Skip to main content

Functional Renormalization Group Approach To Non-Equilibrium Properties Of Mesoscopic Systems

  • Conference paper
Electron Transport in Nanosystems

We present an extension of the concepts of the functional renormaliza-tion group approach to quantum many-body problems in non-equilibrium situations. The approach is completely general and allows calculations for both stationary and time-dependent situations. As a specific example we study the stationary state transport through a quantum dot with local Coulomb correlations. We discuss the influence of finite bias voltage as well as magnetic field and temperature on the current and conductance. For finite bias and magnetic fields we compare our results to recent experimental observations on a quantum dot in an external magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Goldhaber-Gordon, I. Goldhaber-Gordon, Nature412, 594 (2001)

    Article  ADS  Google Scholar 

  2. I. Zutić, J. Fabian, S.D. Sarma, Rev. Mod. Phys.76, 323 (2004)

    Article  ADS  Google Scholar 

  3. L.P. Kouwenhoven, D.G. Austing, S. Tarucha, Rep. Prog. Phys.64(6), 701 (2001)

    Article  ADS  Google Scholar 

  4. M.E. Gershenson, V. Podzorov, A.F. Morpurgo, Rev. Mod. Phys.78, 973 (2006)

    Article  ADS  Google Scholar 

  5. M.A. Kastner, Rev. Mod. Phys.64(3), 849 (1992)

    Article  ADS  Google Scholar 

  6. L.P. Kouwenhoven, et al., inMesoscopic Electron Transport, ed. by L.L. Sohn, et al. (Dordrecht, Kluwer, 1997), p. 105

    Google Scholar 

  7. J. Schwinger, J. Math. Phys.2, 407 (1961)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. L.P. Kadanoff, G. BaymQuantum Statistical Mechanics: Green's Function Methods in Equilibrium and Nonequilibrium Problems(Addison-Wesley, New York 1962)

    Google Scholar 

  9. L.P. Keldysh, JETP20, 1018 (1965)

    MathSciNet  Google Scholar 

  10. A. Fetter, J. WaleckaQuantum Theory of Many-Particle Systems. International Series in Pure and Applied Physics (McGraw-Hill, New York, 1971)

    Google Scholar 

  11. U. Schollwöck, Rev. Mod. Phys.77, 259 (2005)

    Article  ADS  Google Scholar 

  12. T. Costi, Phys. Rev. B55, 3003 (1997)

    Article  ADS  Google Scholar 

  13. F.B. Anders, A. Schiller, Spin precession and real time dynamics in the kondo model: A time-dependent numerical renormalization-group study (2006). Cond-mat/0604517

    Google Scholar 

  14. D. Lobaskin, S. Kehrein, Phys. Rev. B71, 193303 (2005)

    Article  ADS  Google Scholar 

  15. Y. Meir, N.S. Wingreen, Phys. Rev. Lett.68, 2512 (1992)

    Article  ADS  Google Scholar 

  16. V. Koremann, Ann. of Phys.39, 72 (1966)

    Article  ADS  Google Scholar 

  17. D. Langreth, in NATO advanced study institute Series B, vol. 17, ed. by J. Devreese, E. van Doren (Plenum, New York/London, 1967), vol. 17

    Google Scholar 

  18. B. Altshuler, Y. Aharonov, JETP48, 812 (1978)

    ADS  Google Scholar 

  19. K.G. Wilson, Rev. Mod. Phys.47, 773 (1975)

    Article  ADS  Google Scholar 

  20. H. Schoeller, inLow-Dimensional Systems, vol. 17, ed. by T. Brandes (Springer Verlag, 1999), vol. 17, p. 137

    Google Scholar 

  21. H. Schoeller, J. König, Phys. Rev. Lett.84, 3686 (2000)

    Article  ADS  Google Scholar 

  22. M. Keil, H. Schoeller, Phys. Rev.B 63, 180302 (2001)

    ADS  Google Scholar 

  23. A. Rosch, J. Paaske, J. Kroha, P. Wölfle, Phys. Rev. Lett.90, 076804 (2003)

    Article  ADS  Google Scholar 

  24. A. Rosch, J. Paaske, J. Kroha, P. Wölfle, J. Phys. Soc. Jpn.74, 118 (2005)

    Article  MATH  ADS  Google Scholar 

  25. F. Wegner, Ann. Physik (Leipzig)3, 77 (1994)

    Article  MATH  ADS  Google Scholar 

  26. S.D. Glazek, P.B. Wiegmann, Phys. Rev.D 48, 5863 (1993)

    ADS  Google Scholar 

  27. J. Polchinski, Nucl. Phys.B 231, 269 (1984)

    Article  ADS  Google Scholar 

  28. C. Wetterich, Phys. Lett.B 301, 90 (1993)

    ADS  Google Scholar 

  29. T.R. Morris, Int. J. Mod. Phys.A 9, 2411 (1994)

    ADS  Google Scholar 

  30. M. SalmhoferRenormalization(Springer, Berlin, 1998)

    Google Scholar 

  31. M. Salmhofer, C. Honerkamp, Prog. Theor. Phys.105, 1 (2001)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  32. R. Hedden, V. Meden, T. Pruschke, K. Schönhammer, J. Phys.: Condens. Matter 16, 5279 (2004)

    Article  ADS  Google Scholar 

  33. R. Gezzi, T. Pruschke, V. Meden, Phys. Rev.B 75, 045324 (2007)

    ADS  Google Scholar 

  34. S. Jakobs, Renormierngsgruppen-methoden für nichtlinearen transport. Diploma thesis, RWTH Aachen (2003)

    Google Scholar 

  35. S.G. Jakobs, V. Meden, H. Schoeller, Phys. Rev. Lett.99(2007)

    Google Scholar 

  36. P.W. Anderson, Phys. Rev.124, 41 (1961)

    Article  ADS  MathSciNet  Google Scholar 

  37. J. Nygård, D.H. Cobden, P.E. Lindelof, Nature408, 342 (2000)

    Article  ADS  Google Scholar 

  38. V. Madhavan, W. Chen, T. Jamneala, M.F. Crommie, N.S. Wingreen, Science280, 567 (1998)

    Article  ADS  Google Scholar 

  39. J. Li, W.D. Schneider, R. Berndt, B. Delley, Phys. Rev. Lett.80, 2893 (1998)

    Article  ADS  Google Scholar 

  40. G.A. Fiete, E.J. Heller, Rev. Mod. Phys.75, 933 (2003)

    Article  ADS  Google Scholar 

  41. M. Pustilnik, L. Glazman, J. Phys.: Condens. Matter16, R513 (2004)

    Article  ADS  Google Scholar 

  42. A. Georges, G. Kotliar, W. Krauth, M.J. Rozenberg, Rev. Mod. Phys.68, 13 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  43. T. Maier, M. Jarrell, T. Pruschke, M.H. Hettler, Rev. Mod. Phys.77, 1027 (2005)

    Article  ADS  Google Scholar 

  44. S. De Franceschi, R. Hanson, W.G. van der Wiel, J.M. Elzerman, J.J. Wijpkema, T. Fujisawa, S. Tarucha, L.P. Kouwenhoven, Phys. Rev. Lett.89, 156801 (2002)

    Article  ADS  Google Scholar 

  45. D. Goldhaber-Gordon, H. Shtrikman, D. Mahalu, D. Abusch-Magder, U. Meirav, M.A. Kastner, Nature391, 156 (1998)

    Article  ADS  Google Scholar 

  46. D.C. Ralph, R.A. Buhrman, Phys. Rev. Lett.69, 2118 (1992)

    Article  ADS  Google Scholar 

  47. J. Schmid, J. Weis, K. Eberl, K. v. Klitzing, Phys. Rev. Lett.84, 5824 (2000)

    Article  ADS  Google Scholar 

  48. J. König, J. Schmid, H. Schoeller, G. Schön, Phys. Rev. B54, 16820 (1996)

    ADS  Google Scholar 

  49. C. Karrasch, T. Enss, V. Meden, Phys. Rev. B73, 235337 (2006)

    ADS  Google Scholar 

  50. L. Landau, E. LifshitzPhysical Kinetics(Akademie-Verlag, Berlin, 1983)

    MATH  Google Scholar 

  51. J. Rammer, H. Smith, Rev. Mod. Phys.58, 323 (1986)

    Article  ADS  Google Scholar 

  52. H. Haug, A.P. JauhoQuantum Kinetics and Optics of Semiconductors(Springer, Berlin 1996)

    Google Scholar 

  53. M. Wagner, Phys. Rev. B44(12), 6104 (1991)

    ADS  Google Scholar 

  54. R. Gezzi, A. Dirks, T. Pruschke, arXiv:cond-mat/0707.0289 (2007)

    Google Scholar 

  55. A. Kamenev, inLes Houches, Volume Session LX, ed. by H. Bouchiat, Y. Gefen, S. Guéron, G. Montambaux, J. Dalibard (Elsevier, North-Holland, 2004). Cond-mat/0412296

    Google Scholar 

  56. J. Negele, H. OrlandQuantum Many-Particle Physics(Addison-Wesley, New York, 1988)

    Google Scholar 

  57. A.P. Jauho, N.S. Wingreen, Y. Meir, Phys. Rev. B50, 5528 (1994)

    ADS  Google Scholar 

  58. N.S. Wingreen, Y. Meir, Phys. Rev. B49, 11040 (1994)

    ADS  Google Scholar 

  59. A.C. HewsonThe Kondo Problem to Heavy Fermions. Cambridge Studies in Magnetism (Cambridge University Press, Cambridge, 1993)

    Google Scholar 

  60. R. Bulla, T. Costi, T. Pruschke, The numerical renormalization group method for quantum impurity systems (2007). Rev. Mod. Phys. (in press)

    Google Scholar 

  61. S. Hershfield, J.H. Davies, J.W. Wilkins, Phys. Rev. Lett.67, 3720 (1991)

    Article  ADS  Google Scholar 

  62. S. Hershfield, J.H. Davies, J.W. Wilkins, Phys. Rev.B 46, 7046 (1992)

    ADS  Google Scholar 

  63. T. Fujii, K. Ueda, Phys. Rev.B 68, 155310 (2003)

    ADS  Google Scholar 

  64. J. Takahashi, S. Tasaki, Nonequilibrium steady states and fano-kondo resonances in an ab ring with a quantum dot (2006). Cond-mat/0603337

    Google Scholar 

  65. C.H.L. Quay, J.C. an S. J. Gamble, R. de Picciotto, H. Kataura, D. Goldhaber-Gordon, Phys. Rev. B76, 73404 (2007)

    ADS  Google Scholar 

  66. D.E. Logan, N.L. Dickens, J. Phys.: Condens. Matter13, 9713 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Pruschke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this paper

Cite this paper

Pruschke, T., Gezzi, R., Dirks, A. (2008). Functional Renormalization Group Approach To Non-Equilibrium Properties Of Mesoscopic Systems. In: Bonča, J., Kruchinin, S. (eds) Electron Transport in Nanosystems. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9146-9_19

Download citation

Publish with us

Policies and ethics