Epigenomics pp 37-53 | Cite as

Integrating Epigenomic Results

  • Suk-Young Yoo
  • R.W. Doerge


There has been growing interest in investigating epigenetic mechanisms as related to regulation of gene expression. DNA methylation and histone modifications are two types of epigenetic modifications that are highly correlated with regulation of gene expression, genome imprinting and gene silencing. Although epigenomic research has added to our understanding of biological phenomena, little work has been done to establish statistical methods that exploit the relationship between epigenetic modifications and gene expression. Here, we discuss the individual statistical hypotheses for differential expression, methylation and chromatin modification, and then suggest a simple statistical approach that integrates the results from each individual epigenomic experiment.


Epigenetics Epigenomics Methylation Histone modification Tiling array Statistical bioinformatics ANOVA model Meta-analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baylin, S. B., 2005. DNA methylation and gene silencing in cancer. Nature Clinical Practice Oncology 2:s4–s11.PubMedCrossRefGoogle Scholar
  2. Benjamini, Y. and Hochberg Y., 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B 57:289–300.Google Scholar
  3. Black, M. A., 2002. Statistical issues in the design and analysis of spotted microarray experiments. Ph.D. Thesis, Department of Statistics, Purdue University, West Lafayette, IN, USA.Google Scholar
  4. Buck, M. J. and Lieb, J. D., 2004. ChIP-chip: consideration for the design, analysis, and application of genome-wide chromatin immunoprecipitation experiments. Genomics 83:349–360.PubMedCrossRefGoogle Scholar
  5. Cleveland, W. S. and Devlin, S. J., 1988. Locally-Weighted Fitting: An Approach to Fitting Analysis by Local Fitting . Journal of the American Statistical Association, 83:596–610.CrossRefGoogle Scholar
  6. Dudoit, S., Yang, Y. H., Speed, T. P. and Callow, M. J., 2002. Statistical methods for identifying differentially expressed genes in replicated cDNA microarray experiments. Statistica Sinica 12(1): 111–139.Google Scholar
  7. Emanuelsson, O., Nagalakshmi, U., Zheng D., Rozowsky, J. S., Urban, A. E., Du, J., Lian, Z., Stolc, V., Weissman, S., Snyder, M. and Gerstein, M. B., 2007. Assessing the performance of different high-density tiling microarray strategies for mapping transcribed regions of the human genome. Genome Research 17:886–897.PubMedCrossRefGoogle Scholar
  8. Finnegan, J.E., Kovac, K.A., Jaligot, E., Sheldon, C.C., Peacock, W.J. and Dennis, E.S., 2005. The downregulation of FLOWERING LOCUS C (FLC) expression in plants with low levels of DNA methylation and by vernalization occurs by distinct mechanisms Plant Journal 44(3): 420–432, doi: 10.1111/j.1365-313X.2005.02541.xCrossRefGoogle Scholar
  9. Gendrel, A.-V., Lippman, Z., Martienssen, R. and Colot, V., 2005. Profiling histone modification patterns in plants using genomic tiling microarrays. Nature methods 2:213–218.PubMedCrossRefGoogle Scholar
  10. Gibbons, J. D., Olkin, I. and Sobel, M., 1977. Selecting and ordering populations: a new statistical methodology. New York, Wiley.Google Scholar
  11. Grewal, S. I. S, and Jia, S., 2007 Heterochromatin revisited. Nature Reviews Genetics 8:35–46.PubMedCrossRefGoogle Scholar
  12. Hedges, L. V. and Olkin, I., 1985. Statistical methods for meta-analysis. New York, Academic Press.Google Scholar
  13. Herman, J. G. and Baylin S. B., 2003. Gene silencing in cancer in association with promoter hypermethylation. The New England Journal of Medicine 349:2042–2054.PubMedCrossRefGoogle Scholar
  14. Ji, H. and Wong W. H., 2005. TileMap: create chromosomal map of tiling array hybridizations. Bioinformatics 21(18):3629–3636PubMedCrossRefGoogle Scholar
  15. Jiao, Y., Jia, P., Wang, X., Su, N., Yu, S., Zhang, D., Ma, L., Feng, Q., Jin, Z., Li, L., Xue, Y., Cheng, Z., Zhao, H., Han, B. and Deng, X. W., 2005. A tiling microarray expression analysis of rice chromosome 4 suggests a chromosome-level regulation of transcription. The Plant Cell 17:1641-15-657.PubMedCrossRefGoogle Scholar
  16. Johnson, W. E., Li, W., Meyer, C. A., Gottardo, R., Carroll, J. S., Brown, M. and Liu, X. S., 2006. Model-based analysis of tiling-arrays for ChIP-chip. PNAS 103(33):12457–12462.PubMedCrossRefGoogle Scholar
  17. Jones, P. A. and Baylin, S. B., 2002. The fundamental role of epigenetic events in cancer. Nature Review Genetics 3:415–428.CrossRefGoogle Scholar
  18. Jones, P. A. and Laird P. W., 1999. Cancer epigenetics comes of age. Nature Genetics 21:163–167.PubMedCrossRefGoogle Scholar
  19. Kim, J., Jia, L., Tilley, W. D. and Coetzee, G. A., 2003. Dynamic methylation of histone H3 at lysine 4 in transcriptional regulation by the androgen receptor. Nucleic Acids Research 31(23):6741–6747.PubMedCrossRefGoogle Scholar
  20. Li, W., Meyer, C. A. and Liu, X. S., 2006. A hidden Markov model for analyzing ChIP-chip experiments on genome tiling arrays and its application to p53 binding sequences. Bioinformatics 21(Suppl.1):i274–i282.Google Scholar
  21. Lippman, Z., Gendrel, A-V., Black, M., Vaughn, M. W., Dedhia, N., McCombie, W. R., Lavine, K., Mittal, V., May, B., Kasschau, K. D., Carrington, J. C., Doerge, R. W., Colot, V. and Martienssen, R., 2004. Role of transposable elements in heterochromatin and epigenetic control. Nature 430:471–476.PubMedCrossRefGoogle Scholar
  22. Lippman, Z., Gendrel, A.-V., Colot, V. and Martienssen, R., 2005. Profiling DNA methylation patterns using genomic tiling microarrays. Nature Methods 2:219–224.PubMedCrossRefGoogle Scholar
  23. Martienssen, R. A., Doerge, R. W. and Colot, V., 2005. Epigenomic mapping in Arabidopsis using tiling microarrays. Chromosome Research 13:299–308.PubMedCrossRefGoogle Scholar
  24. Mockler, T. C. and Ecker, J. R., 2005. Applications of DNA tiling arrays for whole-genome analysis. Genomics 85(1):1–15.PubMedCrossRefGoogle Scholar
  25. Nelissen, H., Boccardi, T., Himanen, K., Van Lijsebettens, M., 2007. Impact of core histone modifications on transcriptional regulation and plant growth. Crit Rev Plant Sci 26: 243–263.CrossRefGoogle Scholar
  26. Park, T., Kim, Y., Bekiranov, S., and Lee, J. K., 2007. Error-pooling-based statistical methods for identifying novel temporal replications profiles of human chromosomes observed by DNA tiling arrays. Nucleic Acids Research 35(9) e69.PubMedCrossRefGoogle Scholar
  27. Petronis, A., 2006. Epigenetics and twins: three variations on the theme. Trends in Genetics 22(7):347–350.PubMedCrossRefGoogle Scholar
  28. Richards, E.J., 2006. Inherited epigenetic variation -revisiting soft inheritance. Nature Genetics Reviews 7:395–401.CrossRefGoogle Scholar
  29. Royce, T. E., Rozowsky, J. S., Bertone, P., Samanta, M., Stolc, V., Weissman, S., Snyder, M. and Gerstein, M., 2005. Issues in the analysis of oligonucleotide tiling microarrays for transcript mapping. Trend in Genetics 21(8):466–475.CrossRefGoogle Scholar
  30. Shi, H., Maier, S., Nimmrich, I., Yan, P. S., Caldwell, C. W., Olek, A. and Huang, T. H-M, 2003. Oligonucleotide-based microarray for DNA methylation analysis: principles and applications. Journal of Cellular Biochemistry 88:138–143.PubMedCrossRefGoogle Scholar
  31. Stewart, M. D., Li, J. and Wong, J., 2005. Relationship between histone H3 lysine 9 methylation, transcription repression and heterochromatin protein 1 recruitment. Molecular and Cellular Biology 25(7):2525–2538.PubMedCrossRefGoogle Scholar
  32. Vaughn, M., Tanurdzic, M., Lippman, Z., Jiang, H., Carrasquillo, R., Colot, V., Doerge, R.W., and Martienssen, R.A. 2007. Epigenetic natural variation in Arabidopsis thaliana. Public Library of Science (PLoS) Biology. 5(7): e174.Google Scholar
  33. Yamada, K. et al. Empirical analysis of transcriptional activity in the Arabidopsis genome. Science 302:842 (2003).PubMedCrossRefGoogle Scholar
  34. Yazaki, J., Gregory, B. D., and Ecker, J. R., 2007 Mapping the genome landscape using tiling array technology. Current Opinion in Plant Biology 10:534–542.PubMedCrossRefGoogle Scholar
  35. Yoo, S-Y. 2008. A two-stage statistical approach for integrating epigenomic results with gene expression data using tiling array technology. Ph.D. Dissertation. Purdue University. West Lafayette, IN, USA.Google Scholar
  36. Zhang, Y. and Reinberg D., 2001. Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes & Development. 15:2343–2360.CrossRefGoogle Scholar
  37. Zhang, X., Yazaki, J., Sundaresan, A., Cokus, S., Chan, S. W.-L., Chen, H., Henderson, I. R., Shinn, P., Pellegrini, M., Jacobsen, S. E., and Ecker, J. R., 2006 Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 126:1189–1201.PubMedCrossRefGoogle Scholar
  38. Zilberman, D., Gehring, M., Robert, T. K., Ballinger, T. and Henikoff, S., 2007 Genome-wide analysis of Arabidopsis thaliana DNA methylation uncover an interdependence between methylation and transcription. Nature Genetics 39(1):61–69.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Suk-Young Yoo
  • R.W. Doerge
    • 1
  1. 1.Department of StatisticsPurdue UniversityWest LafayetteUSA

Personalised recommendations