Advertisement

Epigenomics pp 411-434 | Cite as

The Relevance of Epigenetics to Major Psychosis

  • Jonathan Mill
  • Arturas Petronis

Abstract

Schizophrenia (SZ) and bipolar disorder (BD) are two related psychiatric conditions, together termed major psychosis. As with other complex genetic disease phenotypes, traditional etiological studies of major psychosis have focused primarily on the interplay between genetic (DNA sequence) and environmental risk factors. However, there are many epidemiological, clinical, and molecular peculiarities associated with these disorders that are hard to explain using DNA and environment-based mechanisms. Such observations have led to speculation about the potential importance of epigenetic factors in mediating susceptibility to major psychosis. Epigenetics refers to the heritable, but reversible, regulation of gene expression mediated principally through changes in DNA methylation and chromatin organization. In this chapter we reinterpret a series of epidemiological, clinical, and molecular findings in major psychosis within the framework of epigenetic dysregulation. While epigenetics provides a new perspective on the aetiology of SZ and BD, it would be naíve to expect that applying epigenetic theory to molecular-based studies of psychopathology is a straightforward task that can be achieved without encountering a number of technological and methodological complexities. To date few empirical studies have been performed, but recent large scale epigenomic profiling has begun to highlight associations between specific epigenetic changes and risk for these disorders.

Keywords

Epigenetics DNA methylation Genetics Schizophrenia Bipolar disorder Complex non-Mendelian disease Methylome Microarray 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdolmaleky HM, Cheng KH, Faraone SV, Wilcox M, Glatt SJ, Gao F, Smith CL, Shafa R, Aeali B, Carnevale J et al., 2006. Hypomethylation of MB-COMT promoter is a major risk factor for schizophrenia and bipolar disorder. Hum Mol Genet 15(21):3132–45.PubMedCrossRefGoogle Scholar
  2. Abdolmaleky HM, Cheng KH, Russo A, Smith CL, Faraone SV, Wilcox M, Shafa R, Glatt SJ, Nguyen G, Ponte JF et al., 2005. Hypermethylation of the reelin (RELN) promoter in the brain of schizophrenic patients: a preliminary report. Am J Med Genet B Neuropsychiatr Genet 134(1):60–6.Google Scholar
  3. Abkevich V, Camp NJ, Hensel CH, Neff CD, Russell DL, Hughes DC, Plenk AM, Lowry MR, Richards RL, Carter C et al., 2003. Predisposition locus for major depression at chromosome 12q22-12q23.2. Am J Hum Genet 73(6):1271–81.PubMedCrossRefGoogle Scholar
  4. Akbarian S, Ruehl MG, Bliven E, Luiz LA, Peranelli AC, Baker SP, Roberts RC, Bunney WE, Jr., Conley RC, Jones EG et al., 2005. Chromatin alterations associated with down-regulated metabolic gene expression in the prefrontal cortex of subjects with schizophrenia. Arch Gen Psychiatry 62(8):829–40.PubMedCrossRefGoogle Scholar
  5. Arnold LM. 2003. Gender differences in bipolar disorder. Psychiatr Clin North Am 26(3):595–620.PubMedCrossRefGoogle Scholar
  6. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT et al., 2000. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25(1):25–9.PubMedCrossRefGoogle Scholar
  7. Azzi L, El-Alfy M, Labrie F. 2006. Gender differences and effects of sex steroids and dehydroepiandrosterone on androgen and oestrogen alpha receptors in mouse sebaceous glands. Br J Dermatol 154(1):21–7.PubMedCrossRefGoogle Scholar
  8. Bahn S, Augood SJ, Ryan M, Standaert DG, Starkey M, Emson PC. 2001. Gene expression profiling in the post-mortem human brain–no cause for dismay. J Chem Neuroanat 22(1–2):79–94.PubMedCrossRefGoogle Scholar
  9. Baron M. 2001. Genetic linkage and bipolar disorder: a cautionary note. J Affect Disord 67(1–3): 267–73.PubMedCrossRefGoogle Scholar
  10. Belmont JW. 1996. Genetic control of X inactivation and processes leading to X-inactivation skewing. Am J Hum Genet 58(6):1101–8.PubMedGoogle Scholar
  11. Benes FM, Berretta S. 2001. GABAergic interneurons: implications for understanding schizophrenia and bipolar disorder. Neuropsychopharmacology 25(1):1–27.PubMedCrossRefGoogle Scholar
  12. Blewitt ME, Vickaryous NK, Hemley SJ, Ashe A, Bruxner TJ, Preis JI, Arkell R, Whitelaw E. 2005. An N-ethyl-N-nitrosourea screen for genes involved in variegation in the mouse. Proc Natl Acad Sci U S A 102(21):7629–34.PubMedCrossRefGoogle Scholar
  13. Callinan PA, Feinberg AP. 2006. The emerging science of epigenomics. Hum Mol Genet 15 Spec No 1:R95–R101.CrossRefGoogle Scholar
  14. Cardno AG, Gottesman, II. 2000. Twin studies of schizophrenia: from bow-and-arrow concordances to star wars Mx and functional genomics. Am J Med Genet 97(1):12–7.PubMedCrossRefGoogle Scholar
  15. Chakrabarti SK, Francis J, Ziesmann SM, Garmey JC, Mirmira RG. 2003. Covalent histone modifications underlie the developmental regulation of insulin gene transcription in pancreatic beta cells. J Biol Chem 278(26):23617–23.PubMedCrossRefGoogle Scholar
  16. Chang HS, Anway MD, Rekow SS, Skinner MK. 2006. Transgenerational epigenetic imprinting of the male germline by endocrine disruptor exposure during gonadal sex determination. Endocrinology 147(12):5524–41.PubMedCrossRefGoogle Scholar
  17. Coolen MW, Statham AL, Gardiner-Garden M, Clark SJ. 2007. Genomic profiling of CpG methylation and allelic specificity using quantitative high-throughput mass spectrometry: critical evaluation and improvements. Nucleic Acids Res 35(18):e119.PubMedCrossRefGoogle Scholar
  18. Cooney CA, Dave AA, Wolff GL. 2002. Maternal methyl supplements in mice affect epigenetic variation and DNA methylation of offspring. J Nutr 132(8 Suppl):2393S–2400S.PubMedGoogle Scholar
  19. Coyle JT. 2004. The GABA-glutamate connection in schizophrenia: which is the proximate cause? Biochem Pharmacol 68(8):1507–14.Google Scholar
  20. Craddock N, Jones I. 1999. Genetics of bipolar disorder. J Med Genet 36(8):585–94.PubMedGoogle Scholar
  21. Craddock N, O’Donovan MC, Owen MJ. 2005. The genetics of schizophrenia and bipolar disorder: dissecting psychosis. J Med Genet 42(3):193–204.PubMedCrossRefGoogle Scholar
  22. Craddock N, O’Donovan MC, Owen MJ. 2006. Genes for schizophrenia and bipolar disorder? Implications for psychiatric nosology. Schizophr Bull 32(1):9–16.PubMedCrossRefGoogle Scholar
  23. Craddock N, Owen MJ. 2007. Rethinking psychosis: the disadvantages of a dichotomous classification now outweigh the advantages. World Psychiatry 6(2):20–7.Google Scholar
  24. Craig IW, Harper E, Loat CS. 2004. The genetic basis for sex differences in human behaviour: role of the sex chromosomes. Ann Hum Genet 68(Pt 3):269–84.PubMedCrossRefGoogle Scholar
  25. Crow TJ, DeLisi LE, Johnstone EC. 1989. Concordance by sex in sibling pairs with schizophrenia is paternally inherited. Evidence for a pseudoautosomal locus. Br J Psychiatry 155:92–7.CrossRefGoogle Scholar
  26. Cui H, Cruz-Correa M, Giardiello FM, Hutcheon DF, Kafonek DR, Brandenburg S, Wu Y, He X, Powe NR, Feinberg AP. 2003. Loss of IGF2 imprinting: a potential marker of colorectal cancer risk. Science 299(5613):1753–5.PubMedCrossRefGoogle Scholar
  27. Davis CD, Uthus EO. 2003. Dietary folate and selenium affect dimethylhydrazine-induced aberrant crypt formation, global DNA methylation and one-carbon metabolism in rats. J Nutr 133(9):2907–14.PubMedGoogle Scholar
  28. DeLisi L, Shaw S, Crow T. 2001. A genome-wide scan in 301 families with sibling-pairs diagnosed with schizophrenia of schizoaffective disorder suggests linkage to chromosomes 2pcen and 10p14. American Journal of Medical Genetics (Neuropsychiatric Genetics) 105(7):561–578.CrossRefGoogle Scholar
  29. Dempster EL, Mill J, Craig IW, Collier DA. 2006. The quantification of COMT mRNA in post mortem cerebellum tissue: diagnosis, genotype, methylation and expression. BMC Med Genet 7:10.PubMedCrossRefGoogle Scholar
  30. Dib C, Faure S, Fizames C, Samson D, Drouot N, Vignal A, Millasseau P, Marc S, Hazan J, Seboun E et al., 1996. A comprehensive genetic map of the human genome based on 5,264 microsatellites. Nature 380(6570):152–4.PubMedCrossRefGoogle Scholar
  31. Dolinoy DC, Weidman JR, Jirtle RL. 2007. Epigenetic gene regulation: Linking early developmental environment to adult disease. Reprod Toxicol 23(3):297–307.PubMedCrossRefGoogle Scholar
  32. Eckhardt F, Lewin J, Cortese R, Rakyan VK, Attwood J, Burger M, Burton J, Cox TV, Davies R, Down TA et al., 2006. DNA methylation profiling of human chromosomes 6, 20 and 22. Nat Genet 38(12):1378–85.PubMedCrossRefGoogle Scholar
  33. Feil R. 2006. Environmental and nutritional effects on the epigenetic regulation of genes. Mutat Res 600(1–2):46–57.PubMedGoogle Scholar
  34. Ferguson-Smith A, Lin SP, Tsai CE, Youngson N, Tevendale M. 2003. Genomic imprinting–insights from studies in mice. Semin Cell Dev Biol 14(1):43–9.PubMedCrossRefGoogle Scholar
  35. Flanagan JM, Popendikyte V, Pozdniakovaite N, Sobolev M, Assadzadeh A, Schumacher A, Zangeneh M, Lau L, Virtanen C, Wang SC et al., 2006. Intra- and interindividual epigenetic variation in human germ cells. Am J Hum Genet 79(1):67–84.PubMedCrossRefGoogle Scholar
  36. Flanagan JM, Violeta Popendikyte, Natalija Pozdniakovaite, Martha Sobolev, Abbas Assadzadeh, Axel Schumacher, Masood Zangeneh, Lynette Lau, Carl Virtanen, Sun-Chong Wang, and Arturas Petronis. 2006. Intra- and Interindividual Epigenetic Variation in Human Germ Cells. The American Journal of Human Genetics 79:67–84.CrossRefGoogle Scholar
  37. Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestar ML, Heine-Suner D, Cigudosa JC, Urioste M, Benitez J et al., 2005. Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci U S A 102(30):10604–9.PubMedCrossRefGoogle Scholar
  38. Frigola J, Song J, Stirzaker C, Hinshelwood RA, Peinado MA, Clark SJ. 2006. Epigenetic remodeling in colorectal cancer results in coordinate gene suppression across an entire chromosome band. Nat Genet 38(5):540–9.PubMedCrossRefGoogle Scholar
  39. Frommer M, McDonald LE, Millar DS, Collis CM, Watt F, Grigg GW, Molloy PL, Paul CL. 1992. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A 89(5):1827–31.PubMedCrossRefGoogle Scholar
  40. Fu M, Rao M, Wang C, Sakamaki T, Wang J, Di Vizio D, Zhang X, Albanese C, Balk S, Chang C et al., 2003. Acetylation of androgen receptor enhances coactivator binding and promotes prostate cancer cell growth. Mol Cell Biol 23(23):8563–75.PubMedCrossRefGoogle Scholar
  41. Fu M, Wang C, Zhang X, Pestell RG. 2004. Acetylation of nuclear receptors in cellular growth and apoptosis. Biochem Pharmacol 68(6):1199–208.PubMedCrossRefGoogle Scholar
  42. Gershon ES, Badner JA. 2001. Progress toward discovery of susceptibility genes for bipolar manic-depressive illness and schizophrenia. CNS Spectr 6(12):965–8, 977.PubMedGoogle Scholar
  43. Grayson DR, Jia X, Chen Y, Sharma RP, Mitchell CP, Guidotti A, Costa E. 2005. Reelin promoter hypermethylation in schizophrenia. Proc Natl Acad Sci U S A 102(26):9341–6.PubMedCrossRefGoogle Scholar
  44. Hafner H. 2003. Gender differences in schizophrenia. Psychoneuroendocrinology 28 Suppl 2:17–54.CrossRefGoogle Scholar
  45. Hamilton A, Voinnet O, Chappell L, Baulcombe D. 2002. Two classes of short interfering RNA in RNA silencing. Embo J 21(17):4671–9.PubMedCrossRefGoogle Scholar
  46. Harrison PJ, Weinberger DR. 2005. Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatry 10(1):40–68; image 5.PubMedCrossRefGoogle Scholar
  47. Henikoff S, Matzke MA. 1997. Exploring and explaining epigenetic effects. Trends Genet 13(8):293–5.PubMedCrossRefGoogle Scholar
  48. Hennah W, Varilo T, Kestila M, Paunio T, Arajarvi R, Haukka J, Parker A, Martin R, Levitzky S, Partonen T et al., 2003. Haplotype transmission analysis provides evidence of association for DISC1 to schizophrenia and suggests sex-dependent effects. Hum Mol Genet 12(23):3151–9.PubMedCrossRefGoogle Scholar
  49. Huang HS, Matevossian A, Jiang Y, Akbarian S. 2006. Chromatin Immunoprecipitation in Postmortem Brain. J Neurosci Methods 156:284–92.PubMedCrossRefGoogle Scholar
  50. Huang TH, Perry MR, Laux DE. 1999. Methylation profiling of CpG islands in human breast cancer cells. Hum Mol Genet 8(3):459–70.PubMedCrossRefGoogle Scholar
  51. Jablonka E, Lamb M. 1995. Epigenetic Inheritance and Evolution: Oxford University Press.Google Scholar
  52. Jaenisch R, Bird A. 2003. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33 Suppl:245–54.PubMedCrossRefGoogle Scholar
  53. Jenuwein T, Allis CD. 2001. Translating the histone code. Science 293(5532):1074–80.PubMedCrossRefGoogle Scholar
  54. Jones PL, Veenstra GJ, Wade PA, Vermaak D, Kass SU, Landsberger N, Strouboulis J, Wolffe AP. 1998. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet 19(2):187–91.PubMedCrossRefGoogle Scholar
  55. Kaminsky Z, Wang SC, Petronis A. 2006. Complex disease, gender and epigenetics. Ann Med 38(8):530–44.PubMedCrossRefGoogle Scholar
  56. Kato T. 2007. Molecular genetics of bipolar disorder and depression. Psychiatry Clin Neurosci 61(1):3–19.PubMedCrossRefGoogle Scholar
  57. Kawakami K, Ruszkiewicz A, Bennett G, Moore J, Grieu F, Watanabe G, Iacopetta B. 2006. DNA hypermethylation in the normal colonic mucosa of patients with colorectal cancer. Br J Cancer 94(4):593–8.PubMedCrossRefGoogle Scholar
  58. Kelsoe JR, Spence MA, Loetscher E, Foguet M, Sadovnick AD, Remick RA, Flodman P, Khristich J, Mroczkowski-Parker Z, Brown JL et al., 2001. A genome survey indicates a possible susceptibility locus for bipolar disorder on chromosome 22. Proc Natl Acad Sci U S A 98(2):585–90.PubMedCrossRefGoogle Scholar
  59. Khulan B, Thompson RF, Ye K, Fazzari MJ, Suzuki M, Stasiek E, Figueroa ME, Glass JL, Chen Q, Montagna C et al., 2006. Comparative isoschizomer profiling of cytosine methylation: the HELP assay. Genome Res 16(8):1046–55.PubMedCrossRefGoogle Scholar
  60. Kinyamu HK, Archer TK. 2004. Modifying chromatin to permit steroid hormone receptor-dependent transcription. Biochim Biophys Acta 1677(1–3):30–45.PubMedGoogle Scholar
  61. Klar AJ. 1998. Propagating epigenetic states through meiosis: where Mendel’s gene is more than a DNA moiety. Trends Genet 14(8):299–301.PubMedCrossRefGoogle Scholar
  62. Kuhn TS. 1962. The structure of scienitific revolutions. 172p., editor. Chicago University Press. 172 p.Google Scholar
  63. Kuratomi G, Iwamoto K, Bundo M, Kusumi I, Kato N, Iwata N, Ozaki N, Kato T. 2007. Aberrant DNA methylation associated with bipolar disorder identified from discordant monozygotic twins. Mol Psychiatry.Google Scholar
  64. Lai JC, Cheng YW, Chiou HL, Wu MF, Chen CY, Lee H. 2005. Gender difference in estrogen receptor alpha promoter hypermethylation and its prognostic value in non-small cell lung cancer. Int J Cancer 117(6):974–80.PubMedCrossRefGoogle Scholar
  65. Lamb JA, Barnby G, Bonora E, Sykes N, Bacchelli E, Blasi F, Maestrini E, Broxholme J, Tzenova J, Weeks D et al., 2005. Analysis of IMGSAC autism susceptibility loci: evidence for sex limited and parent of origin specific effects. J Med Genet 42(2):132–7.PubMedCrossRefGoogle Scholar
  66. Lippman Z, Gendrel AV, Colot V, Martienssen R. 2005. Profiling DNA methylation patterns using genomic tiling microarrays. Nat Methods 2(3):219–24.PubMedCrossRefGoogle Scholar
  67. Liu JC, Baker RE, Chow W, Sun CK, Elsholtz HP. 2005. Epigenetic mechanisms in the dopamine D2 receptor-dependent inhibition of the prolactin gene. Mol Endocrinol 19(7): 1904–1917.PubMedCrossRefGoogle Scholar
  68. Mani ST, Thakur MK. 2006. In the cerebral cortex of female and male mice, amyloid precursor protein (APP) promoter methylation is higher in females and differentially regulated by sex steroids. Brain Res 1067(1):43–7.PubMedCrossRefGoogle Scholar
  69. McGuffin P, Asherson P, Owen M, Farmer A. 1994. The strength of the genetic effect. Is there room for an environmental influence in the aetiology of schizophrenia? Br J Psychiatry 164(5):593–9.PubMedCrossRefGoogle Scholar
  70. McMahon FJ, Hopkins PJ, Xu J, McInnis MG, Shaw S, Cardon L, Simpson SG, MacKinnon DF, Stine OC, Sherrington R, Meyers DA, DePaulo JR. 1997. Linkage of bipolar affective disorder to chromosome 18 markers in a new pedigree series. Am J Hum Genet 61(6):1397–404.PubMedCrossRefGoogle Scholar
  71. McMahon FJ, Stine OC, Meyers DA, Simpson SG, DePaulo JR. Patterns of maternal transmission in bipolar affective disorder. 1995. Am J Hum Genet 56(6):1277–86.Google Scholar
  72. Meijlink FC, Philipsen JN, Gruber M, Ab G. 1983. Methylation of the chicken vitellogenin gene: influence of estradiol administration. Nucleic Acids Res 11(5):1361–73.PubMedCrossRefGoogle Scholar
  73. Metivier R, Penot G, Hubner MR, Reid G, Brand H, Kos M, Gannon F. 2003. Estrogen receptor-alpha directs ordered, cyclical, and combinatorial recruitment of cofactors on a natural target promoter. Cell 115(6):751–63.PubMedCrossRefGoogle Scholar
  74. Mill J, Dempster E, Caspi A, Williams B, Moffitt T, Craig I. 2006a. Evidence for monozygotic twin (MZ) discordance in methylation level at two CpG sites in the promoter region of the catechol-O-methyltransferase (COMT) gene. Am J Med Genet B Neuropsychiatr Genet 141(4):421–5.Google Scholar
  75. Mill J, Tang T, Kaminsky Z, Khare T, Yazdanpanah S, Bouchard L, Jia P, Assadzadeh A, Flanagan J, Schumacher A et al., 2008. Epigenomic Profiling Reveals DNA Methylation Changes Associated with Major Psychosis. Am J Hum Genet 82(3):696–711.PubMedCrossRefGoogle Scholar
  76. Mill J, Yazdanpanah S, Guckel E, Ziegler S, Kaminsky Z, Petronis A. 2006b. Whole genome amplification of sodium bisulfite-treated DNA allows the accurate estimate of methylated cytosine density in limited DNA resources. Biotechniques 41(5):603–7.CrossRefGoogle Scholar
  77. Milutinovic S, D’Alessio AC, Detich N, Szyf M. 2007. Valproate induces widespread epigenetic reprogramming which involves demethylation of specific genes. Carcinogenesis 28(3):560–71.PubMedCrossRefGoogle Scholar
  78. Mirnics K. 2001. Microarrays in brain research: the good, the bad and the ugly. Nat Rev Neurosci 2(6):444–7.PubMedCrossRefGoogle Scholar
  79. Morris KV. 2005. siRNA-mediated transcriptional gene silencing: the potential mechanism and a possible role in the histone code. Cell Mol Life Sci 62(24):3057–66.PubMedCrossRefGoogle Scholar
  80. Murray CJ, Lopez AD. 1997. Mortality by cause for eight regions of the world: Global Burden of Disease Study. Lancet 349(9061):1269–76.PubMedCrossRefGoogle Scholar
  81. Murrell A, Heeson S, Cooper WN, Douglas E, Apostolidou S, Moore GE, Maher ER, Reik W. 2004. An association between variants in the IGF2 gene and Beckwith-Wiedemann syndrome: interaction between genotype and epigenotype. Hum Mol Genet 13(2):247–55.PubMedCrossRefGoogle Scholar
  82. Newman ME. 2006. Modularity and community structure in networks. Proc Natl Acad Sci U S A 103(23):8577–82.PubMedCrossRefGoogle Scholar
  83. Ohara K, Xu HD, Mori N, Suzuki Y, Xu DS, Ohara K, Wang ZC. 1997. Anticipation and imprinting in schizophrenia. Biol Psychiatry 42(9):760–6.PubMedCrossRefGoogle Scholar
  84. O’Neill LP, VerMilyea MD, Turner B M. 2006. Epigenetic Characterization of the Early Embryo With a Chromatin Immunoprecipitation Protocol Applicable to Small Cell Populations. Nat Genet 38:835–41.PubMedCrossRefGoogle Scholar
  85. Owen MJ, Craddock N, Jablensky A. 2007. The genetic deconstruction of psychosis. Schizophr Bull 33(4):905–11.PubMedCrossRefGoogle Scholar
  86. Paulsen M, El-Maarri O, Engemann S, Strodicke M, Franck O, Davies K, Reinhardt R, Reik W, Walter J. 2000. Sequence conservation and variability of imprinting in the Beckwith-Wiedemann syndrome gene cluster in human and mouse. Hum Mol Genet 9(12):1829–41.PubMedCrossRefGoogle Scholar
  87. Paulsen M, Ferguson-Smith AC. 2001. DNA methylation in genomic imprinting, development, and disease. J Pathol 195(1):97–110.PubMedCrossRefGoogle Scholar
  88. Penner JD, Brown AS. 2007. Prenatal infectious and nutritional factors and risk of adult schizophrenia. Expert Rev Neurother 7(7):797–805.PubMedCrossRefGoogle Scholar
  89. Petronis A. 2000. The genes for major psychosis: aberrant sequence or regulation? Neuropsychopharmacology 23(1):1–12.PubMedCrossRefGoogle Scholar
  90. Petronis A. 2001. Human morbid genetics revisited: relevance of epigenetics. Trends Genet 17(3):142–6.PubMedCrossRefGoogle Scholar
  91. Petronis A. 2004. The origin of schizophrenia: genetic thesis, epigenetic antithesis, and resolving synthesis. Biol Psychiatry 55(10):965–70.PubMedCrossRefGoogle Scholar
  92. Petronis A, Gottesman, II, Kan P, Kennedy JL, Basile VS, Paterson AD, Popendikyte V. 2003. Monozygotic twins exhibit numerous epigenetic differences: clues to twin discordance? Schizophr Bull 29(1):169–78.Google Scholar
  93. Plenge RM, Stevenson RA, Lubs HA, Schwartz CE, Willard HF. 2002. Skewed X-chromosome inactivation is a common feature of X-linked mental retardation disorders. Am J Hum Genet 71(1):168–73.PubMedCrossRefGoogle Scholar
  94. Prabakaran S, Swatton JE, Ryan MM, Huffaker SJ, Huang JT, Griffin JL, Wayland M, Freeman T, Dudbridge F, Lilley KS et al., 2004. Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress. Mol Psychiatry 9(7):684–97, 643.PubMedCrossRefGoogle Scholar
  95. Preis JI, Downes M, Oates NA, Rasko JE, Whitelaw E. 2003. Sensitive flow cytometric analysis reveals a novel type of parent-of-origin effect in the mouse genome. Curr Biol 13(11):955–9.PubMedCrossRefGoogle Scholar
  96. Rakyan V, Whitelaw E. 2003. Transgenerational epigenetic inheritance. Curr Biol 13(1):R6.PubMedCrossRefGoogle Scholar
  97. Rakyan VK, Blewitt ME, Druker R, Preis JI, Whitelaw E. 2002. Metastable epialleles in mammals. Trends Genet 18(7):348–51.PubMedCrossRefGoogle Scholar
  98. Rakyan VK, Hildmann T, Novik KL, Lewin J, Tost J, Cox AV, Andrews TD, Howe KL, Otto T, Olek A et al., 2004. DNA methylation profiling of the human major histocompatibility complex: a pilot study for the human epigenome project. PLoS Biol 2(12):e405.PubMedCrossRefGoogle Scholar
  99. Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabasi AL. 2002. Hierarchical organization of modularity in metabolic networks. Science 297(5586):1551–5.PubMedCrossRefGoogle Scholar
  100. Richards EJ. 2006. Inherited epigenetic variation–revisiting soft inheritance. Nat Rev Genet 7(5):395–401.PubMedCrossRefGoogle Scholar
  101. Riggs AD, Xiong Z, Wang AG, LeBon JM. 1998. Methylation dynamics, epigenetic fidelity and X chromosome structure. In: Wolffe A, editor. Epigenetics. Chistester: John Wiley & Sons. p 214–227.Google Scholar
  102. Riley B, Kendler KS. 2006. Molecular genetic studies of schizophrenia. Eur J Hum Genet 14(6):669–80.PubMedCrossRefGoogle Scholar
  103. Rives AW, Galitski T. 2003. Modular organization of cellular networks. Proc Natl Acad Sci U S A 100(3):1128–33.PubMedCrossRefGoogle Scholar
  104. Robertson G, Hirst M, Bainbridge M, Bilenky M, Zhao Y, Zeng T, Euskirchen G, Bernier B, Varhol R, Delaney A et al., 2007. Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat Methods 4(8):651–7.PubMedCrossRefGoogle Scholar
  105. Robertson KD, Wolffe AP. 2000. DNA methylation in health and disease. Nat Rev Genet 1(1):11–9.PubMedCrossRefGoogle Scholar
  106. Rosa A, Picchioni MM, Kalidindi S, Loat CS, Knight J, Toulopoulou T, Vonk R, van der Schot AC, Nolen W, Kahn RS et al., 2007. Differential methylation of the X-chromosome is a possible source of discordance for bipolar disorder female monozygotic twins. Am J Med Genet B Neuropsychiatr Genet 5;147B(4):459–62.Google Scholar
  107. Saluz HP, Jiricny J, Jost JP. 1986. Genomic sequencing reveals a positive correlation between the kinetics of strand-specific DNA demethylation of the overlapping estradiol/glucocorticoid-receptor binding sites and the rate of avian vitellogenin mRNA synthesis. Proc Natl Acad Sci U S A 83(19):7167–71.PubMedCrossRefGoogle Scholar
  108. Sarter B, Long TI, Tsong WH, Koh WP, Yu MC, Laird PW. 2005. Sex differential in methylation patterns of selected genes in Singapore Chinese. Hum Genet 117(4):402–3.PubMedCrossRefGoogle Scholar
  109. Schulze TG, Chen YS, Badner JA, McInnis MG, DePaulo JR Jr, McMahon FJ. 2003. Additional, physically ordered markers increase linkage signal for bipolar disorder on chromosome 18q22. Biol Psychiatry 53(3):239–43.PubMedCrossRefGoogle Scholar
  110. Sharma RP, Rosen C, Kartan S, Guidotti A, Costa E, Grayson DR, Chase K. 2006. Valproic acid and chromatin remodeling in schizophrenia and bipolar disorder: preliminary results from a clinical population. Schizophr Res 88(1-3):227-31. Epub 2006 Sep 25.PubMedCrossRefGoogle Scholar
  111. Shi H, Wei SH, Leu YW, Rahmatpanah F, Liu JC, Yan PS, Nephew KP, Huang TH. 2003. Triple analysis of the cancer epigenome: an integrated microarray system for assessing gene expression, DNA methylation, and histone acetylation. Cancer Res 63(9):2164–71.PubMedGoogle Scholar
  112. Shifman S, Bronstein M, Sternfeld M, Pisante-Shalom A, Lev-Lehman E, Weizman A, Reznik I, Spivak B, Grisaru N, Karp L et al., 2002. A highly significant association between a COMT haplotype and schizophrenia. Am J Hum Genet 71(6):1296–302.PubMedCrossRefGoogle Scholar
  113. Shimabukuro M, Jinno Y, Fuke C, Okazaki Y. 2006a. Haloperidol treatment induces tissue- and sex-specific changes in DNA methylation: a control study using rats. Behav Brain Funct 2:37.CrossRefGoogle Scholar
  114. Shimabukuro M, Sasaki T, Imamura A, Tsujita T, Fuke C, Umekage T, Tochigi M, Hiramatsu K, Miyazaki T, Oda T et al., 2006b. Global hypomethylation of peripheral leukocyte DNA in male patients with schizophrenia: A potential link between epigenetics and schizophrenia. J Psychiatr Res 41(12):1042–6.CrossRefGoogle Scholar
  115. Spirin V, Mirny LA. 2003. Protein complexes and functional modules in molecular networks. Proc Natl Acad Sci U S A 100(21):12123–8.PubMedCrossRefGoogle Scholar
  116. Stadler F, Kolb G, Rubusch L, Baker SP, Jones EG, Akbarian S. 2005. Histone methylation at gene promoters is associated with developmental regulation and region-specific expression of ionotropic and metabotropic glutamate receptors in human brain. J Neurochem 94(2):324–36.PubMedCrossRefGoogle Scholar
  117. Stone JL, Merriman B, Cantor RM, Yonan AL, Gilliam TC, Geschwind DH, Nelson SF. 2004. Evidence for sex-specific risk alleles in autism spectrum disorder. Am J Hum Genet 75(6):1117–23.PubMedCrossRefGoogle Scholar
  118. Surani MA, Sasaki H, Ferguson-Smith AC, Allen ND, Barton SC, Jones PA, Reik W. 1993. The inheritance of germline-specific epigenetic modifications during development. Philos Trans R Soc Lond B Biol Sci 339(1288):165–72.PubMedCrossRefGoogle Scholar
  119. Suter CM, Martin DI, Ward RL. 2004. Germline epimutation of MLH1 in individuals with multiple cancers. Nat Genet 36(5):497–501.PubMedCrossRefGoogle Scholar
  120. Sutherland JE, Costa M. 2003. Epigenetics and the environment. Ann N Y Acad Sci 983:151–60.PubMedCrossRefGoogle Scholar
  121. Taylor KH, Kramer RS, Davis JW, Guo J, Duff DJ, Xu D, Caldwell CW, Shi H. 2007. Ultradeep bisulfite sequencing analysis of DNA methylation patterns in multiple gene promoters by 454 sequencing. Cancer Res 67(18):8511–8.PubMedCrossRefGoogle Scholar
  122. Thomson PA, Wray NR, Millar JK, Evans KL, Hellard SL, Condie A, Muir WJ, Blackwood DH, Porteous DJ. 2005. Association between the TRAX/DISC locus and both bipolar disorder and schizophrenia in the Scottish population. Mol Psychiatry 10(7):657–68, 616.PubMedCrossRefGoogle Scholar
  123. Tochigi M, Iwamoto K, Bundo M, Komori B, Sasaki T, Kato N, Kato T. (2008). Methylation status of the reelin promoter region in the brain of schizophrenic patients. Biological Psychiatry. 63(5):530–533.PubMedCrossRefGoogle Scholar
  124. Tost J, Gut IG. 2007. DNA methylation analysis by pyrosequencing. Nat Protoc 2(9):2265–75.PubMedCrossRefGoogle Scholar
  125. Ushijima T, Watanabe N, Okochi E, Kaneda A, Sugimura T, Miyamoto K. 2003. Fidelity of the methylation pattern and its variation in the genome. Genome Res 13(5):868–74.PubMedCrossRefGoogle Scholar
  126. Vallada HP, Collier DA. 1998. Genetics of schizophrenia – new findings In: Gattaz WF, Hafner H, editors. Search for the causes of schizophrenia. Berlin, New York: Springer Verlag. p 114–123.Google Scholar
  127. Veldic M, Guidotti A, Maloku E, Davis JM, Costa E. 2005. In psychosis, cortical interneurons overexpress DNA-methyltransferase 1. Proc Natl Acad Sci U S A 102(6):2152–7.PubMedCrossRefGoogle Scholar
  128. Weaver IC, Cervoni N, Champagne FA, D’Alessio AC, Sharma S, Seckl JR, Dymov S, Szyf M, Meaney MJ. 2004. Epigenetic programming by maternal behavior. Nat Neurosci.Google Scholar
  129. Weksberg R, Shuman C, Caluseriu O, Smith AC, Fei YL, Nishikawa J, Stockley TL, Best L, Chitayat D, Olney A et al., 2002. Discordant KCNQ1OT1 imprinting in sets of monozygotic twins discordant for Beckwith-Wiedemann syndrome. Hum Mol Genet 11(11):1317–25.PubMedCrossRefGoogle Scholar
  130. Wilks A, Seldran M, Jost JP. 1984. An estrogen-dependent demethylation at the 5’ end of the chicken vitellogenin gene is independent of DNA synthesis. Nucleic Acids Res 12(2):1163–77.PubMedCrossRefGoogle Scholar
  131. Wilks AF, Cozens PJ, Mattaj IW, Jost JP. 1982. Estrogen induces a demethylation at the 5’ end region of the chicken vitellogenin gene. Proc Natl Acad Sci U S A 79(14):4252–5.PubMedCrossRefGoogle Scholar
  132. Willard HF. 2000. The sex chromosomes and X chromosome inactivation. In: Scriver CR, et al., editor. btvThe metabolic and molecular basis of inherited disease. 8 ed. New York: McGraw-Hill. pp. 1191–1211.Google Scholar
  133. Wong AH, Gottesman, II, Petronis A. 2005. Phenotypic differences in genetically identical organisms: the epigenetic perspective. Hum Mol Genet 14 Spec No 1:R11–8.CrossRefGoogle Scholar
  134. Xu L, Glass CK, Rosenfeld MG. 1999. Coactivator and corepressor complexes in nuclear receptor function. Curr Opin Genet Dev 9(2):140–7.PubMedCrossRefGoogle Scholar
  135. Yatabe Y, Tavare S, Shibata D. 2001. Investigating stem cells in human colon by using methylation patterns. Proc Natl Acad Sci U S A 98(19):10839–44.PubMedCrossRefGoogle Scholar
  136. Yu J, Zhang H, Gu J, Lin S, Li J, Lu W, Wang Y, Zhu J. 2004. Methylation profiles of thirty four promoter-CpG islands and concordant methylation behaviours of sixteen genes that may contribute to carcinogenesis of astrocytoma. BMC Cancer 4:65.PubMedCrossRefGoogle Scholar
  137. Zubenko GS, Maher B, Hughes HB, 3rd, Zubenko WN, Stiffler JS, Kaplan BB, Marazita ML. 2003. Genome-wide linkage survey for genetic loci that influence the development of depressive disorders in families with recurrent, early-onset, major depression. Am J Med Genet B Neuropsychiatr Genet 123(1):1–18.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Jonathan Mill
  • Arturas Petronis
    • 1
  1. 1.Krembil Family Epigenetics LaboratoryCentre for Addiction and Mental HealthToronto ONCanada

Personalised recommendations