Interlayer Tunneling In Stacked Junctions Of High Temperature Superconductors, Cdw Materials And Graphite

  • Yu. I. Latyshev
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)

A short review on interlayer tunneling studies of the stacked junctions of layered high temperature superconductors (HTSC), charge density wave (CDW) materials and graphite is presented. We specify individual features of each class of these materials and common features of interlayer tunneling. They are characterized by the layered crystalline structure of those materials. We emphasize the importance of the phase interlayer coupling in superconducting or CDW electron condensed states that provides interlayer coherent transport. We found that breaking of the phase coherence often happens via formation of phase topological defects (phase vortices) in one elementary junction of the stack that gives an opportunity for interlayer tunneling spectroscopy.


interlayer tunneling Bi2Sr2CaCu2O8+x NbSe3 TaS+3 KMo6O17 graphite energy gap pseudogap conductance peak 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kleiner R, Steinmeyer F, Kunkel G and Mueller P 1992 Phys. Rev. Lett. 68, 2394 as a recent review, see Yurgens A 2000 Supercond. Sci. Technol. 13, R85.Google Scholar
  2. 2.
    Nachtrab P, Helm S, Moessle M, Kleiner R, Waldmann O, Koch R, Mueller P, Kimura T and Tokura Y 2002 Phys. Rev. B 65 012410.ADSGoogle Scholar
  3. 3.
    Nachtrab Yu I, Monceau P, Sinchenko A A, Bulaevskii L N, Brazovskii S A, Kawae T and Yamashita T 2003 J. Phys. A: Math. Gen. 36, 9323.CrossRefADSGoogle Scholar
  4. 4.
    Yu.I. Latyshev, Z.Ya. Kosakovskaya, A.P. Orlov, A.Yu. Latyshev, V.V. Kolesov, P. Monceau, J. Marcus, Th. Fournier, “Nonlinear interlayer transport in the aligned carbon nanotube films and graphite” to appear in the Journal “Fullerene, Nanotubes and Carbon Nanostructures”.Google Scholar
  5. 5.
    Yu.I. Latyshev, P. Monceau, A.P. Orlov, S.A. Brazovskii, and Th. Fournier, “Interlayer tunneling spectroscopy of charge density waves”, Supercond. Sci. Technol., 20, S87–S92 (2007).ADSGoogle Scholar
  6. 6.
    Bulaevskii L N, Clem J R and Glazman L I 1992 Phys. Rev B 46, 350.ADSGoogle Scholar
  7. 7.
    Yu.I. Latyshev, S.-J. Kim, V.N. Pavlenko, T. Yamashita, and L.N. Bulaevskii, “Interlayer tunneling of quasiparticles and Cooper pairs in Bi-2212 from experiments on small stacks”, Physica C 362, 156–163 (2001).ADSGoogle Scholar
  8. 8.
    Clem J R and Coffey M W 1989 Phys. Rev. B 42, 6209.ADSGoogle Scholar
  9. 9.
    Bulaevskii L N and Clem J R 1991 Phys. Rev. B 44, 10234.ADSGoogle Scholar
  10. 10.
    Yu.I. Latyshev, M.B. Gaifullin, T. Yamashita, M. Machida, and Yuji Mat-suda, “Shapiro Step Response in the Coherent Josephson Flux Flow State of Bi2Sr2CaCu2O8+x”, Phys. Rev. Lett., 87, (2001) 247007(4).CrossRefADSGoogle Scholar
  11. 11.
    Tanabe K, Yidaka Y, Karimoto S and Suzuki M 1996 Phys. Rev. B 53, 9348.ADSGoogle Scholar
  12. 12.
    Yu.I. Latyshev, T. Yamashita, L.N. Bulaevskii, M.J. Graf, A.V. Balatsky, and M.P. Maley, “Interlayer transport of quasiparticles and Cooper pairs in Bi2Sr2CaCu2O8+x superconductors”, Phys. Rev. Lett., 82, (1999) 5345–5348.CrossRefADSGoogle Scholar
  13. 13.
    V.M. Krasnov et al., Phys. Rev. Lett., 84, 5860 (2000).CrossRefADSGoogle Scholar
  14. 14.
    Yu.I. Latyshev,. Evidence for d-wave order parameter symmetry in Bi-2212 from experiments on interlayer tunneling. in a book Symmetry and Heterogeneity in High Temperature Superconductors ed. by A. Bianconi, Dordrecht: Kluwer Academic Publisher (2006) Chapter 7, 101–118.Google Scholar
  15. 15.
    G. Gruner, Density Waves in Solids, 1994 (Reading, MA, Addison-Wesley).Google Scholar
  16. 16.
    Yu.I. Latyshev, S.-J. Kim, and T. Yamashita, IEEE Trans. on Appl. Supercond., 9, 4312 (1999).CrossRefGoogle Scholar
  17. 17.
    Yu.I. Latyshev, P. Monceau, S. Brazovskii, A.P. Orlov and T. Fournier, “Sub-gap collective Tunneling and Its Staircase Structure in Charge Density Waves”, Phys. Rev. Lett, 96, 116402 (2006).CrossRefADSGoogle Scholar
  18. 18.
    S. Brazovskii, Yu.I. Latyshev, S.I. Matveenko, P. Monceau “Recent views on solitons in Density Waves”, J. Physique, France IV, 131, (2005) 77–80.CrossRefADSGoogle Scholar
  19. 19.
    Z. Dai, c.G. Slough, R.V. Coleman, Phys. Rev. B 45, R9469 (1992).ADSGoogle Scholar
  20. 20.
    J. Schafer et al. Phys. Rev. Lett., 91, 066401 (2003).CrossRefADSGoogle Scholar
  21. 21.
    A. Perucchi, L. Degiorgy, R.E. Thorne, Phys. Rev. B 69, 195114 (2004).ADSGoogle Scholar
  22. 22.
    T. Ekino, J. Akimitsu, Jpn. J. Appl. Phys., 26, 625 (1987); A.A. Sinchenko, P. Monceau, Phys. Rev. B 67, 125117 (2003).CrossRefGoogle Scholar
  23. 23.
    A.P. Orlov, Yu.I. Latyshev, A.M. Smolovich, P. Monceau, “Interaction of both charge density waves in NbSe3 from interlayer tunneling exsperiments”, JETP Lett. 84, 89–92, 2006.CrossRefADSGoogle Scholar
  24. 24.
    R. Bruinsma, S.E. Trullinger, Phys. Rev. B 22, 4543 (1980).ADSGoogle Scholar
  25. 25.
    R.M. Fleming, D.E. Moncton, D.B. McWhan, Phys. Rev. B 18, 5560 (1978).ADSGoogle Scholar
  26. 26.
    A.H. Moudden, J.D. Axe, P. Monceau, F. Levy, Phys Rev. Lett., 65, 223 (1990).CrossRefADSGoogle Scholar
  27. 27.
    Yu.I. Latyshev, P. Monceau, S. Brazovskii, A.P. Orlov, and T. Fournier, “Observation of charge density wave solitons in overlapping tunnel junctions”, Phys. Rev. Lett., 95, (2005) 266402.CrossRefADSGoogle Scholar
  28. 28.
    S.A. Brazovskii Sov. Phys. JETP, 51, 342 (1980).ADSGoogle Scholar
  29. 29.
    Yu.I. Latyshev, P. Monceau, S.A. Brazovskii, A.P. Orlov, A.A. Sinchenko, Th. Fournier, E. Mossang, “Interlayer tunneling spectroscopy of layered CDW materials”, J. Physique, France IV, 131, (2005) 197–202.CrossRefADSGoogle Scholar
  30. 30.
    Yu.I. Latyshev, Ya.S. Savitskaya and V.V. Frolov, “Hall effect accompanying a Peierls transition in TaS3”, Pis'ma Zh. Exsp. Teor. Fiz. 38 (1983) 446–449; JETP Lett. 38, (1983) 541–545.ADSGoogle Scholar
  31. 31.
    S.V. Zaitsev-Zotov and V.E. Minakova, Phys. Rev. Lett. 97, 266404 (2006).CrossRefADSGoogle Scholar
  32. 32.
    J.P. Pouget, R. Moret, A. Meerschaut, L. Guemas and J. Rouxel, J.Physique, 44, C3-1729 (1983).Google Scholar
  33. 33.
    R.V. Coleman, G. Eiserman, M.P. Everson, A. Johnson, and A.M. Falikov, Phys. Rev. Lett., 55, 863 (1985).CrossRefADSGoogle Scholar
  34. 34.
    C.A. Baltseiro, L.M. Falikov, Phys. Rev, B 34, 863 (1985).ADSGoogle Scholar
  35. 35.
    D. Zanchi, A. Bjelis, G. Montabeaux, Phys. Rev., B 53, 1240 (1996).ADSGoogle Scholar
  36. 36.
    Yu.I. Latyshev, A.P. Orlov, P. Monceau, Th. Fournier, E. Mossang, D. Vignolles, “Enhancement of Peierls Transition Temperature in NbSe3 by High Magnetic Field” Abstract book of International School “Magnetic Fields for Science” August 27 — September 8, 2007, Cargese, p. Fri07-4.Google Scholar
  37. 37.
    A.P. Orlov, Yu.I. Latyshev, P. Monceau, D. Vignolles, “Probing of the CDW ordering in NbSe3 by high magnetic field” to appear elsewhere.Google Scholar
  38. 38.
    Yu.I. Latyshev, P. Monceau, A.P. Orlov, A.A. Sinchenko, S.A. Brazovskii, L.N. Bulaevskii, Th. Fournier, T. Yamashita, T. Hatano, J. Marcus, J. Dumas, C. Schlenker, “Interlayer tunneling spectroscopy of layered high temperature superconductors and charge density wave materials”, Extended abstracts of the conference on Recent Developments in Low Dimensional Charge Density Wave Conductors, Skradin, Croatia, June 29-July 3, 2006, pp. 4–5.Google Scholar
  39. 39.
    Yu.I. Latyshev, Z.Ya. Kosakovskaya, A.P. Orlov, A.Yu. Latyshev, V.V. Kolesov, P. Monceau, J. Marcus, Th. Fournier, “Nonlinear interlayer transport in the aligned carbon nanotube films and graphite” to appear in the Journal “Fullerens and Carbon Nanostructures”.Google Scholar
  40. 40.
    V.F. Gandmakher, Electrons in disordered media, Fizmatgiz, 2nd edition, 2005 (in Russian).Google Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  1. 1.School of Materials ScienceInstitute of Radio-Egineering and Electronics, Russian Academy of SciencesMoscowRussia

Personalised recommendations