Functional Renormalization Group Approach To Non-Equilibrium Properties Of Mesoscopic Systems

Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)

We present an extension of the concepts of the functional renormaliza-tion group approach to quantum many-body problems in non-equilibrium situations. The approach is completely general and allows calculations for both stationary and time-dependent situations. As a specific example we study the stationary state transport through a quantum dot with local Coulomb correlations. We discuss the influence of finite bias voltage as well as magnetic field and temperature on the current and conductance. For finite bias and magnetic fields we compare our results to recent experimental observations on a quantum dot in an external magnetic field.

Keywords

non-equilibrium properties mesoscopic systems quantum dot local Coulomb correlations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Goldhaber-Gordon, I. Goldhaber-Gordon, Nature412, 594 (2001)CrossRefADSGoogle Scholar
  2. 2.
    I. Zutić, J. Fabian, S.D. Sarma, Rev. Mod. Phys.76, 323 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    L.P. Kouwenhoven, D.G. Austing, S. Tarucha, Rep. Prog. Phys.64(6), 701 (2001)CrossRefADSGoogle Scholar
  4. 4.
    M.E. Gershenson, V. Podzorov, A.F. Morpurgo, Rev. Mod. Phys.78, 973 (2006)CrossRefADSGoogle Scholar
  5. 5.
    M.A. Kastner, Rev. Mod. Phys.64(3), 849 (1992)CrossRefADSGoogle Scholar
  6. 6.
    L.P. Kouwenhoven, et al., inMesoscopic Electron Transport, ed. by L.L. Sohn, et al. (Dordrecht, Kluwer, 1997), p. 105Google Scholar
  7. 7.
    J. Schwinger, J. Math. Phys.2, 407 (1961)MATHCrossRefADSMathSciNetGoogle Scholar
  8. 8.
    L.P. Kadanoff, G. BaymQuantum Statistical Mechanics: Green's Function Methods in Equilibrium and Nonequilibrium Problems(Addison-Wesley, New York 1962)Google Scholar
  9. 9.
    L.P. Keldysh, JETP20, 1018 (1965)MathSciNetGoogle Scholar
  10. 10.
    A. Fetter, J. WaleckaQuantum Theory of Many-Particle Systems. International Series in Pure and Applied Physics (McGraw-Hill, New York, 1971)Google Scholar
  11. 11.
    U. Schollwöck, Rev. Mod. Phys.77, 259 (2005)CrossRefADSGoogle Scholar
  12. 12.
    T. Costi, Phys. Rev. B55, 3003 (1997)CrossRefADSGoogle Scholar
  13. 13.
    F.B. Anders, A. Schiller, Spin precession and real time dynamics in the kondo model: A time-dependent numerical renormalization-group study (2006). Cond-mat/0604517Google Scholar
  14. 14.
    D. Lobaskin, S. Kehrein, Phys. Rev. B71, 193303 (2005)CrossRefADSGoogle Scholar
  15. 15.
    Y. Meir, N.S. Wingreen, Phys. Rev. Lett.68, 2512 (1992)CrossRefADSGoogle Scholar
  16. 16.
    V. Koremann, Ann. of Phys.39, 72 (1966)CrossRefADSGoogle Scholar
  17. 17.
    D. Langreth, in NATO advanced study institute Series B, vol. 17, ed. by J. Devreese, E. van Doren (Plenum, New York/London, 1967), vol. 17Google Scholar
  18. 18.
    B. Altshuler, Y. Aharonov, JETP48, 812 (1978)ADSGoogle Scholar
  19. 19.
    K.G. Wilson, Rev. Mod. Phys.47, 773 (1975)CrossRefADSGoogle Scholar
  20. 20.
    H. Schoeller, inLow-Dimensional Systems, vol. 17, ed. by T. Brandes (Springer Verlag, 1999), vol. 17, p. 137Google Scholar
  21. 21.
    H. Schoeller, J. König, Phys. Rev. Lett.84, 3686 (2000)CrossRefADSGoogle Scholar
  22. 22.
    M. Keil, H. Schoeller, Phys. Rev.B 63, 180302 (2001)ADSGoogle Scholar
  23. 23.
    A. Rosch, J. Paaske, J. Kroha, P. Wölfle, Phys. Rev. Lett.90, 076804 (2003)CrossRefADSGoogle Scholar
  24. 24.
    A. Rosch, J. Paaske, J. Kroha, P. Wölfle, J. Phys. Soc. Jpn.74, 118 (2005)MATHCrossRefADSGoogle Scholar
  25. 25.
    F. Wegner, Ann. Physik (Leipzig)3, 77 (1994)MATHCrossRefADSGoogle Scholar
  26. 26.
    S.D. Glazek, P.B. Wiegmann, Phys. Rev.D 48, 5863 (1993)ADSGoogle Scholar
  27. 27.
    J. Polchinski, Nucl. Phys.B 231, 269 (1984)CrossRefADSGoogle Scholar
  28. 28.
    C. Wetterich, Phys. Lett.B 301, 90 (1993)ADSGoogle Scholar
  29. 29.
    T.R. Morris, Int. J. Mod. Phys.A 9, 2411 (1994)ADSGoogle Scholar
  30. 30.
    M. SalmhoferRenormalization(Springer, Berlin, 1998)Google Scholar
  31. 31.
    M. Salmhofer, C. Honerkamp, Prog. Theor. Phys.105, 1 (2001)MATHCrossRefADSMathSciNetGoogle Scholar
  32. 32.
    R. Hedden, V. Meden, T. Pruschke, K. Schönhammer, J. Phys.: Condens. Matter 16, 5279 (2004)CrossRefADSGoogle Scholar
  33. 33.
    R. Gezzi, T. Pruschke, V. Meden, Phys. Rev.B 75, 045324 (2007)ADSGoogle Scholar
  34. 34.
    S. Jakobs, Renormierngsgruppen-methoden für nichtlinearen transport. Diploma thesis, RWTH Aachen (2003)Google Scholar
  35. 35.
    S.G. Jakobs, V. Meden, H. Schoeller, Phys. Rev. Lett.99(2007)Google Scholar
  36. 36.
    P.W. Anderson, Phys. Rev.124, 41 (1961)CrossRefADSMathSciNetGoogle Scholar
  37. 37.
    J. Nygård, D.H. Cobden, P.E. Lindelof, Nature408, 342 (2000)CrossRefADSGoogle Scholar
  38. 38.
    V. Madhavan, W. Chen, T. Jamneala, M.F. Crommie, N.S. Wingreen, Science280, 567 (1998)CrossRefADSGoogle Scholar
  39. 39.
    J. Li, W.D. Schneider, R. Berndt, B. Delley, Phys. Rev. Lett.80, 2893 (1998)CrossRefADSGoogle Scholar
  40. 40.
    G.A. Fiete, E.J. Heller, Rev. Mod. Phys.75, 933 (2003)CrossRefADSGoogle Scholar
  41. 41.
    M. Pustilnik, L. Glazman, J. Phys.: Condens. Matter16, R513 (2004)CrossRefADSGoogle Scholar
  42. 42.
    A. Georges, G. Kotliar, W. Krauth, M.J. Rozenberg, Rev. Mod. Phys.68, 13 (1996)CrossRefADSMathSciNetGoogle Scholar
  43. 43.
    T. Maier, M. Jarrell, T. Pruschke, M.H. Hettler, Rev. Mod. Phys.77, 1027 (2005)CrossRefADSGoogle Scholar
  44. 44.
    S. De Franceschi, R. Hanson, W.G. van der Wiel, J.M. Elzerman, J.J. Wijpkema, T. Fujisawa, S. Tarucha, L.P. Kouwenhoven, Phys. Rev. Lett.89, 156801 (2002)CrossRefADSGoogle Scholar
  45. 45.
    D. Goldhaber-Gordon, H. Shtrikman, D. Mahalu, D. Abusch-Magder, U. Meirav, M.A. Kastner, Nature391, 156 (1998)CrossRefADSGoogle Scholar
  46. 46.
    D.C. Ralph, R.A. Buhrman, Phys. Rev. Lett.69, 2118 (1992)CrossRefADSGoogle Scholar
  47. 47.
    J. Schmid, J. Weis, K. Eberl, K. v. Klitzing, Phys. Rev. Lett.84, 5824 (2000)CrossRefADSGoogle Scholar
  48. 48.
    J. König, J. Schmid, H. Schoeller, G. Schön, Phys. Rev. B54, 16820 (1996)ADSGoogle Scholar
  49. 49.
    C. Karrasch, T. Enss, V. Meden, Phys. Rev. B73, 235337 (2006)ADSGoogle Scholar
  50. 50.
    L. Landau, E. LifshitzPhysical Kinetics(Akademie-Verlag, Berlin, 1983)MATHGoogle Scholar
  51. 51.
    J. Rammer, H. Smith, Rev. Mod. Phys.58, 323 (1986)CrossRefADSGoogle Scholar
  52. 52.
    H. Haug, A.P. JauhoQuantum Kinetics and Optics of Semiconductors(Springer, Berlin 1996)Google Scholar
  53. 53.
    M. Wagner, Phys. Rev. B44(12), 6104 (1991)ADSGoogle Scholar
  54. 54.
    R. Gezzi, A. Dirks, T. Pruschke, arXiv:cond-mat/0707.0289 (2007)Google Scholar
  55. 55.
    A. Kamenev, inLes Houches, Volume Session LX, ed. by H. Bouchiat, Y. Gefen, S. Guéron, G. Montambaux, J. Dalibard (Elsevier, North-Holland, 2004). Cond-mat/0412296Google Scholar
  56. 56.
    J. Negele, H. OrlandQuantum Many-Particle Physics(Addison-Wesley, New York, 1988)Google Scholar
  57. 57.
    A.P. Jauho, N.S. Wingreen, Y. Meir, Phys. Rev. B50, 5528 (1994)ADSGoogle Scholar
  58. 58.
    N.S. Wingreen, Y. Meir, Phys. Rev. B49, 11040 (1994)ADSGoogle Scholar
  59. 59.
    A.C. HewsonThe Kondo Problem to Heavy Fermions. Cambridge Studies in Magnetism (Cambridge University Press, Cambridge, 1993)Google Scholar
  60. 60.
    R. Bulla, T. Costi, T. Pruschke, The numerical renormalization group method for quantum impurity systems (2007). Rev. Mod. Phys. (in press)Google Scholar
  61. 61.
    S. Hershfield, J.H. Davies, J.W. Wilkins, Phys. Rev. Lett.67, 3720 (1991)CrossRefADSGoogle Scholar
  62. 62.
    S. Hershfield, J.H. Davies, J.W. Wilkins, Phys. Rev.B 46, 7046 (1992)ADSGoogle Scholar
  63. 63.
    T. Fujii, K. Ueda, Phys. Rev.B 68, 155310 (2003)ADSGoogle Scholar
  64. 64.
    J. Takahashi, S. Tasaki, Nonequilibrium steady states and fano-kondo resonances in an ab ring with a quantum dot (2006). Cond-mat/0603337Google Scholar
  65. 65.
    C.H.L. Quay, J.C. an S. J. Gamble, R. de Picciotto, H. Kataura, D. Goldhaber-Gordon, Phys. Rev. B76, 73404 (2007)ADSGoogle Scholar
  66. 66.
    D.E. Logan, N.L. Dickens, J. Phys.: Condens. Matter13, 9713 (2001)CrossRefADSGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  1. 1.Institute for Theoretical PhysicsUniversity of GöttingenGöttingenGermany

Personalised recommendations