In-Situ Estimates of Material Damping from Environmental Noise Measurements

  • Dario Albarello
  • Francesco Baliva
Part of the NATO Science for Peace and Security Series C: Environmental Security book series (NAPSC)

Experimental results at two test sites are described, which support the idea that the cross-correlation of noise recordings allows the retrieval of the local Green's function also including subsoil attenuation properties. In particular, the analysis of field measurements of environmental noise carried on with arrays of common vertical geophones suggests that passive in-situ estimates of the attenuation exponent are possible and that the values provided in this way are comparable with those obtained with alternative active techniques. These results open new interesting perspectives for engineering and geotechnical application of environmental noise surveys.

Keyword

Keywords In situ estimates Damping Seismic noise Seismic interferometry Passive seismic survey 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aki K., 1957. Space and time spectra of stationary stochastic waves, with special reference to microtremor. Bull. Earthq. Res. Inst., 35, 415–456Google Scholar
  2. Aki K., Richards P.G., 2002. Quantitative seismology. Univ.Sci. Book, Sausalito, CA, USA, 700 ppGoogle Scholar
  3. Athanasopoulos G.A., Pelekis P.C., Anagnostopoulos G.A., 2000. Effect of soil stiffness in the attenuation of Rayleigh-wave motions from field measurements. Soil Dyn. Earthq. Engng., 19, 277–288CrossRefGoogle Scholar
  4. Burghignoli A., Cavalera V., Chieppa V., Jamiolkovski M., Mancuso C., Marchetti V., Pane V., Paoliani P., Silvestri F., Vinale F., 1991. Geotechnical characterization of Fucino clay. Proceedings of the Xth European Conference of Soil Mechanics and Foundation Engineering, Firenze, Italy, Balkema, Rotterdam, Brookfield, 27–40Google Scholar
  5. Dziewonski A.M., Hales A.L., 1972. Numerical analysis of dispersed seismic waves. In Method in Computational Physics, Volume 11, edited by B.A. Bolt, Academic, pp. 39–85Google Scholar
  6. Foti S., 2003. Small strain stiffness and damping ratio of Pisa clay from surface wave test. Geotechnique, 53, 455–461CrossRefGoogle Scholar
  7. Jamiolowski M., Pepe M.C., 2001. Vertical yield stress for Pisa clay from piezocone tests. J. Geothech. Geoenv. Engng., ASCE, 127, 893–897CrossRefGoogle Scholar
  8. Kramer S.L., 1996. Geotechnical earthquake engineering. Prentice-Hall, New Jersey, 653 ppGoogle Scholar
  9. Lai C.G., 1998. Simultaneous inversion of Rayleigh phase velocity and attenuation for near-surface site characterization, Ph.D. dissertation, Georgia Institute of Technology, AtlantaGoogle Scholar
  10. Lai C.G., Rix G.J., Foti S., Roma V., 2002. Simultaneous measurements and inversion of surface waves dispersion and attenuation curves. Soil Dyn. Earthq. Engng., 22, 923–930CrossRefGoogle Scholar
  11. Lai C.G., Rix G.J., 2002. Solution of the Rayleigh eigenproblem in viscoelastic media. Bull. Seism. Soc. Am., 92(6), 2297–2309CrossRefGoogle Scholar
  12. Larose E., Margerin L., Derode A., Van Taggelen B., Campillo M., Shapiro N., Paul A., Stehly L., Tanter M., 2006. Correlation from randomn wave-field. Geophys., 71(4), SI11–SI21CrossRefGoogle Scholar
  13. Lay T., Wallace T.C., 1995. Modern Global Seismology. Academic, San Diego, CA, 521 ppGoogle Scholar
  14. Lee Y.W., 1960. Statistical Theory of Communication. Wiley New York, 509 ppGoogle Scholar
  15. Lo Presti D.C.F., Pallaro O., Cavallaro A., 1997. Damping ratio of soils from laboratory and in-situ tests. Proceedings of the 14th International Conference on Soil Mech. Fund. Engng., pp. 391–400Google Scholar
  16. Louie J.N., 2001. Faster, better: shear-wave velocity to 100 meters depth from refraction microtremor arrays. Bull. Seism. Soc. America, 91(2), 347–364CrossRefGoogle Scholar
  17. Okada H., 2003. The microtremor survey method. Gephys. Monogr. Series, 12, Society of Exploration Geophysicists, 129 ppGoogle Scholar
  18. Pane V., Burghignoli A., 1988. Determinazione in laboratorio delle caratteristiche dinamiche dell'argilla del Fucino (in Italian). Proc. Of the Meeting “Deformazioni dei terreni ed interazione terreno-struttura in condizioni di esercizio”. Monselice, Padova, 5–6 october. 1, pp. 115–139Google Scholar
  19. Rix G.J., Lai C.G., Spang Jr A.W., 2000. In situ measurements of damping ratio using surface waves. J.Geotech. Geoenv. Engng., 126(5), 472–480CrossRefGoogle Scholar
  20. Roux P., Sabra K.G., Kuperman W.A., Roux A., 2005. Ambient noise cross correlation in free space: theoretical approach. J. Acoust. Soc. Am., 117(1), 79–84CrossRefGoogle Scholar
  21. SESAME European project (2002). Optimum deployment strategy and quality measure for array layout in view of obtaining surface wave. Report WP05. http://sesame-fp5.obs.ujf-grenoble.fr/Delivrables/D07-05 Texte.pdf
  22. Shapiro N.M., Campillo M., Stehly L., Ritzwoller M.H., 2005. High resolution surface wave tomography from ambient seismic noise. Science, 307, 1615–1618CrossRefGoogle Scholar
  23. Tonn R., 1989. Comparison of seven methods for the computation of Q. Phys. Earth. Planet. Int., 55, 259–268CrossRefGoogle Scholar
  24. Xia J., Miller R.D., Park C.B., Tian G., 2002. Determining Q of near surface materials from Rayleigh waves. J. Appl. Geophys., 51, 121–129CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Dario Albarello
    • 1
  • Francesco Baliva
    • 1
  1. 1.Dip. Di Scienze della TerraUniversit`a di SienaSienaItaly

Personalised recommendations