Nonlinear Models for Diagnostic, Prognostic and Adjustment Calculations of Ocean Climate Characteristics


In the following we will take into account nonlinear and nonstationary terms in the equations for momentum balance, temperature and salinity with. Moreover the simplified version (in terms of molecular mixing and diffusion) of horizontal and vertical turbulence will be considered. The models are different with respect to
  • the method of calculation of the pressure anomaly (usually via sea surface height ζ or mass transport function Ψ),

  • the numerical method of solution

Simplifications concern:
  • the comparison with linear models of Chapter 2,

  • the description of turbulent viscosity and/or diffusivity.


Nonlinear models Prognostic calculations Adjustment Divergence model Calibration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beckmann A. and D. Döscher, 1997. A method for improved representation of dense water spreading over topography in geopotential coordinate models. J. Phys. Oceanogr. 27: 581–591.CrossRefGoogle Scholar
  2. Bleck R. and L. T. Smith, 1990. A wind-driven isopycnic coordinate model of the North and equatorial Atlantic Ocean. J. Geophys. Res. 95: 3273–3285.CrossRefGoogle Scholar
  3. Bleck R., C. Rooth, D. Hu, and L. T. Smith, 1992. Ventilation patterns and mode water formation in wind- and thermodynamically driven isopycnic coordinate model of the North Atlantic. J. Phys. Oceanogr. 22: 1486–1505.CrossRefGoogle Scholar
  4. Bryan K., 1969. A numerical study of the World Ocean circulation. J. Comput. Phys. 4(3): 347–376.CrossRefGoogle Scholar
  5. Bryan K., S. Manabe, and R. C. Pacanowski, 1975. A global ocean-atmosphere climate model, II: The oceanic circulation. J. Comput. Phys. 5: 30–46.Google Scholar
  6. Bulushev M. G. and A. S. Sarkisyan, 1996. Energetics of the equatorial currents adjustment processes initial period. Izv. Ross. Akad. Nauk, Atmos. Ocean. Phys. 32(5): 600–612 (in Russian).Google Scholar
  7. Chassignet E. P., L. T. Smith, R. Bleck, and F. Q. Bryan, 1996. A model comparison: numerical simulation of the North and Equatorial Atlantic oceanic circulation in depth and isopycnic coordinates. J. Phys. Oceanogr. 26: 1849–1867.CrossRefGoogle Scholar
  8. Cox M. D., 1970. A mathematical model of the Indian Ocean. Deep Sea Res. 17: 47–75.Google Scholar
  9. Demin Yu. L. and A. S. Sarkisyan, 1977. Calculation of equatorial currents. J. Mar. Res. 35(2): 339–356.Google Scholar
  10. Demin Yu. L., H. J. Friedrich, R. A. Ibrayev, A. S. Sarkisyan, and J. Sündermann, 1990. A note on modeling the world ocean climate. Ocean Model. 89: 3–5.Google Scholar
  11. Demin Yu. L., R. A. Ibrayev, and A. S. Sarkisyan, 1991. Calibration of circulation models and reproduction of the World Ocean climate. Izv. Acad. Sci. USSR Atmos. Oceanic Phys. Engl. Transl. 27: 1054–1067.Google Scholar
  12. Demyshev S. G., G. K. Korotaev, and A. S. Sarkisyan, 1992, Numerical experiments of adjustment of hydrological field in the equatorial Atlantic on the basis of conservative model. Russ. J. Numer. Anal. Math. Modelling. 7(1): 1–24.CrossRefGoogle Scholar
  13. DYNAMO Group, 1997. Dynamics of North Atlantic models: Simulation and assimilation with high resolution models. Ber. Inst. f. Meereskunde Kiel, 294 pp.Google Scholar
  14. Ezer T. and G. L. Mellor, 1994. Diagnostic and prognostic calculations of the North Atlantic and sea level using a sigma coordinate ocean model. J. Geophys. Res. 99: 14159–14171.CrossRefGoogle Scholar
  15. Ezer T., G. L. Mellor, and R. J. Greatbatch, 1995. On the interpentadal variability of the North Atlantic Ocean: Model simulated changes in transport, meridional heat flux and coastal sea level between 1955–1959 and 1970–1974. J. Geophys. Res. 100(C6), 10: 559–566.CrossRefGoogle Scholar
  16. Friedrich H., 1967. Numerical computations of the wind-induced mass transport in a stratified ocean. In: Proc. Symp. Math.-Hydrodyn. Invest. Phys. Processes in the Sea, Moscow, 1966. Mitt. Meeresk. Univ. Hamburg, 10, 134–139.Google Scholar
  17. Friedrich H., 1970. Preliminary Results from a Numerical Multilayer Model for the Circulation in the North Atlantic. Dt.Hydrogr.Z. 23(4), 145–164.CrossRefGoogle Scholar
  18. Friedrich H. and J. Sündermann, 1988. On the joint effect of baroclinicity and bottom effect (JEBAR). Izv. Ross. Akad. Nauk, Atmos. Ocean. Phys. 34(5): 733–736 (in Russian).Google Scholar
  19. Friedrich H. and V. I. Klimok, 1988. Numerical simulation of seasonal variation of the North and tropical Atlantic circulation obtained by a semidiagnostic method. Scientific and Metodological Seminar on Ship Hydrodynamics, Varna, 17 Session BSHC, 2.Google Scholar
  20. Gates W. L., et al., 1993. An intercomparison of selected features of the control climates simulated by coupled ocean-atmosphere general circulation model. World Climate Programme, Res. WCRP-82. WMO/TD-No.574, 46 pp.Google Scholar
  21. Haidvogel D. B. and A. Beckmann, 1999. Numerical Ocean Circulation Modelling. Imperial College Press, 318 pp.Google Scholar
  22. Ivanov Yu. A., K. V. Lebedev, and A. S. Sarkisyan, 1997. Ocean modeling by general adjustment. Izv. Ross. Akad. Nauk, Atmos. Ocean Phys. 33(6): 812–818 (in Russian).Google Scholar
  23. Klimok V. I., V. P. Kochergin, and H. J. Friedrich, 1986. Numerical modeling of seasonal variations of the World Ocean. Izv. Acad. Sci. USSR Atmos. Oceanic Phys. Engl. Transl, 22(9): 940–947.Google Scholar
  24. Kochergin V. P., V. I. Klimok, and A. S. Sarkisyan, 1972. Numerical experiments to compute the density field of the Northen Atlantic Ocean. Meteorologiya I Gidrologiya 8: 54–61.Google Scholar
  25. Levitus S., 1989a. Interpendal variability of temperature and salinity in the deep North Atlantic, 1970–1974 versus 1955–1959. J. Geophys. Res. 94(C11): 16125–16131.Google Scholar
  26. Levitus S., 1989b. Interpendal variability of temperature and salinity at intermediate depth of the North Atlantic Ocean, 1970–1974 versus 1955–1959. J. Geophys. Res. 94(C5): 6091–6131.Google Scholar
  27. Levitus S., 1989c. Interpendal variability of temperature and salinity in the upper 150 m of the North Atlantic Ocean, 1970–1974 versus 1955–1959. J. Geophys. Res. 94(C7): 9679–9685.Google Scholar
  28. Levitus S., 1990. Interpendal variability of steric sea level and geopotential thickness of the North Atlantic Ocean, 1970–1974 versus 1955–1959. J. Geophys. Res. 95(C4): 5233–5238.CrossRefGoogle Scholar
  29. Levitus S. and A. S. Sarkisyan, 2001, Ocean dynamics characteristics obtained by synthesis of WOCE and climatic informations. Izv. Ross. Akad. Nauk, Atmos. Ocean Phys. 37(9): 534–546 (in Russian).Google Scholar
  30. Marchuk G. I., A. S. Sarkisyan, and V. P. Kochergin, 1973. Numerical methods and results of calculation of flows in a baroclinic ocean. Geophys. Fluid Dyn. 5: 89–100.CrossRefGoogle Scholar
  31. Marchuk G. I., A. S. Sarkisyan, and V. P. Kochergin, 1976. Numerical methods of flows in a baroclinic ocean, Mathematical Models in Geophysics. IASH AISH Publ. 116: 11–17.Google Scholar
  32. Marchuk G. I., V. B. Zalesny, and V. I. Kuzin, 1979. A Numerical Model of Calculation of Thermodynamic Characteristics of the World Ocean. Paper presented at Joint IOC/WMO Seminar on Oceanographic Products and the IGOSS Data Processing and Service System, Moscow. (Apr. 2–6, 1979).Google Scholar
  33. Marchuk G. I., V. P. Dymnikov, and V. B. Zalesny, 1987. Mathematical Models in Geophysical Fluid Dynamics and Numerical Methods of Their Realization. Leningrad, Gidrometeoizdat (in Russian).Google Scholar
  34. Marchuk G. I. and A. S. Sarkisyan, 1988. Mathematical Modeling of Ocean Circulation. Springer-Verlag, 262pp.Google Scholar
  35. Marchuk G. I., J. Sündermann, and V. B. Zalesny, 2001. Mathematical modeling of marine and ocean currents. Russ. J. Numer. Anal. Math. Modelling 16(4): 331–362.Google Scholar
  36. Marsh R., M. J. Roberts, R. A. Wood, and A. L. New, 1996. An Intercomparison os a bryan-cox-type ocean modeling and an isopycnic ocean model, Part II: The subtropical gure and meridional heat transport. J. Phys. Oceanogr. 26: 1528–1550.CrossRefGoogle Scholar
  37. Mellor G. L., 1996. Introduction to Physical Oceanography. AIP press, Woodbury, New York, 260 pp.Google Scholar
  38. Mellor G. L., 1999. Comments on ‘On the utility and disutility of JEBAR’. J. Phys. Oceanogr. 29(8): 2117–2118.CrossRefGoogle Scholar
  39. Mikolajewicz U., U. Cubasch, G. Hegerl, H. Hock, E. Maier-Reimer, B. D. Santer, and S. Schulz, 1994. Changes in oceanic circulation of the North Atlantic as a result of an increase in atmospheric greenhouse gas concentration. ICES Mar. Sci. Symp. 198: 292–296.Google Scholar
  40. Myers P. G., A. F. Fanning, and A. J. Weaver, 1996, JEBAR, bottom pressure torque and Gulf Stream separation. J. Phys. Oceanogr. 26: 671–683.CrossRefGoogle Scholar
  41. Olbers D. and Eden C., 2003. A simplified general circulation model for a baroclinic ocean with topography. Part I: Theory, waves and wind-driven circulations. J. Phys. Oceanogr. 33: 2719–2737.CrossRefGoogle Scholar
  42. Rosati A. and K. Miyakoda, 1988. A general circulation model for upper ocean simulation. J. Phys. Oceanogr. 18(11): 1601–1626.CrossRefGoogle Scholar
  43. Sarkisyan A. S., 1961. On the role of the density advection by wind in dynamics of baroclinic ocean. Izv. Ross. Acad. Nauk SSSR 9: 1396–1407.Google Scholar
  44. Sarkisyan A. S., 1962. On dynamics of wind-driven currents in a baroclinic ocean. Oceanologia. II(3): 393–409.Google Scholar
  45. Sarkisyan A. S., 1977, The diagnostic calculation of a large scale oceanic circulation. The Sea, Marine Modelling, V. 6, New-York-London-Sydney-Toronto, pp. 363–458.Google Scholar
  46. Sarkisyan A. S., 1969a, Theory and Computation of Ocean Currents. U.S. Dept. of Commerce and the NSF, Washington, DC.Google Scholar
  47. Sarkisyan A. S., 1969b. Deficiencies of barotropic models of ocean circulation. Izv. Acad. Nauk SSSR, Ser. Fiz. Atmos. Okeana 5(8): 818–835 (AGU English translation).Google Scholar
  48. Sarkisyan A. S. and A. A. Serebryakov, 1969. A non-stationary model of equatorial currents. Oceanologiya. IX(1): 87–91 (in Russian).Google Scholar
  49. Sarkisyan A. S. and Yu. L. Demin, 1983. A semidiagnostic method of sea currents calculation. Large-scale Oceanographic Experiments in the WCRP 2(1): 201–204.Google Scholar
  50. Sarkisyan A. S., 1991. modeling of Ocean Dynamics. Gidrometeoizdat, St. Petersburg, 296pp. (in Russian).Google Scholar
  51. Sarkisyan A. S. and Yu. L. Demin, 1992. Numerical Models and Results of Calibration Calculations of Flows in the Atlantic, Ser. Atmosphere-Ocean-Cosmos, The Section Program. The Institute of Computational Mathematics RAS, Moscow, 285pp.Google Scholar
  52. Sarkisyan A. S. and J. Sündermann, 1995. On the direction in World Ocean mathematical modeling initiated by Academian G. Marchuk. Izv. Ross. Akad. Nauk, Atmos. Ocean Phys. 31(3): 427–454 (in Russian).Google Scholar
  53. Sarkisyan A. S. and A. N. Sidorova, 1998. Numerical modeling of physical characteristics in the neighbourhood of an isolated hydrological section in the Barents Sea. Russ. J. Numer. Anal. Math. Modelling. 13(6): 537–549.Google Scholar
  54. Sarkisyan G. A., and V. N. Stepanov, 1999. A method for calculating physical characteristics of the Ocean from an individual hydrological section. Izv. Ross. Akad. Nauk, Atmos. Ocean Phys. 35(4): 550–555 (in Russian).Google Scholar
  55. Sarkisyan A. S., 2001. On some milestones in Ocean Modelling History. Russ. J. Numer. Anal. Math. Modelling. 16(6): 497–518.Google Scholar
  56. Sarmiento J. L. and K. Bryan, 1982. An ocean transport model for the North Atlantic. J. Geophys. Res. 87: 394–408.CrossRefGoogle Scholar
  57. Semtner J. A. and R. A. Chervin, 1992. A Ocean general circulation from a global eddy-resolving model. J. Geophys. Res. C4(97): 5493–5550.CrossRefGoogle Scholar
  58. Stockdale T., 1993. Intercomparison of tropical ocean GCMS. World Climate Programme, Res. WCRP-79. WMO/TD-No.545.Google Scholar
  59. Sündermann J. and A. S. Sarkisyan, 1991. Ideal partners in physical oceanography. In Development: Collaboration Between the Acad. Sci. USSR and the German Scientific-Research Society, pp. 116–119.Google Scholar
  60. Sündermann J., V. P. Kochergin, V. I. Klimok, V. A. Sukhorukov, and H. J. Friedrich, 1982. Mathematical Modeling of Seasonal Variations of the World Ocean General Circulation with Consideration for the Surface Turbulent Layer. Comp. Cent. Siberian Dept. Acad. Sci. USSR, Novosibirsk, preprint no. 381, p. 21.Google Scholar
  61. Zalesny V. B., 1996. Numerical simulation and analysis of the sensivity of large-scale ocean dynamics. Russ. J. Numer. Anal. Math. Modelling. 11(6): 421–443.Google Scholar
  62. Zalesny V. B., 1997. Variability and equilibrium states of the world ocean circulation. Russ. J. Numer. Anal. Math. Modelling 12(6): 547–567.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Russian Academy of Sciences, Institute of Numerical MathematicsGubkina 8Russia 119991
  2. 2.Institute of Oceanography, University of Hamburg20146 HamburgGermany

Personalised recommendations