Integrated Assessment

  • Jean-Paul Hettelingh
  • Bert J. M. de Vries
  • Leen Hordijk

The development of environmental policy with respect to the current and future quality of air, water and soil cannot be considered in isolation. Alleviation of one environmental problem may lead to an increase in the importance of another problem. For example, the reduction of nitrogen oxide emissions may decrease the risk of acidifi cation but can, under particular circumstances, lead to an increase in the formation of tropospheric ozone. Climate change may lead to changes in land cover that may affect biodiversity. Another example often mentioned is the relationship between sulphur dioxide emissions in which the risk of acidifi cation is increased, while the enhanced greenhouse effect is, through the formation of sulphate aerosols, decreased. This is why relationships between environmental problems need to be recognised by policies aimed at reducing these problems. This also holds true for policies affecting socio-economic activities, since these can generate externalities in the environment. For example, both the fi fth and the sixth Environmental Action Programmes of the European Commission identify fi ve target sectors (industry, energy, transport, agriculture and forestry, and tourism), all having an important — but different —l impact on the environment.

Environmental science — applied to support policy development — addresses different target sectors and a variety of environmental issues in facing the challenge of meeting both disciplinary and inter-disciplinary scientifi c requirements for formulating adequate hypotheses for verifi cation and validation. Confl icts that may arise between the theories developed to understand environmental problems and their linkages, and the knowledge based on data, calls for a multi-disciplinary approach to relationships between environmental issues and socio-economic developments. This in turn puts high demands — possibly with signifi cant variations — on data requirements. Scientifi c experiments to test hypotheses on climate change, for example, are not easy, considering the wide range of spatial and temporal scales involved. The availability of data is limited. This applies both to the impact of climate change, of which the risks can be simulated to occur over several decades, and the socio-economic causes, which may change dramatically during that time. Spatial and temporal scales of environmental problems will vary, depending on regional, national, continental or global characteristics. National environmental policy may be adequate to deal with environmental issues related to such factors as waste water, whereas formulating policies to infl uence transboundary environmental problems — such as air pollution — requires synchronization of national policies.


Climate Change Emission Reduction Critical Load Integrate Assessment United Nations Environment Program 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, J. (1995). Risk. London: UCL Press.Google Scholar
  2. Alcamo, J. M. (Ed.). (1994). IMAGE 2.0 Integrated Modeling of Global Climate Change. Dordrecht: Kluwer.Google Scholar
  3. Alcamo, J. M., Shaw, R. M.,&Hordijk, L. (Eds.). (1990). The RAINS Model of Acidifi cation. Dordrecht: Kluwer.Google Scholar
  4. Alcamo, J. M., Bouwman, A., Edmonds, J., Grübler, A., Morita, T.,&Sugandhy, A. (1995). An evaluation of the IPCC IS92 emission scenarios (Ch. 6). In J. T. Houghton et al. (Eds.), Climate change 1994 (p. 338). Cambridge: Cambridge University Press.Google Scholar
  5. Alcamo, J. M., Leemans, R.,&Kreileman, E. (1998). Global change scenarios of the 21st century — Results from the IMAGE 2.1 model. London: Elsevier.Google Scholar
  6. Alcamo, J. M., Mayerhofer, P., Guardans, R., van Harmelen, T., Onigkeit, J., Posch, M., et al. (2002). An integrated assessment of regional air pollution and climate change in Europe: Findings of the AIR-CLIM project. Environmental Science and Policy, 5(4), 257–272.CrossRefGoogle Scholar
  7. Amann, M. (2003). Linkages and synergies of regional and global emission control. Workshop of the Task Force on Integrated Assessment Modelling (TFIAM) of the UNECE-CLRTAP, 27–29 January 2003. Laxenburg: International Institute for Applied Systems Analysis.Google Scholar
  8. Amann, M., Hordijk, L., Klaassen, G., Schoepp, W.,&Sorensen, L. (1992). Economic restructuring in Eastern Europe and acid rain abatement strategies. Energy Policy, 12, 1186–1197.CrossRefGoogle Scholar
  9. Amann, M., Johansson, M., Lükewille, A., Schöpp, W., Apsimon, H., Warren, R., et al. (2001). An integrated assessment model for fi ne particulate matter in Europe. Water, Air and Soil Pollution, 130, 223–228.CrossRefGoogle Scholar
  10. ApSimon, H. M., Warren, R. F.,&Wilson, J. J. N. (1994). The abatement strategies assessment model – ASAM: Applications to reduction of sulphur dioxide emissions across Europe. Atmospheric Environment, 28, 649–663.CrossRefGoogle Scholar
  11. Barney, G. O. (1981). The global 2000 report to the president. Entering the twenty-fi rst century (Vols. 1 and 2). Charlottesville, VA: Blue Angel.Google Scholar
  12. Berk, M., van Minnen, J., Metz, B.,&Moomaw, W. (2001). Climate OptiOns for the Long term (COOL) — Final report: Global dialogue. Bilthoven: RIVM.Google Scholar
  13. Bossel, H. (1998). Earth at a crossroads — Paths to a sustainable future. Cambridge: Cambridge University Press.Google Scholar
  14. Braat, L. C.,&van Lierop, W. F. G. (1987). Integrated economic-ecological modeling. In L. C. Braat&W. F. J. van Lierop (Eds.), Economic-ecological modeling, studies in regional science and urban economics (Vol. 16, pp. 49–68). Amsterdam/New York: North-Holland.Google Scholar
  15. Brouwer, F. M. (1987). Integrated environmental modelling: Design and tools. Dordrecht/Boston: Kluwer.Google Scholar
  16. Clark, W. C.,&Munn, R. E. (Eds.). (1986). Sustainable development of the biosphere. Cambridge: Cambridge University Press.Google Scholar
  17. CPB. (1999). WorldScan, the core version. The Hague: CPB.Google Scholar
  18. Cough, C. A., Bailey, P. D., Biewald, B., Kuylenstierna, J. C. I.,&Chadwick, M. J. (1994). Environmentally targeted objectives for reducing acidifi cation in Europe. Energy Policy, 22, 1055–1066.CrossRefGoogle Scholar
  19. de Bruin, J., Vink, P.,&van Wijk, J. (1996). M — A visual simulation tool. San Diego: The society for computer simulation Simulation in the Medical Sciences, 181–186.Google Scholar
  20. de Vries, H. J. M. (2001a). Perceptions and risks in the search for a sustainable world — A model-based approach. International Journal of Sustainable Development, 4(4), 434–453.CrossRefGoogle Scholar
  21. de Vries, H. J. M. (2001b). Objective science? The case of climate change models. In P. Goujon&B. Heriard Dubreuil Bertrand (Eds.), Technology and ethics, a European quest for responsible engineering. Leuven: Peeters.Google Scholar
  22. de Vries, H. J. M., Bollen, J., Bouwman, L., den Elzen, M., Janssen, M.,&Kreileman, E. (2000). Greenhouse-gas emissions in an equity-, environment- and service-oriented world: An IMAGE-based scenario for the next century. Technological Forecasting and Social Change, 63(2–3), 137–174.CrossRefGoogle Scholar
  23. de Vries, H. J. M., van Vuuren D. P., den Elzen M. G. J.,&Janssen, M. A. (2001). The Targets Image Energy Regional (TIMER) model — Technical documentation. Bilthoven: RIVM. (Report 461502024)Google Scholar
  24. den Elzen, M., Beusen, A. H. W.,&Rotmans, J. (1997). An integrated modeling approach to global carbon and nitrogen cycles: Balancing their budgets. Global Biogeochemical Cycles, 11(2), 191–215.CrossRefGoogle Scholar
  25. EC. (1990). Energy for a new century — The European perspective. Brussels: Report DGE.Google Scholar
  26. EC. (1996). European energy to 2020 — A scenario approach. Energy in Europe (Spring-Special Issue). Brussels: DG XVII.Google Scholar
  27. EC. (1999). European Union Energy Outlook to 2020. Energy in Europe (Special issue, November). Brussels: DG XVII.Google Scholar
  28. EEA. (1995). A general strategy for integrated environmental assessment at the European Environmental Agency. Scoping study prepared by the National Institute for Public Health and the Environment (RIVM), Bilthoven and the European Environmental Agency, Copenhagen.Google Scholar
  29. EEA. (1999). Environment in the European Union at the turn of the century. Copenhagen: EEA. (Environmental Assessment Report No. 2)Google Scholar
  30. EMEP. (1998). Transboundary acidifying air pollution in Europe, Parts 1 and 2. Oslo: Norwegian Meteorological Institute. (EMEP/MSC-W Status Report 1/98)Google Scholar
  31. Forrester, J. W. (1961). Industrial dynamics. Cambridge, MA: MIT Press.Google Scholar
  32. Forrester, J. W. (1971). World dynamics. Cambridge, MA: Wright-Allen Press.Google Scholar
  33. Forrester, J. W. (1980). System dynamics — future opportunities. In A. A. Legastro Jr., J. W. Forrester,&J. M. Lyneis (Eds.), System dynamics, studies in the management science (Vol. 14). Amsterdam/New York: North-Holland.Google Scholar
  34. Funtowicz, S. O.,&Ravetz, J. R. (1990). Uncertainty and quality in science for policy. Dordrecht: Kluwer.Google Scholar
  35. Gallopin, G., Hammond, A., Raskin, P.,&Swart, R. (1997). Branch points: Toward global scenarios and human choice. Stockholm: Stockholm Environment Institute (SEI). PoleStar Series Report No. 7.Google Scholar
  36. GEA. (2001). Global environmental assessment project. Cambridge, MA: Kennedy School of Government/Harvard University Press. Scholar
  37. Hafkamp, W. A. (1984). Economic-environmental modelling in a national-regional system. Amsterdam: North-Holland.Google Scholar
  38. Hettelingh, J.-P. (1990). Uncertainty in modelling regional environmental systems: The generalization of a watershed acidi-fi cation model for predicting broad scale effects. Laxenburg: International Institute for Applied Systems Analysis. (Research Report RR-90-3)Google Scholar
  39. Hettelingh, J.-P., Posch, M.,&de Smet, P. A. M. (2001). Multi-effects of critical loads used in multi-pollutant reduction agreements in Europe. Water, Air and Soil Pollution, 130, 1133–1138.CrossRefGoogle Scholar
  40. Hettelingh, J-P., Posch, M., Slootweg, J., Reinds, G. J., Spranger, T.,&Tarrason, L. (2007a). Critical loads and dynamic modelling to assess European areas at risk of acidifi cation and eutrophication. Water, Air and Soil Pollution: Focus, 7, 379–384.CrossRefGoogle Scholar
  41. Hettelingh, J.-P., Posch, M., Slootweg, J.,&van 't Zelfde, M. (2007b). Status of European critical loads with focus on nitrogen. In J. Slootweg, M. Posch,&J.-P. Hettelingh (Eds.), Critical loads of nitrogen and dynamic modelling. Coordination Centre of Effects Progress Report 2007, MNP Report 500090001/2007 (available from
  42. Hilderink, H. (2000). World population in transition — An integrated regional modelling framework. Faculteit der Ruimtelijke Wetenschappen. Groningen: Groningen University.Google Scholar
  43. Hisschemöller, M., Tol, R. S. J.,&Vellinga, P. (2001). The relevance of participatory approaches in integrated environmental assessment. Integrated Assessment, 2, 57–72.CrossRefGoogle Scholar
  44. Hoekstra, A. Y. (1998). Perspectives on water — An integrated model-based exploration of the future. Delft: Technological University.Google Scholar
  45. Holling, C. S. (Ed.). (1978). Adaptive environmental assessment and management. New York/London: Wiley.Google Scholar
  46. Hordijk, L. (1995). Integrated assessment models as a basis for air pollution negotiations. Water Air and Soil Pollution, 85, 249–260.CrossRefGoogle Scholar
  47. Hordijk, L.,&Kroeze, C. (1997). Integrated assessment models for acid rain. European Journal of Operational Research, 102, 405–417CrossRefGoogle Scholar
  48. Huntingdon, S. (1997). The clash of civilizations and the remaking of the world order. New York: Simon&Schuster.Google Scholar
  49. IEA (1996). World Energy Outlook. Paris: International Energy Agency.Google Scholar
  50. IMAGE-team. (2001). The IMAGE 2.2 implementation of the SRES scenarios: A comprehensive analysis of emissions, climate change and impacts in the 21st century. RIVM CD-ROM Publication 481508018.Google Scholar
  51. IPCC. (1991). Climate change: The IPCC response strategies. Intergovernmental Panel on Climate Change (IPCC)/UNEP/ WMO.Google Scholar
  52. IPCC. (2001a). Climate change 2001 — The scientifi c basis. Summary for Policy Makers and Technical Summary of the Working Group I Report, UNEP/WMO.Google Scholar
  53. IPCC. (2001b). Climate change 2001 — Impacts, adaptation, and vulnerability. Summary for Policy Makers and Technical Summary of the Working Group II Report, UNEP-WMO.Google Scholar
  54. IPCC. (2001c). Climate Change 2001 — Mitigation. Summary for Policy Makers and Technical Summary of the Working Group III Report. UNEP/WMO.Google Scholar
  55. Jäger, J. (1998). Current thinking on using scientifi c fi ndings in environmental policy making. Environmental Modelling and Assessment, 3(3), 143–153.CrossRefGoogle Scholar
  56. Janssen, M.,&de Vries, B. (1998). The battle of perspectives: A multi-agent model with adaptive responses to climate change. Ecological Economics, 26, 43–65.CrossRefGoogle Scholar
  57. Johansson, T., Kelly, H., Reddy, A.,&Williams, R. (Eds.). (1993). Renewable energy. Washington, DC: Island Press.Google Scholar
  58. Kaplan, R. (1996). The ends of the earth. New York: Random House.Google Scholar
  59. Kassler, P. (1994). Energy for development. London/The Hague: Shell International Petroleum Company.Google Scholar
  60. Klaassen, G.,&Sliggers, J. (1993). Cost sharing for the abatement of acidifi cation in Europe: the missing link in the sulphur protocol. Working Paper, Task Force on Integrated Assessment Modelling.Google Scholar
  61. Kram, T., Morita, T., Riahi, K., Roehrl, R. A., van Rooien, S., Sankowski, A., et al. (2000). Global and regional greenhouse gas emissions scenarios. Technological Forecasting and Social Change, 63(2–3), 335–372.CrossRefGoogle Scholar
  62. Leggett, J., Pepper, W.,&Swart, R. (1992). Emissions scenarios for the IPCC: An update. In J. T. Houghton, B. A. Callander,&S. K. Varney (Eds.), Climate change. Cambridge: Cambridge University Press.Google Scholar
  63. Meadows, D. H., Meadows, D. L., Randers, J.,&Behrens, W. W. (1972). The limits to growth: A report for the club of Rome's project on the predicament of mankind. New York: Universe Books.Google Scholar
  64. Meadows, D. H., Behrens, W., Meadows, D. L., Naill, R., Randers, J.,&Zahn, E. (1974). Dynamics of growth in a fi nite world. Cambridge, MA: Wright-Allen Press.Google Scholar
  65. Meadows, D. H., Meadows, D. L.,&Randers, J. (1991). Beyond the limits. Global collapse or a sustainable future. London: Earthscan.Google Scholar
  66. Morita, T., Kaihuma, Y., Harasaw, H., Kai, K., Dong-Kumand, L.,&Matsuoka, Y. (1994).Asian-Pacifi c integrated model for evaluating policy options to reduce GHG emissions and global warming impact. Report of the National Institute for Environmental Studies, Tsukuba, Japan.Google Scholar
  67. Morita, T., Nakícenovíc, N.&Robinson, J. (2000). Long-term scenarios on socio-economic development and climatic policies [Special issue]. Environmental Economics and Policy Studies, 3(2,), 65–299.Google Scholar
  68. Nakícenovíc, N. (1995). Global energy perspectives to 2050 and beyond. Laxenburg: IIASA/WEC.Google Scholar
  69. Nakícenovíc, N., et al. (2000). Special report on emissions scenarios (SRES) for the intergovernmental panel on climate change (IPCC). Cambridge: Cambridge University Press.Google Scholar
  70. NAPAP. (1990). 1990 Integrated Assessment Report (p. 520). Washington, DC: The NAPAP Offi ce of the Director.Google Scholar
  71. Niessen, L. (2002). Roads to health — Multi-state modelling of population health and resource use. Groningen: Groningen University.Google Scholar
  72. Nilsson, J.,&Grennfelt, P. (Eds.). (1988). Critical loads for sulphur and nitrogen. Copenhagen: Nordic Council of Ministers.Google Scholar
  73. OECD. (1979). Interfutures — Facing the future: Mastering the probable and managing the unpredictable. Paris: OECD.Google Scholar
  74. OECD. (1997). Towards a new global age — Challenges and opportunities (Policy report). Paris: OECD.Google Scholar
  75. Oreskes, N., Shrader-Frechette, K.,&Belitz, K. (1994). Verifi cation, validation and confi rmation of numerical models in the earth sciences. Science, 263, 641–646.CrossRefGoogle Scholar
  76. O'Riordan, T.,&Jager, J. (Eds.). (1996). Politics of climate change — A European perspective. London/New York: Global Environmental Change Series/Routledge.Google Scholar
  77. Parson, E. A. (1995). Integrated assessment and environmental policymaking. Energy Policy, 23(4/5), 463–475.CrossRefGoogle Scholar
  78. Posch, M., Hettelingh, J.-P.,&de Smet, P. A. M. (2001). Characterization of critical load exceedances in Europe. Water Air Soil Pollution, 130, 1138–1139.CrossRefGoogle Scholar
  79. Posch, M., Hettelingh, J.-P., Slootweg, J.,&Downing, R. J. (2003). Modelling and mapping of critical thresholds in Europe. Bilthoven: RIVM. (CCE Status Report 2003)Google Scholar
  80. Raskin, P., Banuri, T., Gallopin, G., Gutman, P., Hammond, A., Kates. R., et al. (2002). Great transition — The promise and lure of the times ahead. Boston: Stockholm Environment Institute (SEI).Google Scholar
  81. Rotmans, J. (1990). IMAGE: An integrated model to assess the greenhouse effect. Dordrecht/Boston: Kluwer.Google Scholar
  82. Rotmans, J. (1998). Methods for IA: The challenges and opportunities ahead. Environmental Modelling and Assessment, 3(3), 155–179.CrossRefGoogle Scholar
  83. Rotmans, J.,&de Vries, H. J. M. (Eds.). (1997). Perspectives on global futures: The TARGETS approach. Cambridge: Cambridge University Press.Google Scholar
  84. Rotmans, J., Dowlatabadi, H., Filar, J. A.,&Parson, E. A. (1996). Integrated assessment of climate change: Evaluation of methods and strategies. In S. Rayner&E. L. Malone (eds.), Human choices and climate change: A state of the art report. Washington, DC: Batelle Pacifi c Northwest Laboratories.Google Scholar
  85. Schmidheiny, S. (1992). Changing course — A global business perspective on development and the environment. Cambridge, MA: MIT Press.Google Scholar
  86. Schöpp, W., Amann, M., Cofala, J., Heyes, C.,&Klimont, Z. (1999). Environmental Modelling and Software, 14(1), 1–9.CrossRefGoogle Scholar
  87. Schwarz, M.,&Thompson, M. (1990). Divided we stand — Redefi ning politics, technology and social choice. New York: Harvester Wheatsheaf.Google Scholar
  88. Shell International. (2000). Global energy scenarios. London: Global Business Environment.Google Scholar
  89. Shell International. (2002). People and connections — Global scenarios to 2020: Public summary. London: Global Business Environment.Google Scholar
  90. Stoddard, J. L., Jeffries, D. S., Lükewille, A., Clair, T. A., Dillon, P. J., Driscoll, C. T., et al. (1999). Regional trends in aquatic recovery from acidifi cation in North America and Europe 1980–95. Nature, 401, 575–578.CrossRefGoogle Scholar
  91. Swart, R., Berk, M., Janssen, M., Kreileman, E.,&Leemans, R. (1998). The safe landing approach: Risks and trade-offs in climate change. In J. M. Alcamo, R. Leemans,&E. Kreileman (Eds.), Global change scenarios of the 21st century — Results from the IMAGE 2.1 model (pp. 193–244). London: Elsevier.Google Scholar
  92. Thompson, M., Ellis, R.,&Wildawsky, A. (1990). Cultural theory. Boulder, CO: Westview Press.Google Scholar
  93. Tol, R. S. J.,&Vellinga, P. (1997). Approaches to integrated assessment. In A. Sors, A. Libertore, S. Funtowicz, J. C. Hourcade,&J. L. Fellous (Eds.), Prospects for integrated environmental assessment: Lessons learnt from the case of climate change. Proceedings of Conference, Toulouse, October 24–26, 1996. European Commission, DG XII. Report EUR 17639.Google Scholar
  94. Tol, R. S. J.,&Vellinga, P. (1998). The European forum on integrated environmental assessment. Environmental Modelling and Assessment, 3(3), 181–191.CrossRefGoogle Scholar
  95. Tuinstra, W., Hordijk L.,&Amann, M. (1999). Using computer models in international negotiations; the case of acidifi cation in Europe. Environment, 41(9), 32–42.Google Scholar
  96. UNEP. (2002). Global Environmental Outlook 3. Nairobi: United Nations Environment Program (UNEP).Google Scholar
  97. van Asselt, M. B. A. (1997). TARGETS for ULYSSES — Work package. Zurich/Bilthoven: EAWAG/RIVM.Google Scholar
  98. van Asselt, M. B. A.,&Rotmans, J. (1996). Uncertainty in perspective. Global Environmental Change, 6(2), 121–157.CrossRefGoogle Scholar
  99. van Asselt, M. B. A.,&Rotmans, J. (2002). Uncertainty in integrated assessment modelling: From positivism to pluralism. Climate Change, 54(1–2), 75–105.CrossRefGoogle Scholar
  100. van Asselt, M. B. A., Langendonck, R., van Asten, F., van der Giessen, A., Janssen, P., Heuberger, P., et al. (2001). Uncertainty and RIVM's environmental outlooks — Documenting a learning process. Bilthoven/Maastricht: Report RIVM/ICIS.Google Scholar
  101. van Daalen, C., Thissen, W.,&Berk, M. (1998). The Delft process: Experiences with a dialogue between policy makers and global modellers. In J. Alcamo, R. Leemans,&E. Kreileman (Eds.), Global change scenarios of the 21st century — Results from the IMAGE 2.1 model (pp. 267–285). Oxford: Pergamon/Elsevier.Google Scholar
  102. van der Sluijs, J. P., Potting, J., Risbey, J., van Vuuren, D., de Vries, H. J. M.,&Beusen, A. (2001). Uncertainty assessment of the IMAGE/TIMER B1 CO 2 emissions scenario using the NUSAP method. Utrecht University, Utrecht. (NOP Report Report no: 410 200 104)Google Scholar
  103. Vestreng, V.,&Klein, H. (2002). Emission data reported to UNECE/EMEP: Quality assurance and trend analysis and presentation of WebDab. Oslo: Norwegian Meteorological Institute. (EMEP/MSC-W Note 1/2002)Google Scholar
  104. van Vuuren, D.,&de Vries, H. J. M. (2001). Mitigation scenarios in a world oriented at sustainable development: The role of technology, effi ciency and timing. Climate Policy, 1, 189–210.CrossRefGoogle Scholar
  105. van Vuuren, D., Fengqi, Z., de Vries, H. J. M., Kejun, J., Graveland, C.,&Yun, L. (2002). Energy and emission scenarios for China in the 21st century — Exploration of baseline developments and mitigation options. Energy Policy, 31, 369–387.CrossRefGoogle Scholar
  106. WCED. (1987). Our common future. Oxford: Oxford University Press.Google Scholar
  107. Weyant, J., Davidson, O., Dowlatabadi, H., Edmonds, J., Grubb, M., Parson, E.A., et al. (1996). Integrated assessment of climate change: An overview and comparison of approaches and results. In J. P. Bruce, H. Lee,&E. F. Haites (Eds.), Climate change 1995: Economic and social dimensions — Contribution of Working Group III to the Second Assessment, Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.Google Scholar

Copyright information

© Springer Science + Business Media B.V 2009

Authors and Affiliations

  • Jean-Paul Hettelingh
    • 1
  • Bert J. M. de Vries
    • 2
  • Leen Hordijk
    • 3
  1. 1.Netherlands Environmental Assessment Agency (MNP)BilthovenThe Netherlands
  2. 2.Environmental Assessment Agency (MNP)Institute Utrecht UniversityNetherlands
  3. 3.International Institute for Applied Systems Analysis (IIASA)LaxenburgAustria

Personalised recommendations