Skip to main content

Nonlinear Models for Diagnostic, Prognostic and Adjustment Calculations of Ocean Climate Characteristics

  • Chapter
Book cover Modelling Ocean Climate Variability

Abstract

In the following we will take into account nonlinear and nonstationary terms in the equations for momentum balance, temperature and salinity with. Moreover the simplified version (in terms of molecular mixing and diffusion) of horizontal and vertical turbulence will be considered. The models are different with respect to

  • the method of calculation of the pressure anomaly (usually via sea surface height ζ or mass transport function Ψ),

  • the numerical method of solution

Simplifications concern:

  • the comparison with linear models of Chapter 2,

  • the description of turbulent viscosity and/or diffusivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beckmann A. and D. Döscher, 1997. A method for improved representation of dense water spreading over topography in geopotential coordinate models. J. Phys. Oceanogr. 27: 581–591.

    Article  Google Scholar 

  • Bleck R. and L. T. Smith, 1990. A wind-driven isopycnic coordinate model of the North and equatorial Atlantic Ocean. J. Geophys. Res. 95: 3273–3285.

    Article  Google Scholar 

  • Bleck R., C. Rooth, D. Hu, and L. T. Smith, 1992. Ventilation patterns and mode water formation in wind- and thermodynamically driven isopycnic coordinate model of the North Atlantic. J. Phys. Oceanogr. 22: 1486–1505.

    Article  Google Scholar 

  • Bryan K., 1969. A numerical study of the World Ocean circulation. J. Comput. Phys. 4(3): 347–376.

    Article  Google Scholar 

  • Bryan K., S. Manabe, and R. C. Pacanowski, 1975. A global ocean-atmosphere climate model, II: The oceanic circulation. J. Comput. Phys. 5: 30–46.

    Google Scholar 

  • Bulushev M. G. and A. S. Sarkisyan, 1996. Energetics of the equatorial currents adjustment processes initial period. Izv. Ross. Akad. Nauk, Atmos. Ocean. Phys. 32(5): 600–612 (in Russian).

    Google Scholar 

  • Chassignet E. P., L. T. Smith, R. Bleck, and F. Q. Bryan, 1996. A model comparison: numerical simulation of the North and Equatorial Atlantic oceanic circulation in depth and isopycnic coordinates. J. Phys. Oceanogr. 26: 1849–1867.

    Article  Google Scholar 

  • Cox M. D., 1970. A mathematical model of the Indian Ocean. Deep Sea Res. 17: 47–75.

    Google Scholar 

  • Demin Yu. L. and A. S. Sarkisyan, 1977. Calculation of equatorial currents. J. Mar. Res. 35(2): 339–356.

    Google Scholar 

  • Demin Yu. L., H. J. Friedrich, R. A. Ibrayev, A. S. Sarkisyan, and J. Sündermann, 1990. A note on modeling the world ocean climate. Ocean Model. 89: 3–5.

    Google Scholar 

  • Demin Yu. L., R. A. Ibrayev, and A. S. Sarkisyan, 1991. Calibration of circulation models and reproduction of the World Ocean climate. Izv. Acad. Sci. USSR Atmos. Oceanic Phys. Engl. Transl. 27: 1054–1067.

    Google Scholar 

  • Demyshev S. G., G. K. Korotaev, and A. S. Sarkisyan, 1992, Numerical experiments of adjustment of hydrological field in the equatorial Atlantic on the basis of conservative model. Russ. J. Numer. Anal. Math. Modelling. 7(1): 1–24.

    Article  Google Scholar 

  • DYNAMO Group, 1997. Dynamics of North Atlantic models: Simulation and assimilation with high resolution models. Ber. Inst. f. Meereskunde Kiel, 294 pp.

    Google Scholar 

  • Ezer T. and G. L. Mellor, 1994. Diagnostic and prognostic calculations of the North Atlantic and sea level using a sigma coordinate ocean model. J. Geophys. Res. 99: 14159–14171.

    Article  Google Scholar 

  • Ezer T., G. L. Mellor, and R. J. Greatbatch, 1995. On the interpentadal variability of the North Atlantic Ocean: Model simulated changes in transport, meridional heat flux and coastal sea level between 1955–1959 and 1970–1974. J. Geophys. Res. 100(C6), 10: 559–566.

    Article  Google Scholar 

  • Friedrich H., 1967. Numerical computations of the wind-induced mass transport in a stratified ocean. In: Proc. Symp. Math.-Hydrodyn. Invest. Phys. Processes in the Sea, Moscow, 1966. Mitt. Meeresk. Univ. Hamburg, 10, 134–139.

    Google Scholar 

  • Friedrich H., 1970. Preliminary Results from a Numerical Multilayer Model for the Circulation in the North Atlantic. Dt.Hydrogr.Z. 23(4), 145–164.

    Article  Google Scholar 

  • Friedrich H. and J. Sündermann, 1988. On the joint effect of baroclinicity and bottom effect (JEBAR). Izv. Ross. Akad. Nauk, Atmos. Ocean. Phys. 34(5): 733–736 (in Russian).

    Google Scholar 

  • Friedrich H. and V. I. Klimok, 1988. Numerical simulation of seasonal variation of the North and tropical Atlantic circulation obtained by a semidiagnostic method. Scientific and Metodological Seminar on Ship Hydrodynamics, Varna, 17 Session BSHC, 2.

    Google Scholar 

  • Gates W. L., et al., 1993. An intercomparison of selected features of the control climates simulated by coupled ocean-atmosphere general circulation model. World Climate Programme, Res. WCRP-82. WMO/TD-No.574, 46 pp.

    Google Scholar 

  • Haidvogel D. B. and A. Beckmann, 1999. Numerical Ocean Circulation Modelling. Imperial College Press, 318 pp.

    Google Scholar 

  • Ivanov Yu. A., K. V. Lebedev, and A. S. Sarkisyan, 1997. Ocean modeling by general adjustment. Izv. Ross. Akad. Nauk, Atmos. Ocean Phys. 33(6): 812–818 (in Russian).

    Google Scholar 

  • Klimok V. I., V. P. Kochergin, and H. J. Friedrich, 1986. Numerical modeling of seasonal variations of the World Ocean. Izv. Acad. Sci. USSR Atmos. Oceanic Phys. Engl. Transl, 22(9): 940–947.

    Google Scholar 

  • Kochergin V. P., V. I. Klimok, and A. S. Sarkisyan, 1972. Numerical experiments to compute the density field of the Northen Atlantic Ocean. Meteorologiya I Gidrologiya 8: 54–61.

    Google Scholar 

  • Levitus S., 1989a. Interpendal variability of temperature and salinity in the deep North Atlantic, 1970–1974 versus 1955–1959. J. Geophys. Res. 94(C11): 16125–16131.

    Google Scholar 

  • Levitus S., 1989b. Interpendal variability of temperature and salinity at intermediate depth of the North Atlantic Ocean, 1970–1974 versus 1955–1959. J. Geophys. Res. 94(C5): 6091–6131.

    Google Scholar 

  • Levitus S., 1989c. Interpendal variability of temperature and salinity in the upper 150 m of the North Atlantic Ocean, 1970–1974 versus 1955–1959. J. Geophys. Res. 94(C7): 9679–9685.

    Google Scholar 

  • Levitus S., 1990. Interpendal variability of steric sea level and geopotential thickness of the North Atlantic Ocean, 1970–1974 versus 1955–1959. J. Geophys. Res. 95(C4): 5233–5238.

    Article  Google Scholar 

  • Levitus S. and A. S. Sarkisyan, 2001, Ocean dynamics characteristics obtained by synthesis of WOCE and climatic informations. Izv. Ross. Akad. Nauk, Atmos. Ocean Phys. 37(9): 534–546 (in Russian).

    Google Scholar 

  • Marchuk G. I., A. S. Sarkisyan, and V. P. Kochergin, 1973. Numerical methods and results of calculation of flows in a baroclinic ocean. Geophys. Fluid Dyn. 5: 89–100.

    Article  Google Scholar 

  • Marchuk G. I., A. S. Sarkisyan, and V. P. Kochergin, 1976. Numerical methods of flows in a baroclinic ocean, Mathematical Models in Geophysics. IASH AISH Publ. 116: 11–17.

    Google Scholar 

  • Marchuk G. I., V. B. Zalesny, and V. I. Kuzin, 1979. A Numerical Model of Calculation of Thermodynamic Characteristics of the World Ocean. Paper presented at Joint IOC/WMO Seminar on Oceanographic Products and the IGOSS Data Processing and Service System, Moscow. (Apr. 2–6, 1979).

    Google Scholar 

  • Marchuk G. I., V. P. Dymnikov, and V. B. Zalesny, 1987. Mathematical Models in Geophysical Fluid Dynamics and Numerical Methods of Their Realization. Leningrad, Gidrometeoizdat (in Russian).

    Google Scholar 

  • Marchuk G. I. and A. S. Sarkisyan, 1988. Mathematical Modeling of Ocean Circulation. Springer-Verlag, 262pp.

    Google Scholar 

  • Marchuk G. I., J. Sündermann, and V. B. Zalesny, 2001. Mathematical modeling of marine and ocean currents. Russ. J. Numer. Anal. Math. Modelling 16(4): 331–362.

    Google Scholar 

  • Marsh R., M. J. Roberts, R. A. Wood, and A. L. New, 1996. An Intercomparison os a bryan-cox-type ocean modeling and an isopycnic ocean model, Part II: The subtropical gure and meridional heat transport. J. Phys. Oceanogr. 26: 1528–1550.

    Article  Google Scholar 

  • Mellor G. L., 1996. Introduction to Physical Oceanography. AIP press, Woodbury, New York, 260 pp.

    Google Scholar 

  • Mellor G. L., 1999. Comments on ‘On the utility and disutility of JEBAR’. J. Phys. Oceanogr. 29(8): 2117–2118.

    Article  Google Scholar 

  • Mikolajewicz U., U. Cubasch, G. Hegerl, H. Hock, E. Maier-Reimer, B. D. Santer, and S. Schulz, 1994. Changes in oceanic circulation of the North Atlantic as a result of an increase in atmospheric greenhouse gas concentration. ICES Mar. Sci. Symp. 198: 292–296.

    Google Scholar 

  • Myers P. G., A. F. Fanning, and A. J. Weaver, 1996, JEBAR, bottom pressure torque and Gulf Stream separation. J. Phys. Oceanogr. 26: 671–683.

    Article  Google Scholar 

  • Olbers D. and Eden C., 2003. A simplified general circulation model for a baroclinic ocean with topography. Part I: Theory, waves and wind-driven circulations. J. Phys. Oceanogr. 33: 2719–2737.

    Article  Google Scholar 

  • Rosati A. and K. Miyakoda, 1988. A general circulation model for upper ocean simulation. J. Phys. Oceanogr. 18(11): 1601–1626.

    Article  Google Scholar 

  • Sarkisyan A. S., 1961. On the role of the density advection by wind in dynamics of baroclinic ocean. Izv. Ross. Acad. Nauk SSSR 9: 1396–1407.

    Google Scholar 

  • Sarkisyan A. S., 1962. On dynamics of wind-driven currents in a baroclinic ocean. Oceanologia. II(3): 393–409.

    Google Scholar 

  • Sarkisyan A. S., 1977, The diagnostic calculation of a large scale oceanic circulation. The Sea, Marine Modelling, V. 6, New-York-London-Sydney-Toronto, pp. 363–458.

    Google Scholar 

  • Sarkisyan A. S., 1969a, Theory and Computation of Ocean Currents. U.S. Dept. of Commerce and the NSF, Washington, DC.

    Google Scholar 

  • Sarkisyan A. S., 1969b. Deficiencies of barotropic models of ocean circulation. Izv. Acad. Nauk SSSR, Ser. Fiz. Atmos. Okeana 5(8): 818–835 (AGU English translation).

    Google Scholar 

  • Sarkisyan A. S. and A. A. Serebryakov, 1969. A non-stationary model of equatorial currents. Oceanologiya. IX(1): 87–91 (in Russian).

    Google Scholar 

  • Sarkisyan A. S. and Yu. L. Demin, 1983. A semidiagnostic method of sea currents calculation. Large-scale Oceanographic Experiments in the WCRP 2(1): 201–204.

    Google Scholar 

  • Sarkisyan A. S., 1991. modeling of Ocean Dynamics. Gidrometeoizdat, St. Petersburg, 296pp. (in Russian).

    Google Scholar 

  • Sarkisyan A. S. and Yu. L. Demin, 1992. Numerical Models and Results of Calibration Calculations of Flows in the Atlantic, Ser. Atmosphere-Ocean-Cosmos, The Section Program. The Institute of Computational Mathematics RAS, Moscow, 285pp.

    Google Scholar 

  • Sarkisyan A. S. and J. Sündermann, 1995. On the direction in World Ocean mathematical modeling initiated by Academian G. Marchuk. Izv. Ross. Akad. Nauk, Atmos. Ocean Phys. 31(3): 427–454 (in Russian).

    Google Scholar 

  • Sarkisyan A. S. and A. N. Sidorova, 1998. Numerical modeling of physical characteristics in the neighbourhood of an isolated hydrological section in the Barents Sea. Russ. J. Numer. Anal. Math. Modelling. 13(6): 537–549.

    Google Scholar 

  • Sarkisyan G. A., and V. N. Stepanov, 1999. A method for calculating physical characteristics of the Ocean from an individual hydrological section. Izv. Ross. Akad. Nauk, Atmos. Ocean Phys. 35(4): 550–555 (in Russian).

    Google Scholar 

  • Sarkisyan A. S., 2001. On some milestones in Ocean Modelling History. Russ. J. Numer. Anal. Math. Modelling. 16(6): 497–518.

    Google Scholar 

  • Sarmiento J. L. and K. Bryan, 1982. An ocean transport model for the North Atlantic. J. Geophys. Res. 87: 394–408.

    Article  Google Scholar 

  • Semtner J. A. and R. A. Chervin, 1992. A Ocean general circulation from a global eddy-resolving model. J. Geophys. Res. C4(97): 5493–5550.

    Article  Google Scholar 

  • Stockdale T., 1993. Intercomparison of tropical ocean GCMS. World Climate Programme, Res. WCRP-79. WMO/TD-No.545.

    Google Scholar 

  • Sündermann J. and A. S. Sarkisyan, 1991. Ideal partners in physical oceanography. In Development: Collaboration Between the Acad. Sci. USSR and the German Scientific-Research Society, pp. 116–119.

    Google Scholar 

  • Sündermann J., V. P. Kochergin, V. I. Klimok, V. A. Sukhorukov, and H. J. Friedrich, 1982. Mathematical Modeling of Seasonal Variations of the World Ocean General Circulation with Consideration for the Surface Turbulent Layer. Comp. Cent. Siberian Dept. Acad. Sci. USSR, Novosibirsk, preprint no. 381, p. 21.

    Google Scholar 

  • Zalesny V. B., 1996. Numerical simulation and analysis of the sensivity of large-scale ocean dynamics. Russ. J. Numer. Anal. Math. Modelling. 11(6): 421–443.

    Google Scholar 

  • Zalesny V. B., 1997. Variability and equilibrium states of the world ocean circulation. Russ. J. Numer. Anal. Math. Modelling 12(6): 547–567.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artem S. Sarkisyan .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Sarkisyan, A.S., Sündermann, J.E. (2009). Nonlinear Models for Diagnostic, Prognostic and Adjustment Calculations of Ocean Climate Characteristics. In: Modelling Ocean Climate Variability. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9208-4_3

Download citation

Publish with us

Policies and ethics