Epigenomics pp 187-214 | Cite as

MacroRNAs in the Epigenetic Control of X-Chromosome Inactivation

  • Shinwa Shibata
  • Jeannie T. Lee


Sex chromosome dosage compensation in mammals is achieved by {X-chromosome} inactivation (XCI) in the female sex. In the mammalian female cells, only one X-chromosome is transcribed, while the other is permanently silenced. As a quintessential example of epigenetic control, XCI has been the subject of intense investigation. This process is regulated by complex interplay between multiple cis-acting non-coding genes, including Xist, Tsix, Xite, and DXPas34. All make large noncoding RNAs – so-called ‘macroRNAs’ – and together orchestrate the cascade of events involved in X-chromosome counting, choice, and the initiation of silencing. In addition to their well-establishedroles in cis, some of the non-coding loci also play roles in trans. This chapter will first summarize the current state of knowledge and focus on recent developments.


Xist Tsix Xite DXPas34 X-chromosome inactivation {noncoding} RNA antisense genes heterochromatin CpG-methylation histone modification chromatin structure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ariel, M., Robinson, E., McCarrey, J. R., and Cedar, H. (1995). Gamete-specific methylation correlates with imprinting of the murine Xist gene. Nat Genet 9, 312–315.PubMedCrossRefGoogle Scholar
  2. Avner, P., and Heard, E. (2001). X-chromosome inactivation: counting, choice, and initiation. Nat Rev Genet 2, 59–67.PubMedCrossRefGoogle Scholar
  3. Avner, P., Prissette, M., Arnaud, D., Courtier, B., Cecchi, C., and Heard, E. (1998). Molecular correlates of the murine Xce locus. Genet Res, Camb 72, 217–224.Google Scholar
  4. Bacher, C. P., Guggiari, M., Brors, B., Augui, S., Clerc, P., Avner, P., Eils, R., and Heard, E. (2006). Transient colocalization of X-inactivation centres accompanies the initiation of X inactivation. Nat Cell Biol 8, 293–299.PubMedCrossRefGoogle Scholar
  5. Bailey, J. A., Carrel, L., Chakravarti, A., and Eichler, E. E. (2000). Molecular evidence for a relationship between LINE-1 elements and X chromosome inactivation: the Lyon repeat hypothesis. Proc Natl Acad Sci U S A 97, 6634–6639.PubMedCrossRefGoogle Scholar
  6. Barr, H., Hermann, A., Berger, J., Tsai, H. H., Adie, K., Prokhortchouk, A., Hendrich, B., and Bird, A. (2007). Mbd2 contributes to DNA methylation-directed repression of the Xist gene. Mol Cell Biol 27, 3750–3757.PubMedCrossRefGoogle Scholar
  7. Beard, C., Li, E., and Jaenisch, R. (1995). Loss of methylation activates Xist in somatic but not in embryonic cells. Genes Dev 9, 2325–2334.PubMedCrossRefGoogle Scholar
  8. Bell, A. C., West, A. G., and Felsenfeld, G. (1999). The protein CTCF is required for the enhancer blocking activity of vertebrate insulators. Cell 98, 387–396.PubMedCrossRefGoogle Scholar
  9. Boggs, B. A., Cheung, P., Heard, E., Spector, D. L., Chinault, A. C., and Allis, C. D. (2002). Differentially methylated forms of histone H3 show unique association patterns with inactive human X chromosomes. Nat Genet 30, 73–76.PubMedCrossRefGoogle Scholar
  10. Borsani, G., Tonlorenzi, R., Simmler, M. C., Dandolo, L., Arnaud, D., Capra, V., Grompe, M., Pizzuti, A., Muzny, D., Lawrence, C., et al. (1991). Characterization of a murine gene expressed from the inactive X chromosome. Nature 351, 325–329.PubMedCrossRefGoogle Scholar
  11. Boumil, R. M., and Lee, J. T. (2001). 40 years of decoding the silence in X-chromosome inactivation. Hum Mol Genet 10, 2225–2232.PubMedCrossRefGoogle Scholar
  12. Boumil, R. M., Ogawa, Y., Sun, B. K., Huynh, K. D., and Lee, J. T. (2006). Differential methylation of Xite and CTCF sites in Tsix mirrors the pattern of X-inactivation choice in mice. Mol Cell Biol 26, 2109–2117.PubMedCrossRefGoogle Scholar
  13. Bourc’his, D., Xu, G. L., Lin, C. S., Bollman, B., and Bestor, T. H. (2001). Dnmt3L and the establishment of maternal genomic imprints. Science 294, 2536–2539.PubMedCrossRefGoogle Scholar
  14. Brockdorff, N., Ashworth, A., Kay, G. F., Cooper, P., Smith, S., McCabe, V. M., Norris, D. P., Penny, G. D., Patel, D., and Rastan, S. (1991). Conservation of position and exclusive expression of mouse Xist from the inactive X chromosome. Nature 351, 329–331.PubMedCrossRefGoogle Scholar
  15. Brockdorff, N., Ashworth, A., Kay, G. F., McCabe, V. M., Norris, D. P., Cooper, P. J., Swift, S., and Rastan, S. (1992). The product of the mouse Xist gene is a 15 kb inactive X-specific transcript containing no conserved ORF and located in the nucleus. Cell 71, 515–526.PubMedCrossRefGoogle Scholar
  16. Brown, C. J., Ballabio, A., Rupert, J. L., Lafreniere, R. G., Grompe, M., Tonlorenzi, R., and Willard, H. F. (1991a). A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome. Nature 349, 38–44.CrossRefGoogle Scholar
  17. Brown, C. J., Hendrich, B. D., Rupert, J. L., Lafreniere, R. G., Xing, Y., Lawrence, J., and Willard, H. F. (1992). The human XIST gene: analysis of a 17 kb inactive X-specific RNA that contains conserved repeats and is highly localized within the nucleus. Cell 71, 527–542.PubMedCrossRefGoogle Scholar
  18. Brown, C. J., Lafreniere, R. G., Powers, V. E., Sebastio, G., Ballabio, A., Pettigrew, A. L., Ledbetter, D. H., Levy, E., Craig, I. W., and Willard, H. F. (1991b). Localization of the X inactivation centre on the human X chromosome in Xq13. Nature 349, 82–84.CrossRefGoogle Scholar
  19. Brown, C. J., and Robinson, W. P. (2000). The causes and consequences of random and non-random X chromosome inactivation in humans. Clin Genet 58, 353–363.PubMedCrossRefGoogle Scholar
  20. Brown, C. J., and Willard, H. F. (1994). The human X-inactivation centre is not required for maintenance of X-chromosome inactivation. Nature 368, 154–156.PubMedCrossRefGoogle Scholar
  21. Carrel, L., and Willard, H. F. (2005). X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature 434, 400–404.PubMedCrossRefGoogle Scholar
  22. Cattanach and Isaacson, J. H. (1967). Controlling elements in the mouse X chromosome. Genetics 57, 331–346.Google Scholar
  23. Cattanach and Williams, C. E. (1972). Evidence of non-random X chromosome activity in the mouse. Genet Res 19, 229–240.CrossRefGoogle Scholar
  24. Chadwick, B. P., and Willard, H. F. (2004). Multiple spatially distinct types of facultative heterochromatin on the human inactive X chromosome. Proc Natl Acad Sci U S A 101, 17450–17455.PubMedCrossRefGoogle Scholar
  25. Chao, W., Huynh, K. D., Spencer, R. J., Davidow, L. S., and Lee, J. T. (2002). CTCF, a candidate trans-acting factor for X-inactivation choice. Science 295, 345–347. Epub 2001 Dec 2006.PubMedCrossRefGoogle Scholar
  26. Chaumeil, J., Le Baccon, P., Wutz, A., and Heard, E. (2006). A novel role for Xist RNA in the formation of a repressive nuclear compartment into which genes are recruited when silenced. Genes Dev 20, 2223–2237.PubMedCrossRefGoogle Scholar
  27. Chow, J. C., Hall, L. L., Baldry, S. E., Thorogood, N. P., Lawrence, J. B., and Brown, C. J. (2007). Inducible XIST-dependent X-chromosome inactivation in human somatic cells is reversible. Proc Natl Acad Sci U S A 104, 10104–10109.PubMedCrossRefGoogle Scholar
  28. Chow, J. C., Hall, L. L., Clemson, C. M., Lawrence, J. B., and Brown, C. J. (2003). Characterization of expression at the human XIST locus in somatic, embryonal carcinoma, and transgenic cell lines. Genomics 82, 309–322.PubMedCrossRefGoogle Scholar
  29. Ciavatta, D., Kalantry, S., Magnuson, T., and Smithies, O. (2006). A DNA insulator prevents repression of a targeted X-linked transgene but not its random or imprinted X inactivation. Proc Natl Acad Sci U S A 103, 9958–9963.PubMedCrossRefGoogle Scholar
  30. Clemson, C. M., Hall, L. L., Byron, M., McNeil, J., and Lawrence, J. B. (2006). The X chromosome is organized into a gene-rich outer rim and an internal core containing silenced nongenic sequences. Proc Natl Acad Sci U S A 103, 7688–7693.PubMedCrossRefGoogle Scholar
  31. Clemson, C. M., McNeil, J. A., Willard, H. F., and Lawrence, J. B. (1996). XIST RNA paints the inactive X chromosome at interphase: evidence for a novel RNA involved in nuclear/chromosome structure. J Cell Biol 132, 259–275.PubMedCrossRefGoogle Scholar
  32. Clerc, P., and Avner, P. (1998). Role of the region 3’ to Xist exon 6 in the counting process of X-chromosome inactivation. Nat Genet 19, 249–253.PubMedCrossRefGoogle Scholar
  33. Cohen, D. E., Davidow, L. S., Erwin, J. A., Xu, N., Warshawsky, D., and Lee, J. T. (2007). The DXPas34 repeat regulates random and imprinted X inactivation. Dev Cell 12, 57–71.PubMedCrossRefGoogle Scholar
  34. Cooper, D. W., Johnston., P. G., Watson, J. M., and Graves, J. A. M. (1993). X-inactivation in marsupials and monotremes. Seminars Dev Biol 4, 117–128.CrossRefGoogle Scholar
  35. Costanzi, C., and Pehrson, J. R. (1998). MacroH2A1 is concentrated in the inactive X chromosome of female mammals. Nature 393, 599–601.PubMedCrossRefGoogle Scholar
  36. Courtier, B., Heard, E., and Avner, P. (1995). Xce haplotypes show modified methylation in a region of the active X chromosome lying 3’ to Xist. Proc Natl Acad Sci U S A 92, 3531–3535.PubMedCrossRefGoogle Scholar
  37. Csankovszki, G., Nagy, A., and Jaenisch, R. (2001). Synergism of Xist RNA, DNA methylation, and histone hypoacetylation in maintaining X chromosome inactivation. J Cell Biol 153, {773–784}.PubMedCrossRefGoogle Scholar
  38. Csankovszki, G., Panning, B., Bates, B., Pehrson, J. R., and Jaenisch, R. (1999). Conditional deletion of Xist disrupts histone macroH2A localization but not maintenance of X inactivation. Nat Genet 22, 323–324.PubMedCrossRefGoogle Scholar
  39. Davidow, L. S., Breen, M., Duke, S. E., Samollow, P. B., McCarrey, J. R., and Lee, J. T. (2007). The search for a marsupial XIC reveals a break with vertebrate synteny. Chromosome Res 15, 137–146.PubMedCrossRefGoogle Scholar
  40. de Napoles, M., Mermoud, J. E., Wakao, R., Tang, Y. A., Endoh, M., Appanah, R., Nesterova, T. B., Silva, J., Otte, A. P., Vidal, M., et al. (2004). Polycomb group proteins Ring1A/B link ubiquitylation of histone H2A to heritable gene silencing and X inactivation. Dev Cell 7, {663–676}.PubMedCrossRefGoogle Scholar
  41. Debrand, E., Chureau, C., Arnaud, D., Avner, P., and Heard, E. (1999). Functional analysis of the DXPas34 locus, a 3’ regulator of Xist expression. Mol Cell Biol 19, 8513–8525.PubMedGoogle Scholar
  42. Donohoe, M. E., Zhang, L. F., Xu, N., Shi, Y., and Lee, J. T. (2007). Identification of a Ctcf cofactor, Yy1, for the X chromosome binary switch. Mol Cell 25, 43–56.PubMedCrossRefGoogle Scholar
  43. Duret, L., Chureau, C., Samain, S., Weissenbach, J., and Avner, P. (2006). The Xist RNA gene evolved in eutherians by pseudogenization of a protein-coding gene. Science 312, 1653–1655.PubMedCrossRefGoogle Scholar
  44. Duthie, S. M., Nesterova, T. B., Formstone, E. J., Keohane, A. M., Turner, B. M., Zakian, S. M., and Brockdorff, N. (1999). Xist RNA exhibits a banded localization on the inactive X chromosome and is excluded from autosomal material in cis. Hum Mol Genet 8, 195–204.PubMedCrossRefGoogle Scholar
  45. Fang, J., Chen, T., Chadwick, B., Li, E., and Zhang, Y. (2004). Ring1b-mediated H2A ubiquitination associates with inactive X chromosomes and is involved in initiation of X inactivation. J Biol Chem 279, 52812–52815. Epub 52004 Oct 52826.PubMedCrossRefGoogle Scholar
  46. Fedoriw, A. M., Stein, P., Svoboda, P., Schultz, R. M., and Bartolomei, M. S. (2004). Transgenic RNAi reveals essential function for CTCF in H19 gene imprinting. Science 303, 238–240.PubMedCrossRefGoogle Scholar
  47. Garrick, D., Sharpe, J. A., Arkell, R., Dobbie, L., Smith, A. J., Wood, W. G., Higgs, D. R., and Gibbons, R. J. (2006). Loss of Atrx affects trophoblast development and the pattern of X-inactivation in extraembryonic tissues. PLoS Genet 2, e58.PubMedCrossRefGoogle Scholar
  48. Gartler, S. M., and Riggs, A. D. (1983). Mammalian X-chromosome inactivation. Annu Rev Genet 17, 155–190.PubMedCrossRefGoogle Scholar
  49. Graves, J. A. M. (1996). Mammals that break the rules: Genetics of marsupials and monotremes. Annu Rev Genet 30, 233–260.PubMedCrossRefGoogle Scholar
  50. Greaves, I. K., Rangasamy, D., Devoy, M., Marshall Graves, J. A., and Tremethick, D. J. (2006). The X and Y chromosomes assemble into H2A.Z-containing [corrected] facultative heterochromatin [corrected] following meiosis. Mol Cell Biol 26, 5394–5405.PubMedCrossRefGoogle Scholar
  51. Hall, L. L., Byron, M., Sakai, K., Carrel, L., Willard, H. F., and Lawrence, J. B. (2002). An ectopic human XIST gene can induce chromosome inactivation in postdifferentiation human HT-1080 cells. Proc Natl Acad Sci U S A 99, 8677–8682.PubMedCrossRefGoogle Scholar
  52. Hark, A. T., Schoenherr, C. J., Katz, D. J., Ingram, R. S., Levorse, J. M., and Tilghman, S. M. (2000). CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature 405, 486–489.PubMedCrossRefGoogle Scholar
  53. Heard, E., Mongelard, F., Arnaud, D., and Avner, P. (1999). Xist yeast artificial chromosome transgenes function as X-inactivation centers only in multicopy arrays and not as single copies. Mol Cell Biol 19, 3156–3166.PubMedGoogle Scholar
  54. Heard, E., Rougeulle, C., Arnaud, D., Avner, P., Allis, C. D., and Spector, D. L. (2001). Methylation of histone H3 at Lys-9 is an early mark on the X chromosome during X inactivation. Cell 107, 727–738.PubMedCrossRefGoogle Scholar
  55. Hernandez-Munoz, I., Lund, A. H., van der Stoop, P., Boutsma, E., Muijrers, I., Verhoeven, E., Nusinow, D. A., Panning, B., Marahrens, Y., and van Lohuizen, M. (2005). Stable X chromosome inactivation involves the PRC1 Polycomb complex and requires histone MACROH2A1 and the CULLIN3/SPOP ubiquitin E3 ligase. Proc Natl Acad Sci U S A 102, 7635–7640.PubMedCrossRefGoogle Scholar
  56. Hore, T. A., Koina, E., Wakefield, M. J., and Graves, J. A. M. (2007). The region homologous to the X-chromosome inactivation centre has been disrupted in marsupial and monotreme mammals. Chromosome Res 15, 147–161.PubMedCrossRefGoogle Scholar
  57. Huynh, K. D., and Lee, J. T. (2001). Imprinted X inactivation in eutherians: a model of gametic execution and zygotic relaxation. Curr Opin Cell Biol 13, 690–697.PubMedCrossRefGoogle Scholar
  58. Huynh, K. D., and Lee, J. T. (2003). Inheritance of a pre-inactivated paternal X-chromosome in early mouse embryos. Nature 426, 857–862.PubMedCrossRefGoogle Scholar
  59. Huynh, K. D., and Lee, J. T. (2005). X-chromosome inactivation: Linking ontogeny and phylogeny. Nat Rev Genet 6, 410–418.PubMedCrossRefGoogle Scholar
  60. Kalantry, S., and Magnuson, T. (2006). The Polycomb group protein EED is dispensable for the initiation of random X-chromosome inactivation. PLoS Genet 2, e66.PubMedCrossRefGoogle Scholar
  61. Kanduri, C., Holmgren, C., Pilartz, M., Franklin, G., Kanduri, M., Liu, L., Ginjala, V., Ulleras, E., Mattsson, R., and Ohlsson, R. (2000a). The 5$^′$ flank of mouse H19 is an unusual chromatin conformation unidirectionally blocks enhancer-promoter communication. Curr Biol 10, {449–457}.CrossRefGoogle Scholar
  62. Kanduri, C., Pant, V., Loukinov, D., Pugacheva, E., Qi, C. F., Wolffe, A., Ohlsson, R., and Lobanenkov, V. V. (2000b). Functional association of CTCF with the insulator upstream of the H19 gene is parent of origin-specific and methylation-sensitive. Curr Biol 10, 853–856.CrossRefGoogle Scholar
  63. Kay, G. F., Penny, G. D., Patel, D., Ashworth, A., Brockdorff, N., and Rastan, S. (1993). Expression of Xist during mouse development suggests a role in the initiation of X chromosome inactivation. Cell 72, 171–182.PubMedCrossRefGoogle Scholar
  64. Keohane, A. M., O’Neill L, P., Belyaev, N. D., Lavender, J. S., and Turner, B. M. (1996). X-Inactivation and histone H4 acetylation in embryonic stem cells. Dev Biol 180, 618–630.PubMedCrossRefGoogle Scholar
  65. Lee, J. T. (2000). Disruption of imprinted X inactivation by parent-of-origin effects at Tsix. Cell 103, 17–27.PubMedCrossRefGoogle Scholar
  66. Lee, J. T. (2002). Homozygous Tsix mutant mice reveal a sex-ratio distortion and revert to random X-inactivation. Nat Genet 32, 195–200.PubMedCrossRefGoogle Scholar
  67. Lee, J. T. (2003). Author reply to “Is Tsix repression of Xist specific to mouse?” Nat Genet 33, 337–338.CrossRefGoogle Scholar
  68. Lee, J. T. (2005). Regulation of X-chromosome counting by Tsix and Xite sequences. Science 309, 768–771.PubMedCrossRefGoogle Scholar
  69. Lee, J. T., Davidow, L. S., and Warshawsky, D. (1999b). Tsix, a gene antisense to Xist at the X-inactivation centre. Nat Genet 21, 400–404.CrossRefGoogle Scholar
  70. Lee, J. T., and Jaenisch, R. (1997). Long-range cis effects of ectopic X-inactivation centres on a mouse autosome. Nature 386, 275–279.PubMedCrossRefGoogle Scholar
  71. Lee, J. T., and Lu, N. (1999). Targeted mutagenesis of Tsix leads to nonrandom X inactivation. Cell 99, 47–57.PubMedCrossRefGoogle Scholar
  72. Lee, J. T., Lu, N., and Han, Y. (1999a). Genetic analysis of the mouse X inactivation center defines an 80-kb multifunction domain. Proc Natl Acad Sci U S A 96, 3836–3841.CrossRefGoogle Scholar
  73. Lee, J. T., Strauss, W. M., Dausman, J. A., and Jaenisch, R. (1996). A 450 kb transgene displays properties of the mammalian X-inactivation center. Cell 86, 83–94.PubMedCrossRefGoogle Scholar
  74. Leeb, M., and Wutz, A. (2007). Ring1B is crucial for the regulation of developmental control genes and PRC1 proteins but not X inactivation in embryonic cells. J Cell Biol 178, 219–229.PubMedCrossRefGoogle Scholar
  75. Lifschytz, E., and Lindsley, D. L. (1972). The role of X-chromosome inactivation during spermatogenesis. Proc Natl Acad Sci U S A 69, 182–186.PubMedCrossRefGoogle Scholar
  76. Lobanenkov, V. V., Nicolas, R. H., Adler, V. V., Paterson, H., Klenova, E. M., Polotskaja, A. V., and Goodwin, G. H. (1990). A novel sequence-specific DNA binding protein which interacts with three regularly spaced direct repeats of the CCCTC-motif in the 5$^′$ flaking sequence of the chicken c-myc gene. Oncogene 5, 1743–1753.PubMedGoogle Scholar
  77. Lucchesi, J. C., Kelly, W. G., and Panning, B. (2005). Chromatin remodeling in dosage compensation. Annu Rev Genet 39, 615–651.PubMedCrossRefGoogle Scholar
  78. Luikenhuis, S., Wutz, A., and Jaenisch, R. (2001). Antisense transcription through the Xist locus mediates Tsix function in embryonic stem cells. Mol Cell Biol 21, 8512–8520.PubMedCrossRefGoogle Scholar
  79. Lyon, M. F. (1961). Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 190, 372–373.Google Scholar
  80. Lyon, M. F. (1999). Imprinting and X chromosome inactivation, In Results and problems in cell differentiation, R. Ohlsson, ed. (Heidelberg: Springer-Verlag), pp. 73–90.Google Scholar
  81. Lyon, M. F. (2000). LINE-1 elements and X chromosome inactivation: a function for “junk” DNA? Proc Natl Acad Sci U S A 97, 6248–6249.PubMedCrossRefGoogle Scholar
  82. Marahrens, Y., Loring, J., and Jaenisch, R. (1998). Role of the Xist gene in X chromosome choosing. Cell 92, 657–664.PubMedCrossRefGoogle Scholar
  83. Marahrens, Y., Panning, B., Dausman, J., Strauss, W., and Jaenisch, R. (1997). Xist-deficient mice are defective in dosage compensation but not spermatogenesis. Genes Dev 11, 156–166.PubMedCrossRefGoogle Scholar
  84. McCarrey, J. D., Watson, C., Atencio, J., Ostermeier, G. C., Marahrens, Y., Jaenisch, R., and Krawetz, S. A. (2002). X-chromosome inactivation during spermatogenesis is regulated by an Xist- Tsix-independent mechanism in the mouse. Genesis 34, 257–266.PubMedCrossRefGoogle Scholar
  85. Mermoud, J. E., Costanzi, C., Pehrson, J. R., and Brockdorff, N. (1999). Histone macroH2A1.2 relocates to the inactive X chromosome after initiation and propagation of X-inactivation. J Cell Biol 147, 1399–1408.PubMedCrossRefGoogle Scholar
  86. Mermoud, J. E., Popova, B., Peters, A. H., Jenuwein, T., and Brockdorff, N. (2002). Histone H3 lysine 9 methylation occurs rapidly at the onset of random X chromosome inactivation. Curr Biol 12, 247–251.PubMedCrossRefGoogle Scholar
  87. Meyer, B. J., McDonel, P., Csankovszki, G., and Ralston, E. (2004). Sex and X-chromosome-wide repression in Caenorhabditis elegans. Cold Spring Harb Symp Quant Biol 69, 71–79.PubMedCrossRefGoogle Scholar
  88. Migeon, B. R. (2003). Is Tsix repression of Xist specific to mouse? Nat Genet 33, 337; author reply 337–338.PubMedCrossRefGoogle Scholar
  89. Migeon, B. R., Beu, S. J. d., and Axelman, J. (1989). Frequent derepression of G6PD and HPRT on the marsupial inactive X chromosome associated with cell proliferation in vitro. Exp Cell Res 182, 597–609.PubMedCrossRefGoogle Scholar
  90. Migeon, B. R., Kazi, E., Haisley-Royster, C., Hu, J., Reeves, R., Call, L., Lawler, A., Moore, C. S., Morrison, H., and Jeppesen, P. (1999). Human X inactivation center induces random X chromsome inactivation in male transgenic mice. Genomics 59, 113–121.PubMedCrossRefGoogle Scholar
  91. Migeon, B. R., Lee, C. H., Chowdhury, A. K., and Carpenter, H. (2002). Species differences in TSIX/ Tsix reveal the roles of these genes in X-chromosome inactivation. Am J Hum Genet 71, 286–293.PubMedCrossRefGoogle Scholar
  92. Monk, M., and Harper, M. I. (1979). Sequential X chromosome inactivation coupled with cellular differentiation in early mouse embryos. Nature 281, 311–313.PubMedCrossRefGoogle Scholar
  93. Morey, C., Arnaud, D., Avner, P., and Clerc, P. (2001). Tsix-mediated repression of Xist accumulation is not sufficient for normal random X inactivation. Hum Mol Genet 10, 1403–1411.PubMedCrossRefGoogle Scholar
  94. Morey, C., Navarro, P., Debrand, E., Avner, P., Rougeulle, C., and Clerc, P. (2004). The region 3’ to Xist mediates X chromosome counting and H3 Lys-4 dimethylation within the Xist gene. EMBO J23, 594–604.PubMedCrossRefGoogle Scholar
  95. Namekawa, S., Park, P. J., Zhang, L. F., Shima, J., McCarrey, J. R., Griswold, M., and Lee, J. T. (2006). Post-meiotic sex chromatin in the male germline of mice. Curr Biol 16,\break 660–667.Google Scholar
  96. Namekawa, S. H., VandeBerg, J. L., McCarrey, J. R., and Lee, J. T. (2007). Sex chromosome silencing in the marsupial male germ line. Proc Natl Acad Sci U S A 104, 9730–9735.PubMedCrossRefGoogle Scholar
  97. Naumova, A. K., Olien, L., Bird, L. M., Simth, M., Verner, A. E., Leppert, M., Morgan, K., and Sapienza, C. (1998). Genetic maping of X-linked loci involved in skewing of X chromosome inactivation in the human. Eur J Hum Genet 6, 552–562.PubMedCrossRefGoogle Scholar
  98. Naumova, A. K., Plenge, R. M., Bird, L. M., Leppert, M., Morgan, K., Willard, H. F., and Sapienza, C. (1996). Heritability of X chromosome-inactivation phenotype in a large family. Am J Hum Genet 58, 1111–1119.PubMedGoogle Scholar
  99. Navarro, P., Page, D. R., Avner, P., and Rougeulle, C. (2006). Tsix-mediated epigenetic switch of a CTCF-flanked region of the Xist promoter determines the Xist transcription program. Genes Dev 20, 2787–2792.PubMedCrossRefGoogle Scholar
  100. Navarro, P., Pichard, S., Ciaudo, C., Avner, P., and Rougeulle, C. (2005). Tsix transcription across the Xist gene alters chromatin conformation without affecting Xist transcription: implications for X-chromosome inactivation. Genes Dev 19, 1474–1484.PubMedCrossRefGoogle Scholar
  101. Norris, D. P., Patel, D., Kay, G. F., Penny, G. D., Brockdorff, N., Sheardown, S. A., and Rastan, S. (1994). Evidence that random and imprinted Xist expression is controlled by preemptive methylation. Cell 77, 41–51.PubMedCrossRefGoogle Scholar
  102. Ogawa, Y., and Lee, J. T. (2003). Xite, X-inactivation intergenic transcription elements that regulate the probability of choice. Mol Cell 11, 731–743.PubMedCrossRefGoogle Scholar
  103. Oh, H., Bai, X., Park, Y., Bone, J. R., and Kuroda, M. I. (2004). Targeting dosage compensation to the X chromosome of Drosophila males. Cold Spring Harb Symp Quant Biol 69, 81–88.PubMedCrossRefGoogle Scholar
  104. Ohhata, T., Hoki, Y., Sasaki, H., and Sado, T. (2006). Tsix-deficient X chromosome does not undergo inactivation in the embryonic lineage in males: implications for Tsix-independent silencing of Xist. Cytogenet Genome Res 113, 345–349.PubMedCrossRefGoogle Scholar
  105. Ohlsson, R., Renkawitz, R., and Lobanenkov, V. V. (2001). CTCF is a uniquely versatile transcription regulator linked to epigenetics and disease. Trends Genet 7, 520–527.CrossRefGoogle Scholar
  106. Okamoto, I., Otte, A. P., Allis, C. D., Reinberg, D., and Heard, E. (2004). Epigenetic dynamics of imprinted X inactivation during early mouse development. Science 303, 633–644.CrossRefGoogle Scholar
  107. Ouyang, Y., Salstrom, J., Diaz-Perez, S., Nahas, S., Matsuno, Y., Dawson, D., Teitell, M. A., Horvath, S., Riggs, A. D., Gatti, R. A., and Marahrens, Y. (2005). Inhibition of Atm and/or Atr disrupts gene silencing on the inactive X chromosome. Biochem Biophys Res Commun 337, 875–880.PubMedGoogle Scholar
  108. Panning, B., and Jaenisch, R. (1996). DNA hypomethylation can activate Xist expression and silence X-linked genes. Genes Dev 10, 1991–2002.PubMedCrossRefGoogle Scholar
  109. Penny, G. D., Kay, G. F., Sheardown, S. A., Rastan, S., and Brockdorff, N. (1996). Requirement for Xist in X chromosome inactivation. Nature 379, 131–137.PubMedCrossRefGoogle Scholar
  110. Peters, A. H. F. M., Mermoud, J. E., O’Carroll, D., Pagani, M., Schweizer, D., Brockdorff, N., and Jenuwein, T. (2002). Histone H3 lysine 9 methylation is an epigenetic imprint of facultative heterochromatin. Nat Genet 30, 77–80.PubMedCrossRefGoogle Scholar
  111. Pheasant, M., and Mattick, J. S. (2007). Raising the estimate of functional human sequences. Genome Res 17, 1245–1253.Google Scholar
  112. Plath, K., Fang, J., Mlynarczyk-Evans, S. K., Cao, R., Worringer, K. A., Wang, H., de la Cruz, C. C., Otte, A. P., Panning, B., and Zhang, Y. (2003). Role of histone H3 lysine 27 methylation in X inactivation. Science 300, 131–135. Epub 2003 Mar 2020.PubMedCrossRefGoogle Scholar
  113. Plath, K., Talbot, D., Hamer, K. M., Otte, A. P., Yang, T. P., Jaenisch, R., and Panning, B. (2004). Developmentally regulated alterations in Polycomb repressive complex 1 proteins on the inactive X chromosome. J Cell Biol 167, 1025–1035. Epub 2004 Dec 1013.PubMedCrossRefGoogle Scholar
  114. Plenge, R. M., Hendrich, B. D., Schwartz, C., Arena, J. F., Naumova, A., Sapienza, C., Winter, R. M., and Willard, H. F. (1997). A promoter mutation in the XIST gene in two unrelated families with skewed X-chromosome inactivation. Nat Genet 17, 353–356.PubMedCrossRefGoogle Scholar
  115. Popova, B. C., Tada, T., Takagi, N., Brockdorff, N., and Nesterova, T. B. (2006). Attenuated spread of X-inactivation in an X;autosome translocation. Proc Natl Acad Sci U S A 103,7706–7711.PubMedCrossRefGoogle Scholar
  116. Prissette, M., El-Maarri, O., Arnaud, D., Walter, J., and Avner, P. (2001). Methylation profiles of DXPas34 during the onset of X-inactivation. Hum Mol Genet 10, 31–38.PubMedCrossRefGoogle Scholar
  117. Pugacheva, E. M., Tiwari, V. K., Abdullaev, Z., Vostrov, A. A., Flanagan, P. T., Quitschke, W. W., Loukinov, D. I., Ohlsson, R., and Lobanenkov, V. V. (2005). Familial cases of point mutations in the XIST promoter reveal a correlation between CTCF binding and pre-emptive choices of X chromosome inactivation. Hum Mol Genet 14, 953–965.PubMedCrossRefGoogle Scholar
  118. Rastan, S., and Brown, S. D. (1990a). The search for the mouse X-chromosome inactivation centre. Genet Res 56, 99–106.Google Scholar
  119. Rastan, S., and Brown, S. D. M. (1990b). The search for the mouse X-chromosome inactivation centre. Genet Res, Camb 56, 99–106.Google Scholar
  120. Sado, T., Fenner, M. H., Tan, S. S., Tam, P., Shioda, T., and Li, E. (2000). X inactivation in the mouse embryo deficient for Dnmt1: distinct effect of hypomethylation on imprinted and random X inactivation. Dev Biol 225, 294–303.PubMedCrossRefGoogle Scholar
  121. Sado, T., Hoki, Y., and Sasaki, H. (2005). Tsix silences Xist through modification of chromatin structure. Dev Cell 9, 159–165.PubMedCrossRefGoogle Scholar
  122. Sado, T., Hoki, Y., and Sasaki, H. (2006). Tsix defective in splicing is competent to establish Xist silencing. Development (Cambridge, UK) 133, 4925–4931.Google Scholar
  123. Sado, T., Okano, M., Li, E., and Sasaki, H. (2004). De novo DNA methylation is dispensable for the initiation and propagation of X chromosome inactivation. Development (Cambridge, UK) 131, 975–982.Google Scholar
  124. Sado, T., Wang, Z., Sasaki, H., and Li, E. (2001). Regulation of imprinted X-chromosome inactivation in mice by Tsix. Development (Cambridge, UK) 128, 1275–1286.Google Scholar
  125. Savarese, F., Flahndorfer, K., Jaenisch, R., Busslinger, M., and Wutz, A. (2006). Hematopoietic precursor cells transiently reestablish permissiveness for X inactivation. Mol Cell Biol 26, 7167–7177.PubMedCrossRefGoogle Scholar
  126. Schoeftner, S., Sengupta, A. K., Kubicek, S., Mechtler, K., Spahn, L., Koseki, H., Jenuwein, T., and Wutz, A. (2006). Recruitment of PRC1 function at the initiation of X inactivation independent of PRC2 and silencing. EMBO J25, 3110–3122.PubMedCrossRefGoogle Scholar
  127. Sharman, G. B. (1971). Late DNA replication in the paternally derived X chromosome of female kangaroos. Nature 230, 231–232.PubMedCrossRefGoogle Scholar
  128. Sharp, A. J., Spotswood, H. T., Robinson, D. O., Turner, B. M., and Jacobs, P. A. (2002). Molecular and cytogenetic analysis of the spreading of X inactivation in X; autosome translocations. Hum Mol Genet 11, 3145–3156.PubMedCrossRefGoogle Scholar
  129. Shevchenko, A. I., Zakharova, I. S., Elisaphenko, E. A., Kolesnikov, N. N., Whitehead, S., Bird, C., Ross, M., Weidman, J. R., Jirtle, R. L., Karamysheva, T. V., et al. (2007). Genes flanking Xist in mouse and human are separated on the X chromosome in American marsupials. Chromosome Res 15, 127–136.PubMedCrossRefGoogle Scholar
  130. Shibata, S., and Lee, J. T. (2003). Characterization and quantitation of differential Tsix transcripts: implications for Tsix function. Hum Mol Genet 12, 125–136.PubMedCrossRefGoogle Scholar
  131. Shibata, S., and Lee, J. T. (2004). Tsix transcription- versus RNA-based mechanisms in Xist repression and epigenetic choice. Curr Biol 14, 1747–1754.PubMedCrossRefGoogle Scholar
  132. Silva, J., Mak, W., Zvetkova, I., Appanah, R., Nesterova, T. B., Webster, Z., Peters, A. H., Jenuwein, T., Otte, A. P., and Brockdorff, N. (2003). Establishment of histone h3 methylation on the inactive X chromosome requires transient recruitment of Eed-Enx1 polycomb group complexes. Dev Cell 4, 481–495.PubMedCrossRefGoogle Scholar
  133. Simmler, M.-C., Cattanach, B. M., Rasberry, C., Rougeulle, C., and Avner, P. (1993). Mapping the murine Xce locus with (CA)n repeats. Mamm Genome 4, 523–530.PubMedCrossRefGoogle Scholar
  134. Stavropoulos, N., Lu, N., and Lee, J. T. (2001). A functional role for Tsix transcription in blocking Xist RNA accumulation but not in X-chromosome choice. Proc Natl Acad Sci USA 98, 10232–10237.PubMedCrossRefGoogle Scholar
  135. Stavropoulos, N., Rowntree, R. K., and Lee, J. T. (2005). Identification of developmentally specific enhancers for Tsix in the regulation of X chromosome inactivation. Mol Cell Biol 25, {2757–2769}.PubMedCrossRefGoogle Scholar
  136. Sun, B. K., Deaton, A. M., and Lee, J. T. (2006). A transient heterochromatic state in Xist preempts X inactivation choice without RNA stabilization. Mol Cell 21, 617–628.PubMedCrossRefGoogle Scholar
  137. Szabo, P., Tang, S. H., Rentsendorj, A., Pfeifer, G. P., and Mann, J. R. (2000). Maternal-specific footprints at putative CTCF sites in the H19 imprinting control region give evidence for insulator function. Curr Biol 10, 607–610.PubMedCrossRefGoogle Scholar
  138. Thorvaldsen, J. L., Fedoriw, A. M., Nguyen, S., and Bartolomei, M. S. (2006). Developmental profile of H19 differentially methylated domain (DMD) deletion alleles reveals multiple roles of the DMD in regulating allelic expression and DNA methylation at the imprinted H19/Igf2 locus. Mol Cell Biol 26, 1245–1258.PubMedCrossRefGoogle Scholar
  139. Turner, J. M., Mahadevaiah, S. K., Ellis, P. J., Mitchell, M. J., and Burgoyne, P. S. (2006). Pachytene asynapsis drives meiotic sex chromosome inactivation and leads to substantial postmeiotic repression in spermatids. Dev Cell 10, 521–529.PubMedCrossRefGoogle Scholar
  140. Vigneau, S., Augui, S., Navarro, P., Avner, P., and Clerc, P. (2006). An essential role for the DXPas34 tandem repeat and Tsix transcription in the counting process of X chromosome inactivation. Proc Natl Acad Sci USA 103, 7390–7395.PubMedCrossRefGoogle Scholar
  141. White, W. M., Willard, H. F., Van Dyke, D. L., and Wolff, D. J. (1998). The spreading of X inactivation into autosomal material of an X;autosome translocation: evidence for a difference between autosomal and X-chromosomal DNA. Am J Hum Genet 63, 20–28.PubMedCrossRefGoogle Scholar
  142. Wutz, A., and Jaenisch, R. (2000). A shift from reversible to irreversible X inactivation is triggered during ES cell differentiation. Mol Cell 5, 695–705.PubMedCrossRefGoogle Scholar
  143. Wutz, A., Rasmussen, T. P., and Jaenisch, R. (2002). Chromosomal silencing and localization are mediated by different domains of Xist RNA. Nat Genet 30, 167–174.PubMedCrossRefGoogle Scholar
  144. Xu, N., Donohoe, M. E., Silva, S. S., and Lee, J. T. (2007). Evidence that homologous X-chromosome pairing requires transcription and Ctcf protein. Nat Genet 39, 1390–1396.PubMedCrossRefGoogle Scholar
  145. Xu, N., Tsai, C. L., and Lee, J. T. (2006). Transient homologous chromosome pairing marks the onset of X inactivation. Science 311, 1149–1152.PubMedCrossRefGoogle Scholar
  146. Zhang, L. F., Huynh, K. D., and Lee, J. T. (2007). Perinucleolar targeting of the inactive X during S phase: evidence for a role in the maintenance of silencing. Cell 129, 693–706.PubMedCrossRefGoogle Scholar
  147. Zuccotti, M., and Monk, M. (1995). Methylation of the mouse Xist gene in sperm and eggs correlates with imprinted Xist expression and paternal X-inactivation. Nat Genet 9, 316–320.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Shinwa Shibata
    • 1
  • Jeannie T. Lee
    • 1
  1. 1.Department of Stem Cell Biology Graduate School of Medical SciencesKanazawa UniversityKanazawaJapan

Personalised recommendations