Temporal scales of water-level fluctuations in lakes and their ecological implications

  • Hilmar Hofmann
  • Andreas Lorke
  • Frank Peeters
Part of the Developments in Hydrobiology book series (DIHY, volume 204)

Abstract

Water-level fluctuations (WLF) of lakes have temporal scales ranging from seconds to hundreds of years. Fluctuations in the lake level generated by an unbalanced water budget resulting from meteorological and hydrological processes, such as precipitation, evaporation and inflow and outflow conditions usually have long temporal scales (days to years) and are here classified as long-term WLF. In contrast, WLF generated by hydrodynamic processes, e.g. basin-scale oscillations and travelling surface waves, have periods in the order of seconds to hours and are classified as short-term WLF. The impact of WLF on abiotic and biotic conditions depends on the temporal scale under consideration and is exemplified using data from Lake Issyk-Kul, the Caspian Sea and Lake Constance. Long-term WLF induce a slow shore line displacement of metres to kilometres, but immediate physical stress due to currents associated with long-term WLF is negligible. Large-scale shore line displacements change the habitat availability for organisms adapted to terrestrial and aquatic conditions over long time scales. Short-term WLF, in contrast, do not significantly displace the boundary between the aquatic and the terrestrial habitat, but impose short-term physical stress on organisms living in the littoral zone and on organic and inorganic particles deposited in the top sediment layers. The interaction of WLF acting on different time scales amplifies their overall impact on the ecosystem, because long-term WLF change the habitat exposed to the physical stress resulting from short-term WLF. Specifically, shore morphology and sediment grain size distribution are the result of a continuous interplay between short- and long-term WLF, the former providing the energy for erosion the latter determining the section of the shore exposed to the erosive power.

Keywords

Water-level fluctuation Waves Remobilisation of particles Shore formation Habitat conditions Littoral zone 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdallah, A. M. & D. R. Barton, 2003. Environmental factors controlling the distributions of benthic invertebrates on rocky shores of Lake Malawi, Africa. Journal of Great Lakes Research 29(snsuppl. 2): 202–215.CrossRefGoogle Scholar
  2. Airoldi, L. & F. Cinelli, 1997. Effects of sedimentation on subtidal macroalgal assemblages: an experimental study from a mediterranean rocky shore. Journal of Experimental Marine Biology and Ecology 215: 269–288.CrossRefGoogle Scholar
  3. Asmus, R. M., M. H. Jensen, K. M. Jensen, E. Kristensen, H. Asmus & A. Wille, 1998. The role of water movement and spatial scaling for measurement of dissolved inorganic nitrogen fluxes in intertidal sediments. Estuarine, Coastal and Shelf Science 46: 221–232.CrossRefGoogle Scholar
  4. Bourne, J. K., K. Joel & G. Ludwig, 2005. Eccentric Salton Sea. National Geographic Magazine 207: 88–107.Google Scholar
  5. Braun, E. & K. Schärpf, 1990. Internationale Bodensee — Tiefenvermessung. IGKB — Internationale Gewässerschutzkommission für den Bodensee: 98.Google Scholar
  6. Brennwald, M. S., et al., 2004. Atmospheric noble gases in lake sediment pore water as proxies for environmental change. Geophysical Research Letters 31: L04202.CrossRefGoogle Scholar
  7. Brown, E., A. Colling, D. Park, J. Phillips, D. Rothery & J. Wright, 2005. Waves, Tides and Shallow-Water Processes, 2nd edn. Butterworth-Heinemann, Boston.Google Scholar
  8. Bürgi, J. & H. Schlichterle, 1986. Gefährdete Ufersiedlungen am Bodensee. Archäologie der Schweiz 9: 34–41.Google Scholar
  9. Cattaneo, A., 1990. The effect of fetch on periphyton spatial variation. Hydrobiologia 206: 1–10.CrossRefGoogle Scholar
  10. Clark, B. M., 1997. Variation in surf-zone fish community structure across a wave-exposure gradient. Estuarine, Coastal and Shelf Science 44: 659–674.CrossRefGoogle Scholar
  11. Coe, M. T. & J. A. Foley, 2001. Human and natural impacts on the water resources of the Lake Chad basin. Journal of Geophysical Research 106: 3349–3356.CrossRefGoogle Scholar
  12. Coops, H., M. Beklioglu & T. L. Crisman, 2003. The role of water-level fluctuations in shallow lake ecosystems — workshop conclusions. Hydrobiologia 506: 23–27.CrossRefGoogle Scholar
  13. Dera, J. & H. R. Gordon, 1968. Light fluctuations in the photic zone. Limnology and Oceanography 13: 697–699.Google Scholar
  14. Dumont, H., 1995. Ecocide in the Caspian Sea. Nature 377: 673–674.CrossRefGoogle Scholar
  15. Eggleton, M. A., K. B. Gido, W. J. Matthews & G. D. Schnell, 2004. Assessment of anthropogenic influences on littoral-zone aquatic communities of Lake Texoma, Oklahoma-Texas, USA. Ecohydrology and Hydrobiology 4: 103–117.Google Scholar
  16. Emery, W. J. & R. E. Thomson, 2001. Data analysis methods in physical oceanography, 2nd edn. Elsevier Science, Amsterdam.Google Scholar
  17. Eriksson, B. K., A. Sandström, M. Isæus, H. Schreiber & P. Karås, 2004. Effects of boating activities on aquatic vegetation in the Stockholm archipelago, Baltic Sea. Estuarine, Coastal and Shelf Science 61: 339–349.CrossRefGoogle Scholar
  18. Erm, A. & T. Soomere, 2006. The impact of fast ferry traffic on underwater optics and sediment resuspension. Oceanologia 48(suppl.): 283–301.Google Scholar
  19. Fenton, J. D. & W. D. McKee, 1990. On calculating the lengths of water waves. Coastal Engineering 14: 499–513.CrossRefGoogle Scholar
  20. Francoeur, S. & B. Biggs, 2006. Short-term effects of elevated velocity and sediment abrasion on benthic algal communities. Hydrobiologia 561: 59–69.CrossRefGoogle Scholar
  21. Gafny, S., A. Gasith & M. Goren, 1992. Effect of water level fluctuation on shore spawning of Mirogrex terraesanctae (Steinitz), (Cyprinidae) in Lake Kinneret, Israel. Journal of Fish Biology 41: 863–871.CrossRefGoogle Scholar
  22. Guganesharajah, K. & E. M. Shaw, 1984. Forecasting water levels for Lake Chad. Water Resources Research 20: 1053–1065.CrossRefGoogle Scholar
  23. Hallermeier, R. J., 1980. Sand motion initiation by water waves: two asymtotes. Journal of the Waterway, Port, Coastal, and Ocean Division 106: 299–318.Google Scholar
  24. Heyer, J. & U. Berger, 2000. Methane emission from the coastal area in the Southern Baltic Sea. Estuarine, Coastal and Shelf Science 51: 13–30.CrossRefGoogle Scholar
  25. Hofmann, H., A. Lorke & F. Peeters, 2008. The relative importance of wind and ship waves in the littoral zone of a large lake. Limnology and Oceanography 53: 368–380.Google Scholar
  26. Hofmann, H., A. Lorke & F. Peeters, in press. Wave-induced variability of the underwater light climate in the littoral zone. Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 30(part 4).Google Scholar
  27. Hollan, E., D. B. Rao & E. Bäuerle, 1981. Free surface oscillations in Lake Constance with an interpretation of the “Wonder of the Rising Water” at Konstanz in 1549. Meteorology and Atmospheric Physics 29: 301–325.Google Scholar
  28. Hunt, P. C. & J. W. Jones, 1972. The effect of water level fluctuations on a littoral fauna. Journal of Fish Biology 4: 385–394.CrossRefGoogle Scholar
  29. IGKB, 2002. Tolerierbare Phosphor-Fracht des Bodensee-Obersees. In Bührer, H. (ed.), Bericht der Internationalen Gewässerschutzkommission für den Bodensee 54: 81.Google Scholar
  30. Jöhnk, K. D., D. Straile & W. Ostendorp, 2004. Water level variability and trends in Lake Constance in the light of the 1999 centennial flood. Limnologica 34: 15–21.Google Scholar
  31. Khodorevskaya, R. P. & Y. V. Krasikov, 1999. Sturgeon abundance and distribution in the Caspian Sea. Journal of Applied Ichthyology 15: 106–113.CrossRefGoogle Scholar
  32. Klige, R. K. & M. S. Myagkov, 1992. Changes in the water regime of the Caspian Sea. GeoJournal 27: 299–307.CrossRefGoogle Scholar
  33. Körninger, J., 2005. Unterwasserarchäologie am Überlinger See. NAU Nachrichtenblatt Arbeitskreis Unterwasserarchäologie 11/12: 63–70.Google Scholar
  34. Kosarev, A. N. & E. A. Yablonskaya, 1994. The Caspian Sea. SPB Academic Publishing, The Hague.Google Scholar
  35. Kotowski, W. & H. Pioŕkowski, 2005. Competition and succession affecting vegetation structure in riparian environments: implications for nature management. Ecohydrology and Hydrobiology 5: 51–57.Google Scholar
  36. Kundu, P. K. & I. M. Cohen, 2002. Fluid Mechanics. Academic Press, London.Google Scholar
  37. Lerman, A., D. M. Imboden & J. R. Gat, 1995. Physics and Chemistry of Lakes, 2nd edn. Springer, Berlin.Google Scholar
  38. Li, Y., A. J. Mehta, K. Hatfield & M. S. Dortch, 1997. Modulation of constituent release across the mud-water interface by water waves. Water Resources Research 33: 1409–1418.CrossRefGoogle Scholar
  39. Lorke, A., B. Müller, M. Maerki & A. Wüest, 2003. Breathing sediments: the control of diffusive transport across the sediment-water interface by periodic boundary-layer turbulence. Limnology and Oceanography 48: 2077–2085.Google Scholar
  40. Luettich R. A. Jr., D. R. F. Harleman & L. Somlyody, 1990. Dynamic behavior of suspended sediment concentrations in a shallow lake perturbed by episodic wind events. Limnology and Oceanography 35: 1050–1067.Google Scholar
  41. Luft, G. & G. van den Eertwegh, 1991. Long-term changes in the water level of Lake Constance and possible causes. Hydrology of Natural and Manmade Lakes. In Schiller, G., Lemmelä, R. & Spreafico, M. (eds.). IAHS Press, Wallingford, England: 31-44.Google Scholar
  42. Luft, G. & H. Vieser, 1990. Veränderung der Bodensee-Wasserstände von 1887 bis 1987. Deutsche Gewässerkundliche Mitteilungen 34: 148–156.Google Scholar
  43. McGowan, S., P. R. Leavitt & R. I. Hall, 2005. A whole-lake experiment to determine the effects of winter droughts on shallow lakes. Ecosystems 8: 694–708.CrossRefGoogle Scholar
  44. Mortimer, C. H., 1974. Lake hydrodynamics. Mitteilungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 20: 124–197.Google Scholar
  45. Naselli-Flores, L. & R. Barone, 2005. Water-level fluctuations in Mediterranean reservoirs: setting a dewatering threshold as a management tool to improve water quality. Hydrobiologia 548: 85–99.CrossRefGoogle Scholar
  46. Peeters, F., D. Finger, M. Hofer, M. Brennwald, D. M. Livingstone & R. Kipfer, 2003. Deep-water renewal in Lake Issyk-Kul driven by differential cooling. Limnology and Oceanography 48: 1419–1431.CrossRefGoogle Scholar
  47. Peeters, F., et al., 2000. Analysis of deep-water exchange in the Caspian Sea based on environmental tracers. Deep-Sea Research-Part I 47: 621–654.CrossRefGoogle Scholar
  48. Precht, E., U. Franke, L. Polerecky & M. Huettel, 2004. Oxygen dynamics in permeable sediments with wave-driven pore water exchange. Limnology and Oceanography 49: 693–705.CrossRefGoogle Scholar
  49. Precht, E. & M. Huettel, 2003. Advective pore-water exchange driven by surface gravity waves and its ecological implications. Limnology and Oceanography 48: 1674–1684.CrossRefGoogle Scholar
  50. Rodionov, S. N., 1994. Global and Regional Climate Interaction: The Caspian Sea Experience. Kluwer Academic Publisher, Dordrecht.Google Scholar
  51. Romero, J. R. & J. M. Melack, 1996. Sensitivity of vertical mixing in a large saline lake to variations in runoff. Limnology and Oceanography 41: 955–965.Google Scholar
  52. Scheifhacken, N., 2006. Life at Turbulent Sites: Benthic Communities in Lake Littorals Interacting with Abiotic and Biotic Constraints. PhD Thesis, University of Konstanz.Google Scholar
  53. Schmieder, K., M. Dienst, W. Ostendorp & K. Jöhnk, 2004. Effects of water level variations on the dynamics of the reed belts of Lake Constance. Ecohydrology and Hydrobiology 4: 469–480.Google Scholar
  54. Schubert, H., S. Sagert & R. M. Forster, 2001. Evaluation of the different levels of variability in the underwater light field of a shallow estuary. Helgoland Marine Research 55: 12–55.CrossRefGoogle Scholar
  55. Schulz, M., E. Faber, A. Hollerbach, H. G. Schroeder & H. Guede, 2001. The methane cycle in the epilimnion of Lake Constance. Archiv für Hydrobiologie 151: 157–176.Google Scholar
  56. Soomere, T., 2005. Fast ferry traffic as a qualitatively new forcing factor of environmental processes in non-tidal sea areas: a case study in Tallinn Bay, Baltic Sea. Environmental Fluid Mechanics 5: 293–323.CrossRefGoogle Scholar
  57. Stephens, D. W., 1990. Changes in lake levels, salinity and the biological community of Great Salt Lake (Utah, USA), 1847-1987. Hydrobiologia 197: 139–146.CrossRefGoogle Scholar
  58. Stramski, D. & L. Legendre, 1992. Laboratory simulation of light-focusing by water-surface waves. Marine Biology 114: 341–348.CrossRefGoogle Scholar
  59. Tsigelnaya, I. D., 1995. Issyk-Kul Lake. In Maudych, A. F. (ed.), Enclosed seas and Large Lakes of Eastern Europe and Middle Asia. SPB Academic Publishing, Amsterdam: 199–229.Google Scholar
  60. Usmanova, R. M., 2003. Aral Sea and sustainable development. Water Science and Technology 47: 41–47.PubMedGoogle Scholar
  61. van Duin, E. H. S., et al., 2001. Modeling underwater light climate in relation to sedimentation, resuspension, water quality and autotrophic growth. Hydrobiologia 444: 25–42.CrossRefGoogle Scholar
  62. Wetzel, R. G., 2001. Limnology — Lake and River Ecosystems. Academic Press, London.Google Scholar
  63. Zavialov, P. O., et al., 2003. Hydrographic survey in the dying Aral Sea. Geophysical Research Letters 30: 1659.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Hilmar Hofmann
    • 1
  • Andreas Lorke
    • 1
  • Frank Peeters
    • 1
  1. 1.Environmental Physics, Limnological InstituteUniversity of KonstanzKonstanzGermany

Personalised recommendations