Magnetic And Transport Properties Of Nanocrystalline Titanium Carbide In Carbon Matrix

  • N. Guskos
  • E. A. Anagnostakis
  • K. A. Karkas
  • A. Guskos
  • A. Biedunkiewicz
  • P. Figiel
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)

Samples of titanium carbide (TiC x) in a carbon matrix have been prepared by the nonhydrolytic sol-gel process. The nanocomposite powder samples containing one the TiC x of average size ca. 30 nm encapsulated in carbon cages of 3 wt.% and other the TiC x in carbon matrix (ca. 10 wt.%) have been obtained. The temperature dependence of the EPR spectra of titanium carbide has shown coexistence of two different paramagnetic centers, one arising from conducting electrons and the other from trivalent titanium ion complexes. Comparison with a similar titanium nitride (TiN x) is made, where no EPR spectra of trivalent titanium ions exist. The titanium nitride has shown only the EPR spectra arising from magnetic localized centers and not from trivalent titanium ion complexes. The magnetic ordering and superconducting states are observed in titanium carbide in the low temperature region, while in titanium nitride only the later state is recorded. The titanium nitride is a good conducting material while the titanium carbide shows an extraordinary behaviour, especially in the higher temperature region where a sharp jump in conductivity is recorded about 250 K. It is suggested that the disorder-order processes are more intense in the nonstoichiometric titanium carbide.


titanium carbide magnetic transport properties EPR spectra 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. E. Toth, Transition Metal Carbide and Nitrides, Academic, New York 1971.Google Scholar
  2. 2.
    B. C. Guo, K. P. Kerns, and A. W. Castleman Jr, Science 255, 1411 (1992).CrossRefADSGoogle Scholar
  3. 3.
    A. A. Rembel, Usp. Fiz. Nauk (Russia) 166, 33 (1996).CrossRefGoogle Scholar
  4. 4.
    A. I. Gusev and S. Z. Nazarov, Usp. Fiz. Nauk (Russia) 175, 682 (2005).CrossRefGoogle Scholar
  5. 5.
    E. I. Isaev, R. Ahuja, S. I. Simak, A. I. Lichtenstein, Yu. Kh. Vekilov, B. Johansson, and I. A. Abrikosov, Phys. Rev. B 72, 064515 (2005).ADSGoogle Scholar
  6. 6.
    A. I. Ivanovskii, Theor. Exper. Chem. 43, 1 (2007).CrossRefGoogle Scholar
  7. 7.
    E. I. Isaev, S. I. Simak, I. A. Abrikosov, R. Ahuja, Yu. Kh. Vekilov, M. I. Katsnelson, A. I. Lichtenstein, and B. Johansson, J. Appl. Phys. 101, 123519 (2007).CrossRefADSGoogle Scholar
  8. 8.
    N. Guskos, A. Biedunkiewicz, J. Typek, S. Patapis, M. Maryniak, and K. A. Karkas, Rev. Adv. Mater. Sci. 8, 49 (2004).Google Scholar
  9. 9.
    J. Izquierdo, A. Vega, S. Bouarab, and M. A. Khan, Phys. Rev. B 58, 3507 (1998).ADSGoogle Scholar
  10. 10.
    C. Acha, M. Monteverde, M. Nunez-Requeiro, A. Kuhn, and M. A. A. Franco, Eur. Phys. J. B 34, 421 (2003).CrossRefADSGoogle Scholar
  11. 11.
    A. M. Hassib, A. A. S. Musmus, and M. A. A. Issa, Phys. Stat. Sol.(a) 89, 147 (1985).CrossRefADSGoogle Scholar
  12. 12.
    K. J. D. MacKenzie, R. H. Meinhold, D. G. McGavin, J. A. Ripmeester, and I. Moudrakovski, Solid State Nuclear Mag. Res. 4, 193 (1995).CrossRefGoogle Scholar
  13. 13.
    T. Bodziony, N. Guskos, M. Maryniak, and A. Biedunkiewicz, Acta Phys. Pol. A (2005).Google Scholar
  14. 14.
    T. Bodziony N. Guskos, A. Biedunkiewicz, J. Typek, R. Wrobel, and M. Maryniak, Materials Science-Poland 23, 899 (2005).Google Scholar
  15. 15.
    N.Guskos, T. Bodziony, M. Maryniak, J.Typek, and A. Biedunkiewicz, J. All. Comp. (2007).Google Scholar
  16. 16.
    A. Biedunkiewicz, Materials Science (Poland) 21, 445 (2003).Google Scholar
  17. 17.
    Likodimos, S. Glenis, N. Guskos, and C. L. Lin, Phys. Rev. B 68, 045417 (2003); 76, 075420 (2007).ADSGoogle Scholar
  18. 18.
    F. Beuneu, C. l'Huillier, J. -P. Salvetat, J. -M. Bonard, and L. Forro, Phys. Rev. B 59, 5945 (1999).ADSGoogle Scholar
  19. 19.
    V. A. S. Kotosov and D. V. Shilo, Carbon 11, 1649 (1998).CrossRefGoogle Scholar
  20. 20.
    M. Kosaka, T. W. Ebbesen, H. Hiura, and K. Tanigaki, Chem. Phys. Lett. 233, 47 (1995).CrossRefADSGoogle Scholar
  21. 21.
    H. Sato, N. Kawasatsu, T. Enoki, M. Endo, R. Kobori, S. Maruyama, and K. Kaneko, Solid State Comm. 125, 641 (2003).CrossRefADSGoogle Scholar
  22. 22.
    T. L. Makarova, D. Sundqist, R. Hohne, et al., Nature 413, 716 (2001).CrossRefADSGoogle Scholar
  23. 23.
    R. N. Kyutt, E. A. Smorgonskaya, A. M. Danishevskii, and S. K. Gordeev, Solid State Phys. (in Russian) 41, 1359 (1999).CrossRefADSGoogle Scholar
  24. 24.
    H. Y. Wang, Q. C. Jiang, X. L. Li, J. G. Wang, Q. F. Guan, and H. Q. Liang, Materials Research Bulletin 38, 1387 (2003).CrossRefGoogle Scholar
  25. 25.
    T. Kolodiazhnyi and A. Petric, J. Phys. Chem. Solids 64, 953 (2003).CrossRefADSGoogle Scholar
  26. 26.
    S. Lakkis, C. Schienker, B. K. Chakraverty, and R. Buder, Phys. Rev. B 14, 1429 (1976).ADSGoogle Scholar
  27. 27.
    G. Wagoner, Phys. Rev. 118, 647 (1960).CrossRefADSGoogle Scholar
  28. 28.
    K. Matsubara and T. Tsuzuku, Phys. Rev. B 44, 11 845 (1991).Google Scholar
  29. 29.
    K. W. Lee and Ch. Eu. Lee, Phys. Rev. Lett. 97, 137 206 (2006).Google Scholar
  30. 30.
    J. W. McClure and Y. Yafet, Proceedings of the Fifth Conference on Carbon, (edited by S. Mirozowsky and P. L. Walker, Pergamon, New York, 1962), 1, 22.Google Scholar
  31. 31.
    A. S. Kotosonov, Carbon 26, 735 (1988).CrossRefGoogle Scholar
  32. 32.
    L. Largo, A. Cimas, P. Redondo, V. M. Rayon, C. Barrientos, Chem. Phys. 330, 431 (2006).CrossRefADSGoogle Scholar
  33. 33.
    M. Guemmaz, G. Moraitis, A. Mosser, M. A. Khan, and J. C. Parlebas J. All. Comp. 262–263, 397 (1997).CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • N. Guskos
    • 1
    • 2
  • E. A. Anagnostakis
    • 1
  • K. A. Karkas
    • 1
  • A. Guskos
    • 2
  • A. Biedunkiewicz
    • 3
  • P. Figiel
    • 3
  1. 1.Solid State Physics, Department of PhysicsUniversity of AthensAthensGreece
  2. 2.Institute of PhysicsSzczecin University of TechnologySzczecinPoland
  3. 3.Mechanical DepartmentSzczecin University of TechnologyPoland

Personalised recommendations