. ICES J Mar Sci 56: 985–998.

    Article  Google Scholar 

  • Butterworth, D.S. and Punt, A.E. 2003. The role of harvest control laws, risk and uncertainty and the precautionary approach in ecosystem-based management. In Responsible fisheries in the marine ecosystem. FAO and CABI, pp. 311–319.

    Google Scholar 

  • Caughlan, L. and Oakley, K.L. 2001. Cost considerations for long-term ecological monitoring. Ecol Indicat 1: 123–134.

    Article  Google Scholar 

  • Christensen, N.L., Bartuska, A.M., Brown, J.H., Carpenter, S., D'Antonio, C., Francis, R., Franklin, J.F., MacMahon, J.A., Noss, R.F., Parsons, D.J., Peterson, C.H., Turner, M.G., and Woodmansee, R.G. 1996. The report of the Ecological Society of America Committee on the scientific basis for ecosystem management. Ecol Appl 6: 665–691.

    Article  Google Scholar 

  • Christensen, V. and Walters, C.J. 2003. Ecopath with Ecosim: methods, capabilities and limitations. Ecol Model 172: 109–139.

    Article  Google Scholar 

  • Ciannelli, L., Robson, B.W., Francis, R.C., Aydin, K., and Brodeur, R.D. 2004. Boundaries of open marine ecosystems: an application to the Pribilof Archipelago, Southeast Bering Sea. Ecol Appl 14: 942–953.

    Article  Google Scholar 

  • Clark, J.S., Carpenter, S.R., Barber, M., Collins, S., Dobson, A., Foley, J.A., Lodge, D.M., Pascual, M., Pielke Jr, R., Pizer, W., Pringle, C., Reid, W.V., Rose, K.A., Sala, O., Schlesinger, W.H., Wall, D.H., and Wear, D. 2001. Ecological forecasts: an emerging imperative. Science 293: 657–660.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, J.E., Pimm, S.L., Yodzis, P., and Saldana, J. 1993. Body sizes of animal predators and animal prey in food webs. J Anim Ecol 62: 67–78.

    Article  Google Scholar 

  • Cohen, J.E., Jonsson, T., and Carpenter, S.R. 2003. Ecological community description using the food web, species abundance and body size. Proc Natl Acad Sci USA 100: 1781–1786.

    Article  PubMed  CAS  Google Scholar 

  • Costanza, R. and Sklar, F.H. 1985. Articulation, accuracy and effectiveness of mathematical models: a review of freshwater wetland applications. Ecol Model 27: 45–68.

    Article  Google Scholar 

  • De Roos, A.M., Schellekens, T., van Kooten, T., van de Wolfshaar, K., Claessen, D., and Persson, L. 2007. Food-dependent growth leads to overcompensation in stage-specific biomass when mortality increases: the influence of maturation versus reproduction regulation. Am Nat 170: E59–E76.

    Article  PubMed  Google Scholar 

  • de Ruiter, P.C., Neutel, A.-M., and Moore, J.C. 1995. Energetics, patterns of interaction strengths, and stability in real ecosystems. Science 269: 1257–1260.

    Article  PubMed  Google Scholar 

  • Dunne, J., Brose, U., Williams, R.J., and Martinez, N. 2005. Modeling food-web dynamics: complexity-stability implications. In Aquatic food webs: an ecosystem approach. Oxford University Press, Oxford. pp. 117–129.

    Google Scholar 

  • Dunne, J.A., Williams, R.J., and Martinez, N.D. 2002a. Food-web structure and network theory: The role of connectance and size. Proc Natl Acad Sci USA 99: 12917–12922.

    Article  CAS  Google Scholar 

  • Dunne, J.A., Williams, R.J., and Martinez, N.D. 2002b. Network structure and biodiversity loss in food webs: robustness increases with connectance. Ecol Lett 5: 558–567.

    Article  Google Scholar 

  • Fulton, E.A., Smith, A.D.M., and Johnson, C.R. 2003a. Effect of complexity on marine ecosystem models. Mar Ecol Prog Ser 253: 1–16.

    Article  Google Scholar 

  • Fulton, E.A., Smith, A.D.M., and Johnson, C.R. 2003b. Mortality and predation in ecosystem models: is it important how these are expressed? Ecol Model 169: 157–178.

    Article  Google Scholar 

  • Fulton, E.A., Parslow, J.S., Smith, A.D.M., and Johnson, C.R. 2004a. Biogeochemical marine ecosystem models II: the effect of physiological detail on model performance. Ecol Model 173: 371–406.

    Article  CAS  Google Scholar 

  • Fulton, E.A., Smith, A.D.M., and Johnson, C.R. 2004b. Biogeochemical marine ecosystem models I: IGBEM — a model of marine bay ecosystems. Ecol Model 174: 267–307.

    Article  CAS  Google Scholar 

  • Fulton, E.A., Smith, A.D.M., and Johnson, C.R. 2004c. Effects of spatial resolution on the performance and interpretation of marine ecosystem models. Ecol Model 176: 27–42.

    Article  Google Scholar 

  • Fulton, E.A., Smith, A.D.M., and Punt, A.E. 2005. Which ecological indicators can robustly detect effects of fishing? ICES J Mar Sci 62: 540–551.

    Article  Google Scholar 

  • Garcia, S.M., Zerbi, A., Aliaume, C., Do Chi, T., and Lasserre, G. 2003. The ecosystem approach to fisheries. Issues, terminology, principles institutional foundations, implementation and outlook. FAO Fisheries Technical Paper 443: 1–71.

    Google Scholar 

  • Gentleman, W., Leising, A., Frost, B., Strom, S., and Murray, J. 2003. Functional responses for zooplankton feeding on multiple resources: a review of assumptions and biological dynamics. Deep-Sea Res II 50: 2847–2875.

    Article  CAS  Google Scholar 

  • Gillooly, J.F., Brown, J.H., West, G.B., Savage, V.M., and Charnov, E.L. 2001. Effects of size and temperature on metabolic rate. Science 293: 2248–2251.

    Article  PubMed  CAS  Google Scholar 

  • Ginzburg, L.R. 1998. Assuming reproduction to be a function of consumption raises doubts about some popular predator-prey models. J Anim Ecol 67: 325–327.

    Article  Google Scholar 

  • Gislason, H. 1999. Single and multispecies reference points for Baltic fish stocks. ICES J Mar Sci 56: 571–583.

    Article  Google Scholar 

  • Guénette, S., Heymans, S.J.J., Christensen, V., and Trites, A.W. 2006. Ecosystem models show combined effects of fishing, predation, competition, and ocean productivity on Steller sea lions (Eumetopias jubatus) in Alaska. Can J Fish Aquat Sci 63: 2495–2517.

    Article  Google Scholar 

  • Hakanson, L. 1995. Optimal size of predictive models. Ecol Model 78: 195–204.

    Article  Google Scholar 

  • Hall, S.J., Collie, J.S., Duplisea, D.E., Jennings, S., Bravington, M., and Link, J.S. 2006. A length-based multispecies model for evaluating community responses to fishing. Can J Fish Aquat Sci 63: 1344–1359.

    Article  Google Scholar 

  • Huxel, G.R. and McCann, K.S. 1998. Food web stability: the influence of trophic flows across habitats. Am Nat 152: 460–469.

    Article  PubMed  CAS  Google Scholar 

  • Ives, A.R., Schooler, S.S., Jagar, V.J., Knuteson, S.E., Grbic, M., and Settle, W.H. 1999. Variability and parasitoid foraging efficiency: a case study of pea aphids and Aphidius ervi. Am Nat 154: 652–673.

    Article  PubMed  Google Scholar 

  • Jennings, S. 2005. Indicators to support an ecosystem approach to fisheries. Fish Fish. 6: 212–232.

    Google Scholar 

  • Kell, L., De Olivera, J.A.A., Punt, A.E., McAllister, M.K., and Kuikka, S. 2006. Operational Management Procedures: An introduction to the use of evaluation frameworks. In The knowledge base for fisheries management. Elsevier, Amsterdam, pp. 379–407.

    Chapter  Google Scholar 

  • Koen-Alonso, M. 2007. A process-oriented approach to the multispecies functional response. In From energetics to ecosystems: the dynamics and structure of ecological systems. Springer, Heidelberg/Dordrecht, pp. 1–36.

    Google Scholar 

  • Koen-Alonso, M. and Yodzis, P. 2005. Multispecies modelling of some components of the northern and central Patagonia marine community, Argentina. Can J Fish Aquat Sci 62: 1490–1512.

    Article  Google Scholar 

  • Kondoh, M. 2003. Foraging adaptation and the relationship between food-web complexity and stability. Science 299: 1388–1391.

    Article  PubMed  CAS  Google Scholar 

  • Kondoh, M. 2005. Is biodiversity maintained by food-web complexity? The adaptive food-web hypothesis. In Aquatic food webs: an ecosystem approach. Oxford University Press, Oxford, pp. 130–142.

    Google Scholar 

  • Krause, A.E., Frank, K.A., Mason, D.M., Ulanowicz, R.E., and Taylor, W.W. 2003. Compartments revealed in food-web structure. Nature 426: 282–285.

    Article  PubMed  CAS  Google Scholar 

  • Lawton, J.H. 1988. More time means more variation. Nature 334: 563.

    Article  Google Scholar 

  • Lilly, G.R., Parsons, D.G., and Kulka, D.W. 2000. Was the increase in shrimp biomass on the northeast Newfoundland shelf a consequence of a release in predation pressure from cod? J Northw Atl Fish Sci 27: 45–61.

    Article  Google Scholar 

  • Link, J.S. 2002a. Ecological considerations in fisheries management: when does it matter? Fisheries 27: 10–17.

    Article  Google Scholar 

  • Link, J.S. 2002b. What does ecosystem-based fisheries management mean? Fisheries 27: 18–21.

    Article  Google Scholar 

  • Link, J.S. 2003. A model of aggregate biomass tradeoffs. ICES CM 2003/Y:08: 1–28.

    Google Scholar 

  • Link, J.S., Brodziak, J.K.T., Edwards, S.F., Overholtz, W.J., Mountain, D., Jossi, J.W., Smith, T.D., and Fogarty, M.J. 2002. Marine ecosystem assessment in a fisheries management context. Can J Fish Aquat Sci 59: 1429–1440.

    Article  Google Scholar 

  • Mackinson, S., Blanchard, J.L., Pinnegar, J.K., and Scott, R. 2003. Consequences of alternative functional response formulations in models exploring whale-fishery interactions. Mar Mamm Sci 19: 661–681.

    Article  Google Scholar 

  • Magnússon, K.G. 1995. An overview of the multispecies VPA — theory and applications. Rev Fish Biol Fisher 5: 1573–5184.

    Article  Google Scholar 

  • Mangel, M. and Levin, P.S. 2005. Regime, phase and paradigm shift: making community ecology the basic science for fisheries. Phil Trans R Soc B 360: 95–105.

    Article  PubMed  Google Scholar 

  • Marasco, R.J., Goodman, D., Grimes, C.B., Lawson, P.W., Punt, A.E., and Quinn II, T.J. 2007. Ecosystem-based fisheries management: some practical suggestions. Can J Fish Aquat Sci 64: 928–939.

    Article  Google Scholar 

  • Maury, O., Faugeras, B., Shin, Y.J., Poggiale, J.C., Ben Ari, T., and Marsac, F. 2007a. Modeling environmental effects on the size-structured energy flow through marine ecosystems. Part 1: The model. Prog Oceanogr 74: 479–499.

    Article  Google Scholar 

  • Maury, O., Shin, Y.J., Faugeras, B., Ben Ari, T., and Marsac, F. 2007b. Modeling environmental effects on the size-structured energy flow through marine ecosystems. Part 2: Simulations. Prog Oceanogr 74: 500–514.

    Article  Google Scholar 

  • May, R.M. 1972. Will a large complex system be stable? Nature 238: 413–414.

    Article  PubMed  CAS  Google Scholar 

  • McCann, K.S. 2000. The diversity-stability debate. Nature 405: 228–233.

    Article  PubMed  CAS  Google Scholar 

  • McCann, K.S., Hastings, A., and Huxel, G.R. 1998. Weak trophic interactions and the balance of nature. Nature 395: 794–798.

    Article  CAS  Google Scholar 

  • McCann, K.S., Rasmussen, J.B., and Umbanhowar, J. 2005a. The dynamics of spatially coupled food webs. Ecol Lett 8: 513–523.

    Article  Google Scholar 

  • McCann, K.S., Rasmussen, J.B., Umbanhowar, J., and Humphries, M. 2005b. The role of space, time, and variability in food web dynamics. In Dynamic food webs: multispecies assemblages, ecosystem development and environmental change. Academic, San Diego, CA, pp. 56–70.

    Google Scholar 

  • Mohn, R. and Bowen, W.D. 1996. Grey seal predation on the eastern Scotian Shelf: modelling the impact on Atlantic cod. Can J Fish Aquat Sci 53: 2722–2738.

    Article  Google Scholar 

  • Montoya, J.M. and Solé, R.V. 2002. Small world patterns in food webs. J Theor Biol 214: 405–412.

    Article  PubMed  Google Scholar 

  • Montoya, J.M., Pimm, S.L., and Solé, R.V. 2006. Ecological networks and their fragility. Nature 442: 259–264.

    Article  PubMed  CAS  Google Scholar 

  • Moore, J.C. and Hunt, H.W. 1988. Resource compartmentation and the stability of real ecosystems. Nature 333: 261–263.

    Article  Google Scholar 

  • Neutel, A.M., Heesterbeek, J.A.P., and De Ruiter, P.C. 2002. Stability in real food webs: weak links in long loops. Science 296: 1120–1123.

    Article  PubMed  CAS  Google Scholar 

  • Paine, R.T. 1992. Food-web analysis through field measurements of per capita interaction strength. Nature 355: 73–75.

    Article  Google Scholar 

  • Patterson, K., Cook, R., Darby, C., Gavaris, S., Kell, L., Lewy, P., Mesnil, B., Punt, A., Restrepo, V., Skagen, D.W., and Stefansson, G. 2001. Estimating uncertainty in fish stock assessment and forecasting. Fish Fish. 2: 125–157.

    Google Scholar 

  • Pikitch, E.K., Santora, C., Babcock, E.A., Bakun, A., Bonfil, R., Conover, D.O., Dayton, P., Doukakis, P., Fluharty, D., Heneman, B., Houde, E.D., Link, J., Livingston, P.A., Mangel, M., McAllister, M.K., Pope, J., and Sainsbury, K.J. 2004. Ecosystem-based fishery management. Science 305: 346–347.

    Article  PubMed  CAS  Google Scholar 

  • Pimm, S.L. and Lawton, J.H. 1980. Are food web divided into compartments? J Anim Ecol 49: 879–898.

    Article  Google Scholar 

  • Pinnegar, J.K., Blanchard, J.L., Mackinson, S., Scott, R.D., and Duplisea, D.E. 2005. Aggregation and removal of weak-links in food-web models: system stability and recovery from disturbance. Ecol Model 2–4: 229–248.

    Article  Google Scholar 

  • Plaganyi, E.E. 2007. Models for an ecosystem approach to fisheries. FAO Fisheries Technical Paper 477: 1–108.

    Google Scholar 

  • Pope, J.G., Rice, J.C., Daan, N., Jennings, S., and Gislason, H. 2007. Modelling an exploited marine fish community with 15 parameters — results from simple size-based models. ICES J Mar Sci 63: 1029–1044.

    Google Scholar 

  • Punt, A.E. and Butterworth, D.S. 1995. The effects of future consumption by the Cape fur seal on catches and catch rates of the Cape hakes. 4. Modelling the biological interactions between Cape fur seals Arctocephalus pusillus and the Cape hakes Merluccius capensis and M. paradoxus. S Afr J Mar Sci 16: 255–285.

    Google Scholar 

  • Quinn II, T.J. 2003. Ruminations on the development and future of population dynamics models in fisheries. Nat Res Model 16: 341–392.

    Google Scholar 

  • Quinn II, T.J. and Deriso, R.B. 1999. Quantitative fish dynamics. Oxford University Press, New York.

    Google Scholar 

  • Rademeyer, R.A., Plaganyi, E.E., and Butterworth, D.S. 2007. Tips and tricks in designing management procedures. ICES J Mar Sci 64: 618–625.

    Article  Google Scholar 

  • Raffaelli, D. 2007. Food webs, body size and the curse of the latin binomial. In From energetics to ecosystems: the dynamics and structure of ecological systems. Springer, Heidelberg/Dordrecht, pp. 53–64.

    Google Scholar 

  • Raffaelli, D. and Hall, S.J. 1992. Compartments and predation in an estuarine food web. J Anim Ecol 61: 551–560.

    Article  Google Scholar 

  • Rice, J.C. and Rochet, M.J. 2005. A framework for selecting a suite of indicators for fisheries management. ICES J Mar Sci 62: 516–527.

    Article  Google Scholar 

  • Rooney, N., McCann, K.S., Gellner, G., and Moore, J.C. 2006. Structural asymmetry and the stability of diverse food webs. Nature 442: 265–269.

    Article  PubMed  CAS  Google Scholar 

  • Sabo, J.L., Beisner, B.E., Berlow, E.L., Cuddington, K., Hastings, A., Koen-Alonso, M., McCann, K.S., Melian, C., and Moore, J. 2005. Population dynamics and food web structure: predicting measurable food web properties with minimal detail and resolution. In Dynamic food webs: Multispecies assemblages, ecosystem development, and environmental change. Academic, San Diego, CA, pp. 437–450.

    Google Scholar 

  • Savage, V.M., Gillooly, J.F., Brown, J.H., West, G.B., and Charnov, E.L. 2004. Effects of body size and temperature on population growth. Am Nat 163: 429–441.

    Article  PubMed  Google Scholar 

  • Schaffer, W.M.i. 1981. Ecological abstraction: the consequences of reduced dimensionality in ecological models. Ecol Monogr 51: 383–401.

    Article  Google Scholar 

  • Smith, A.D.M., Sainsbury, K.J., and Stevens, R.A. 1999. Implementing effective fisheries-management systems — management strategy evaluation and the Australian partnership approach. ICES J Mar Sci 56: 967–979.

    Article  Google Scholar 

  • Smith, A.D.M., Fulton, E.J., Hobday, A.J., Smith, D.C., and Shoulder, P. 2007. Scientific tools to support the practical implementation of ecosystem-based fisheries management. ICES J Mar Sci 64: 633–639.

    Article  Google Scholar 

  • Solé, R.V. and Montoya, J.M. 2001. Complexity and fragility in ecological networks. Proc Roy Soc Lond Series B 268: 2039–2045.

    Article  Google Scholar 

  • Sparre, P.J. 1991. Introduction to multispecies virtual population analysis. ICES Mar Sci Symp 193: 12–21.

    Google Scholar 

  • Stefansson, G. 2003a. Issues in multispecies models. Nat Resour Model 16: 415–437.

    Google Scholar 

  • Stefansson, G. 2003b. Multi-species and ecosystem models in a management context. In Responsible fisheries in the marine ecosystem. FAO and CABI, pp. 171–188.

    Google Scholar 

  • Trzcinski, K.M., Mohn, R., and Bowen, W.D. 2006. Continued decline of an Atlantic cod population: how important is gray seal predation? Ecol Appl 16: 2276–2292.

    Article  PubMed  Google Scholar 

  • Turchin, P. 2003. Complex population dynamics: a theoretical/empirical synthesis. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Vasseur, D.A. and McCann, K.S. 2005. A mechanistic approach for modeling temperature-dependent consumer-resource dynamics. Am Nat 166: 184–198.

    Article  PubMed  Google Scholar 

  • Vasseur, D.A. and Yodzis, P. 2004. The color of environmental noise. Ecology 85: 1146–1152.

    Article  Google Scholar 

  • Vinther, M. 2001. Ad hoc multispecies VPA tuning applied for the Baltic and North Sea fish stocks. ICES J Mar Sci 58: 311–320.

    Article  Google Scholar 

  • Volterra, V. 1928. Variazioni e fluttuazioni del numero d'individui in specie animali conviventi (Reprinted in English). In Chapman, R.N. (1931) Animal ecology. McGraw-Hill, New York, pp. 409–448.

    Google Scholar 

  • Walters, C.J. and Christensen, V. 2007. Adding realism to foraging arena predictions of trophic flow rates in Ecosim ecosystem models: shared foraging arenas and bout feeding. Ecol Model 209: 342–350.

    Article  Google Scholar 

  • Walters, C.J. and Martell, S.J.D. 2004. Fisheries ecology and management. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Walters, C.J., Christensen, V., and Pauly, D. 1997. Structuring dynamic models of exploited ecosystems from trophic mass-balance assessments. Rev Fish Biol Fish 7: 139–172.

    Article  Google Scholar 

  • Williams, R.J. and Martinez, N.D. 2004. Stabilization of chaotic and non-permanent food web dynamics. Eur Phys J B 38: 297–303.

    Article  CAS  Google Scholar 

  • Williams, R.J., Berlow, E.L., Dunne, J.A., Barabási, A.-L., and Martinez, N.D. 2002. Two degrees of separation in complex food webs. Proc Natl Acad Sci USA 99: 12913–12916.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, D.C. and Pascoe, S. 2006. Delivering complex scientific advice to multiple stakeholders. In The knowledge base for fisheries management. Elsevier, Amsterdam, pp. 329–353.

    Chapter  Google Scholar 

  • Winemiller, K.O. and Layman, C.A. 2005. Food web science: moving on the path from abstraction to prediction. In Dynamic food webs: multispecies assemblages, ecosystem development and environmental change. Academic, San Diego, CA, pp. 10–23.

    Google Scholar 

  • Yodzis, P. 1981. The stability of real ecosystems. Nature 289: 674–676.

    Article  Google Scholar 

  • Yodzis, P. 1988. The indeterminacy of ecological interactions as perceived through perturbation experiments. Ecology 69: 508–515.

    Article  Google Scholar 

  • Yodzis, P. 1989. Introduction to theoretical ecology. Harper & Row, New York.

    Google Scholar 

  • Yodzis, P. 1994. Predator-prey theory and management of multispecies fisheries. Ecol Appl 4: 51–58.

    Article  Google Scholar 

  • Yodzis, P. 1996. Food webs and perturbation experiments: theory and practice. In Food webs: integration of patterns and dynamics. Chapman & Hall, New York, pp. 192–200.

    Google Scholar 

  • Yodzis, P. 1998. Local trophodynamics and the interaction of marine mammals and fisheries in the Benguela ecosystem. Ecology 67: 635–658.

    Google Scholar 

  • Yodzis, P. 2000. Diffuse effects in food webs. Ecology 81: 261–266.

    Article  Google Scholar 

  • Yodzis, P. and Innes, S. 1992. Body size and consumer-resource dynamics. Am Nat 139: 1151–1175.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariano Koen-Alonso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Koen-Alonso, M. (2009). Some Observations on the Role of Trophodynamic Models for Ecosystem Approaches to Fisheries. In: Beamish, R.J., Rothschild, B.J. (eds) The Future of Fisheries Science in North America. Fish & Fisheries Series, vol 31. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9210-7_11

Download citation

Publish with us

Policies and ethics