Advertisement

Epigenomics pp 163-175 | Cite as

Describing Epigenomic Information in Arabidopsis

  • Ian R. Henderson

Abstract

Epigenetic modifications of the DNA and histones serve as heritable marks that can influence gene expression states. Genetic and genomic approaches are being used in the model plant Arabidopsis thaliana to understand how plants use epigenetic information. Tiling microarrays and high throughput sequencing have mapped the distribution of DNA methylation, histone methylation and small RNAs at a genome-wide scale. This has refined our models for genome organization and gene regulation in A.thaliana and revealed a number of unexpected patterns, such as DNA methylation within the body of genes. Integrating these large datasets and understanding the relationships between these marks will be an exciting challenge for the future.

Keywords

Arabidopsis Genomics Epigenetics Chromatin RNAi 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arabidopsis genome initiative (A.G.I.) (2000). “Analysis of the genome sequence of the flowering plant Arabidopsis thaliana.” Nature 408(6814): 796–815.CrossRefGoogle Scholar
  2. Alonso, J. M., A. N. Stepanova, et al. (2003). “Genome-wide insertional mutagenesis of Arabidopsis thaliana.” Science 301(5633): 653–7.PubMedCrossRefGoogle Scholar
  3. Aufsatz, W., M. F. Mette, et al. (2002). “RNA-directed DNA methylation in Arabidopsis.” Proc Natl Acad Sci U S A 99 Suppl 4: 16499–506.PubMedCrossRefGoogle Scholar
  4. Baumberger, N. and D. C. Baulcombe (2005). “Arabidopsis ARGONAUTE1 is an RNA Slicer that selectively recruits microRNAs and short interfering RNAs.” Proc Natl Acad Sci U S A 102(33): 11928–33.PubMedCrossRefGoogle Scholar
  5. Blevins, T., R. Rajeswaran, et al. (2006). “Four plant Dicers mediate viral small RNA biogenesis and DNA virus induced silencing.” Nucleic Acids Res 34(21): 6233–46.PubMedCrossRefGoogle Scholar
  6. Borevitz, J. O., S. P. Hazen, et al. (2007). “Genome-wide patterns of single-feature polymorphism in Arabidopsis thaliana.” Proc Natl Acad Sci U S A 104(29): 12057–62.PubMedCrossRefGoogle Scholar
  7. Bowman, J. L., S. K. Floyd, et al. (2007). “Green genes-comparative genomics of the green branch of life.” Cell 129(2): 229–34.PubMedCrossRefGoogle Scholar
  8. Cao, X. and S. E. Jacobsen (2002a). “Locus-specific control of asymmetric and CpNpG methylation by the DRM and CMT3 methyltransferase genes.” Proc Natl Acad Sci U S A 99 Suppl 4: 16491–8.CrossRefGoogle Scholar
  9. Cao, X. and S. E. Jacobsen (2002b). “Role of the arabidopsis DRM methyltransferases in de novo DNA methylation and gene silencing.” Curr Biol 12(13): 1138–44.CrossRefGoogle Scholar
  10. Chan, S. W., I. R. Henderson, et al. (2005). “Gardening the genome: DNA methylation in Arabidopsis thaliana.” Nat Rev Genet 6(5): 351–60.PubMedCrossRefGoogle Scholar
  11. Chan, S. W., D. Zilberman, et al. (2004). “RNA silencing genes control de novo DNA methylation.” Science 303(5662): 1336.PubMedCrossRefGoogle Scholar
  12. Chandler, V. L. and M. Stam (2004). “Chromatin conversations: mechanisms and implications of paramutation.” Nat Rev Genet 5(7): 532–44.PubMedCrossRefGoogle Scholar
  13. Chen, J. Z., J. Wang, et al. (2004). “The development of an Arabidopsis model system for genome-wide analysis of polyploidy effects.” Biol J Linn Soc Lond 82(4): 689–700.PubMedCrossRefGoogle Scholar
  14. Cheng, X. (1995). “Structure and function of DNA methyltransferases.” Annu Rev Biophys Biomol Struct 24: 293–318.PubMedCrossRefGoogle Scholar
  15. Choi, Y., M. Gehring, et al. (2002). “DEMETER, a DNA glycosylase domain protein, is required for endosperm gene imprinting and seed viability in arabidopsis.” Cell 110(1): 33–42.PubMedCrossRefGoogle Scholar
  16. Clark, R. M., G. Schweikert, et al. (2007). “Common sequence polymorphisms shaping genetic diversity in Arabidopsis thaliana.” Science 317(5836): 338–42.PubMedCrossRefGoogle Scholar
  17. Clough, S. J. (2005). “Floral dip: agrobacterium-mediated germ line transformation.” Methods Mol Biol 286: 91–102.PubMedGoogle Scholar
  18. Cokus, S. J., S. Feng, et al. (2008). “Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning.” Nature 452(7184): 215–9.PubMedCrossRefGoogle Scholar
  19. Comfort, N. C. (2001). “From controlling elements to transposons: Barbara McClintock and the Nobel Prize.” Trends Biochem Sci 26: 454–457.PubMedCrossRefGoogle Scholar
  20. Deleris, A., J. Gallego-Bartolome, et al. (2006). “Hierarchical action and inhibition of plant Dicer-like proteins in antiviral defense.” Science 313(5783): 68–71.PubMedCrossRefGoogle Scholar
  21. Ding, S. W. and O. Voinnet (2007). “Antiviral immunity directed by small RNAs.” Cell 130(3): 413–26.PubMedCrossRefGoogle Scholar
  22. Farazi, T. A., S. A. Juranek, et al. (2008). “The growing catalog of small RNAs and their association with distinct Argonaute/Piwi family members.” Development 135(7): 1201–14.PubMedCrossRefGoogle Scholar
  23. Fischle, W., B. S. Tseng, et al. (2005). “Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation.” Nature 438(7071): 1116–22.PubMedCrossRefGoogle Scholar
  24. Gasciolli, V., A. C. Mallory, et al. (2005). “Partially redundant functions of Arabidopsis DICER-like enzymes and a role for DCL4 in producing trans-acting siRNAs.” Curr Biol 15(16): 1494–500.PubMedCrossRefGoogle Scholar
  25. Gaudin, V., M. Libault, et al. (2001). “Mutations in LIKE HETEROCHROMATIN PROTEIN 1 affect flowering time and plant architecture in Arabidopsis.” Development 128: 4847–4858.PubMedGoogle Scholar
  26. Gehring, M., J. H. Huh, et al. (2006). “DEMETER DNA glycosylase establishes MEDEA polycomb gene self-imprinting by allele-specific demethylation.” Cell 124(3): 495–506.PubMedCrossRefGoogle Scholar
  27. Gong, Z., T. Morales-Ruiz, et al. (2002). “ROS1, a repressor of transcriptional gene silencing in Arabidopsis, encodes a DNA glycosylase/lyase.” Cell 111(6): 803–14.PubMedCrossRefGoogle Scholar
  28. Grewal, S. I. and S. Jia (2007). “Heterochromatin revisited.” Nat Rev Genet 8(1): 35–46.PubMedCrossRefGoogle Scholar
  29. Hamilton, A. J. and D. C. Baulcombe (1999). “A species of small antisense RNA in posttranscriptional gene silencing in plants.” Science 286(5441): 950–2.PubMedCrossRefGoogle Scholar
  30. Henderson, I. R. and S. E. Jacobsen (2008). “Tandem repeats upstream of the Arabidopsis endogene SDC recruit non-CG DNA methylation and initiate siRNA spreading.” Genes Dev 22(12): 1597–606.PubMedCrossRefGoogle Scholar
  31. Henderson, I. R., X. Zhang, et al. (2006). “Dissecting Arabidopsis thaliana DICER function in small RNA processing, gene silencing and DNA methylation patterning.” Nat Genet 38(6): 721–5.PubMedCrossRefGoogle Scholar
  32. Herr, A. J., M. B. Jensen, et al. (2005). “RNA polymerase IV directs silencing of endogenous DNA.” Science 308(5718): 118–20.PubMedCrossRefGoogle Scholar
  33. Jones, L., A. J. Hamilton, et al. (1999). “RNA-DNA interactions and DNA methylation in post-transcriptional gene silencing.” Plant Cell 11(12): 2291–301.PubMedCrossRefGoogle Scholar
  34. Kanno, T., B. Huettel, et al. (2005). “Atypical RNA polymerase subunits required for RNA-directed DNA methylation.” Nat Genet 37(7): 761–5.PubMedCrossRefGoogle Scholar
  35. Kasschau, K. D., N. Fahlgren, et al. (2007). “Genome-wide profiling and analysis of Arabidopsis siRNAs.” PLoS Biol 5(3): e57.PubMedCrossRefGoogle Scholar
  36. Kato, M., A. Miura, et al. (2003). “Role of CG and non-CG methylation in immobilization of transposons in Arabidopsis.” Curr Biol 13(5): 421–6.PubMedCrossRefGoogle Scholar
  37. Kohler, C. and C. B. Villar (2008). “Programming of gene expression by Polycomb group proteins.” Trends Cell Biol 18(5): 236–43.PubMedCrossRefGoogle Scholar
  38. Kurihara, Y. and Y. Watanabe (2004). “Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions.” Proc Natl Acad Sci U S A 101(34): 12753–8.PubMedCrossRefGoogle Scholar
  39. Lam, S. Y., S. R. Horn, et al. (2005). “Crossover interference on nucleolus organizing region-bearing chromosomes in Arabidopsis.” Genetics 170(2): 807–12.PubMedCrossRefGoogle Scholar
  40. Libault, M., F. Tessadori, et al. (2005). “The Arabidopsis LHP1 protein is a component of euchromatin.” Planta 222(5): 910–25.PubMedCrossRefGoogle Scholar
  41. Lippman, Z., A. V. Gendrel, et al. (2004). “Role of transposable elements in heterochromatin and epigenetic control.” Nature 430(6998): 471–6.PubMedCrossRefGoogle Scholar
  42. Lister, R., R. C. O’Malley, et al. (2008). “Highly integrated single-base resolution maps of the epigenome in Arabidopsis.” Cell 133(3): 523–36.PubMedCrossRefGoogle Scholar
  43. Lu, C., K. Kulkarni, et al. (2006). “MicroRNAs and other small RNAs enriched in the Arabidopsis RNA-dependent RNA polymerase-2 mutant.” Genome Res 16(10): 1276–88.PubMedCrossRefGoogle Scholar
  44. Lu, C., S. S. Tej, et al. (2005). “Elucidation of the small RNA component of the transcriptome.” Science 309(5740): 1567–9.PubMedCrossRefGoogle Scholar
  45. Madlung, A., A. P. Tyagi, et al. (2005). “Genomic changes in synthetic Arabidopsis polyploids.” Plant J 41(2): 221–30.PubMedCrossRefGoogle Scholar
  46. Matzke, M. A. and J. A. Birchler (2005). “RNAi-mediated pathways in the nucleus.” Nat Rev Genet 6(1): 24–35.PubMedCrossRefGoogle Scholar
  47. Mendenhall, E. M. and B. E. Bernstein (2008). “Chromatin state maps: new technologies, new insights.” Curr Opin Genet Dev 18(2): 109–15.PubMedCrossRefGoogle Scholar
  48. Mi, S., T. Cai, et al. (2008). “Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5’ terminal nucleotide.” Cell 133(1): 116–27.PubMedGoogle Scholar
  49. Miura, A., S. Yonebayashi, et al. (2001). “Mobilization of transposons by a mutation abolishing full DNA methylation in Arabidopsis.” Nature 411(6834): 212–4.PubMedCrossRefGoogle Scholar
  50. Montgomery, T. A., M. D. Howell, et al. (2008). “Specificity of ARGONAUTE7-miR390 interaction and dual functionality in TAS3 trans-acting siRNA formation.” Cell 133(1): 128–41.PubMedCrossRefGoogle Scholar
  51. Morales-Ruiz, T., A. P. Ortega-Galisteo, et al. (2006). “DEMETER and REPRESSOR OF SILENCING 1 encode 5-methylcytosine DNA glycosylases.” Proc Natl Acad Sci U S A 103(18): 6853–8.PubMedCrossRefGoogle Scholar
  52. Mosher, R. A., F. Schwach, et al. (2008). “PolIVb influences RNA-directed DNA methylation independently of its role in siRNA biogenesis.” Proc Natl Acad Sci U S A 105(8): 3145–50.PubMedCrossRefGoogle Scholar
  53. Mylne, J. S., L. Barrett, et al. (2006). “LHP1, the Arabidopsis homologue of HETEROCHROMATIN PROTEIN1, is required for epigenetic silencing of FLC.” Proc Natl Acad Sci U S A 103(13): 5012–7.PubMedCrossRefGoogle Scholar
  54. Nakahigashi, K., Z. Jasencakova, et al. (2005). “The Arabidopsis heterochromatin protein1 homolog (TERMINAL FLOWER2) silences genes within the euchromatic region but not genes positioned in heterochromatin.” Plant Cell Physiol 46(11): 1747–56.PubMedCrossRefGoogle Scholar
  55. Onodera, Y., J. R. Haag, et al. (2005). “Plant nuclear RNA polymerase IV mediates siRNA and DNA methylation-dependent heterochromatin formation.” Cell 120(5): 613–22.PubMedCrossRefGoogle Scholar
  56. Otto, S. P. (2007). “The evolutionary consequences of polyploidy.” Cell 131(3): 452–62.PubMedCrossRefGoogle Scholar
  57. Pontes, O., N. Neves, et al. (2004). “Chromosomal locus rearrangements are a rapid response to formation of the allotetraploid Arabidopsis suecica genome.” Proc Natl Acad Sci U S A 101(52): 18240–5.PubMedCrossRefGoogle Scholar
  58. Pontier, D., G. Yahubyan, et al. (2005). “Reinforcement of silencing at transposons and highly repeated sequences requires the concerted action of two distinct RNA polymerases IV in Arabidopsis.” Genes Dev 19(17): 2030–40.PubMedCrossRefGoogle Scholar
  59. Qi, Y., X. He, et al. (2006). “Distinct catalytic and non-catalytic roles of ARGONAUTE4 in RNA-directed DNA methylation.” Nature 443(7114): 1008–12.PubMedCrossRefGoogle Scholar
  60. Rajagopalan, R., H. Vaucheret, et al. (2006). “A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana.” Genes Dev 20(24): 3407–25.PubMedCrossRefGoogle Scholar
  61. Rangwala, S. H., R. Elumalai, et al. (2006). “Meiotically stable natural epialleles of Sadhu, a novel Arabidopsis retroposon.” PLoS Genet 2(3): e36.PubMedCrossRefGoogle Scholar
  62. Ruvkun, G. (2008). “Tiny RNA: Where do we come from? What are we? Where are we going?” Trends Plant Sci 13(7): 313–6.PubMedCrossRefGoogle Scholar
  63. Saze, H. and T. Kakutani (2007). “Heritable epigenetic mutation of a transposon-flanked Arabidopsis gene due to lack of the chromatin-remodeling factor DDM1.” Embo J 26(15): 3641–52.PubMedCrossRefGoogle Scholar
  64. Saze, H., O. Mittelsten Scheid, et al. (2003). “Maintenance of CpG methylation is essential for epigenetic inheritance during plant gametogenesis.” Nat Genet 34(1): 65–9.PubMedCrossRefGoogle Scholar
  65. Saze, H., A. Shiraishi, et al. (2008). “Control of genic DNA methylation by a jmjC domain-containing protein in Arabidopsis thaliana.” Science 319(5862): 462–5.PubMedCrossRefGoogle Scholar
  66. Schranz, M. E., M. A. Lysak, et al. (2006). “The ABC’s of comparative genomics in the Brassicaceae: building blocks of crucifer genomes.” Trends Plant Sci 11(11): 535–42.PubMedCrossRefGoogle Scholar
  67. Schwartz, Y. B. and V. Pirrotta (2008). “Polycomb complexes and epigenetic states.” Curr Opin Cell Biol 20(3): 266–73.PubMedCrossRefGoogle Scholar
  68. Scott, R. J., M. Spielman, et al. (1998). “Parent-of-origin effects on seed development in Arabidopsis thaliana.” Development 125(17): 3329–41.PubMedGoogle Scholar
  69. Shindo, C., C. Lister, et al. (2006). “Variation in the epigenetic silencing of FLC contributes to natural variation in Arabidopsis vernalization response.” Genes Dev 20(22): 3079–83.PubMedCrossRefGoogle Scholar
  70. Singer, T., C. Yordan, et al. (2001). “Robertson’s Mutator transposons in A. thaliana are regulated by the chromatin-remodeling gene Decrease in DNA Methylation (DDM1).” Genes Dev 15(5): 591–602.PubMedCrossRefGoogle Scholar
  71. Soppe, W. J., S. E. Jacobsen, et al. (2000). “The late flowering phenotype of fwa mutants is caused by gain-of-function epigenetic alleles of a homeodomain gene.” Mol Cell 6(4): 791–802.PubMedCrossRefGoogle Scholar
  72. Somerville, C.R. and Meyerowitz, E.E. eds. (2002). The Arabidopsis Book. Rockville, MD, American Society of Plant Biologists.Google Scholar
  73. Sung, S., Y. He, et al. (2006). “Epigenetic maintenance of the vernalized state in Arabidopsis thaliana requires LIKE HETEROCHROMATIN PROTEIN 1.” Nat Genet 38(6): 706–10.PubMedCrossRefGoogle Scholar
  74. Suzuki, M. M. and A. Bird (2008). “DNA methylation landscapes: provocative insights from epigenomics.” Nat Rev Genet 9(6): 465–76.PubMedCrossRefGoogle Scholar
  75. Tompa, R., C. M. McCallum, et al. (2002). “Genome-wide profiling of DNA methylation reveals transposon targets of CHROMOMETHYLASE3.” Curr. Biol. 12: 65–68.PubMedCrossRefGoogle Scholar
  76. Tran, R. K., J. G. Henikoff, et al. (2005). “DNA methylation profiling identifies CG methylation clusters in Arabidopsis genes.” Curr Biol 15(2): 154–9.PubMedCrossRefGoogle Scholar
  77. Turck, F., F. Roudier, et al. (2007). “Arabidopsis TFL2/LHP1 specifically associates with genes marked by trimethylation of histone H3 lysine 27.” PLoS Genet 3(6): e86.PubMedCrossRefGoogle Scholar
  78. van Steensel, B., J. Delrow, et al. (2001). “Chromatin profiling using targeted DNA adenine methyltransferase.” Nat Genet 27(3): 304–8.PubMedCrossRefGoogle Scholar
  79. Vaucheret, H., F. Vazquez, et al. (2004). “The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development.” Genes Dev 18(10): 1187–97.PubMedCrossRefGoogle Scholar
  80. Vaughn, M. W., M. Tanurd Ic, et al. (2007). “Epigenetic Natural Variation in Arabidopsis thaliana.” PLoS Biol 5(7): e174.PubMedCrossRefGoogle Scholar
  81. Wang, J., L. Tian, et al. (2006). “Genomewide nonadditive gene regulation in Arabidopsis allotetraploids.” Genetics 172(1): 507–17.PubMedCrossRefGoogle Scholar
  82. Wang, J., L. Tian, et al. (2004). “Stochastic and epigenetic changes of gene expression in Arabidopsis polyploids.” Genetics 167(4): 1961–73.PubMedCrossRefGoogle Scholar
  83. Wassenegger, M., S. Heimes, et al. (1994). “RNA-directed de novo methylation of genomic sequences in plants.” Cell 76(3): 567–76.PubMedCrossRefGoogle Scholar
  84. Xie, Z., E. Allen, et al. (2005). “DICER-LIKE 4 functions in trans-acting small interfering RNA biogenesis and vegetative phase change in Arabidopsis thaliana.” Proc Natl Acad Sci U S A 102(36): 12984–9.PubMedCrossRefGoogle Scholar
  85. Xie, Z., L. K. Johansen, et al. (2004). “Genetic and functional diversification of small RNA pathways in plants.” PLoS Biol 2(5): E104.PubMedCrossRefGoogle Scholar
  86. Xu, J., H. Hofhuis, et al. (2006). “A molecular framework for plant regeneration.” Science 311(5759): 385–8.PubMedCrossRefGoogle Scholar
  87. Zhai, J., J. Liu, et al. (2008). “Small RNA-directed epigenetic natural variation in Arabidopsis thaliana.” PLoS Genet 4(4): e1000056.PubMedCrossRefGoogle Scholar
  88. Zhang, X., O. Clarenz, et al. (2007a). “Whole-genome analysis of histone H3 lysine 27 trimethylation in Arabidopsis.” PLoS Biol 5(5): e129.CrossRefGoogle Scholar
  89. Zhang, X., S. Germann, et al. (2007b). “The Arabidopsis LHP1 protein colocalizes with histone H3 Lys27 trimethylation.” Nat Struct Mol Biol 14(9): 869–71.CrossRefGoogle Scholar
  90. Zhang, X., I. R. Henderson, et al. (2007c). “Role of RNA polymerase IV in plant small RNA metabolism.” Proc Natl Acad Sci U S A 104(11): 4536–41.CrossRefGoogle Scholar
  91. Zhang, X. and S. E. Jacobsen (2006). “Genetic analyses of DNA methyltransferases in Arabidopsis thaliana.” Cold Spring Harb Symp Quant Biol 71: 439–47.PubMedCrossRefGoogle Scholar
  92. Zhang, X., S. Shiu, et al. (2008). “Global analysis of genetic, epigenetic and transcriptional polymorphisms in Arabidopsis thaliana using whole genome tiling arrays.” PLoS Genet 4(3): e1000032.PubMedCrossRefGoogle Scholar
  93. Zhang, X., J. Yazaki, et al. (2006). “Genome-wide high-resolution mapping and functional analysis of DNA methylation in arabidopsis.” Cell 126(6): 1189–201.PubMedCrossRefGoogle Scholar
  94. Zilberman, D., X. Cao, et al. (2003). “ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation.” Science 299(5607): 716–9.PubMedCrossRefGoogle Scholar
  95. Zilberman, D., X. Cao, et al. (2004). “Role of Arabidopsis ARGONAUTE4 in RNA-directed DNA methylation triggered by inverted repeats.” Curr Biol 14(13): 1214–20.PubMedCrossRefGoogle Scholar
  96. Zilberman, D., M. Gehring, et al. (2007). “Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription.” Nat Genet 39(1): 61–9.PubMedCrossRefGoogle Scholar
  97. Zilberman, D. and S. Henikoff (2007). “Genome-wide analysis of DNA methylation patterns.” Development 134(22): 3959–65.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Ian R. Henderson
    • 1
  1. 1.Department of Plant SciencesUniversity of CambridgeUK

Personalised recommendations