Skip to main content

Emerging Measurement Techniques For Studies Of Mesoscopic Superconductors

  • Conference paper
Book cover Electron Transport in Nanosystems

Experimental research on mesoscopic systems puts high demands on the measurement infrastructure, including measurement system with associated sample preparation, experimental design, measurement electronics, and data collection. Successful experiments require both the ability to manufacture small samples and to successfully and accurately study their novel properties. Here, we discuss some aspects and recent advancements of general measurement techniques that should benefit several characterization methods such as thermodynamic, magnetic, and transport studies of mesoscopic superconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. R. Schrieffer and M. Tinkham, Superconductivity, Rev. Mod. Phys.71(2), S313–S317 (1999).

    Article  Google Scholar 

  2. H. J. Fink and A. G. Presson, Magnetic irreversible solution of the Ginzburg-Landau equations, Phys. Rev.151(1), 219–228 (1966).

    Article  ADS  Google Scholar 

  3. K. Tanaka, I. Robel, and B. Janko, Electronic structure of multiquantum giant vortex states in mesoscopic superconducting disks, PNAS 99(8), 5233–5236 (2002).

    Article  MATH  ADS  Google Scholar 

  4. P. S. Deo, V. A. Schweigert, and F. M. Peeters, Magnetization of mesoscopic superconducting disks, Phys. Rev. Lett. 79, 4653–4656 (1997).

    Article  ADS  Google Scholar 

  5. V. G. Kogan, J. R. Clem, J. M. Deang, and M. D. Gunzburger, Nucleation of superconductivity in finite anisotropic superconductors and the evolution of surface superconductivity toward the bulk mixed state, Phys. Rev.B 65, 094514 (2002).

    ADS  Google Scholar 

  6. V. R., Misko, V. M. Fomin, J. T. Devreese, and V. V. Moshchalkov, Stable vortex-antivortex molecules in mesoscopic superconducting triangles, Phys. Rev. Lett.90, 147003 (2003).

    Article  ADS  Google Scholar 

  7. V. V. Moshchalkov, L. Gielen, C. Strunk, R. Jonckheere, X. Qiu, C. Van Hae-sendonck, and Y. Bruynseraede, Effect of sample topology on the critical fields of mesoscopic superconductors, Nature373, 319–322 (1995).

    Article  ADS  Google Scholar 

  8. A. K. Geim, I. V. Grigorieva, S. V. Dubonos, J. G. S. Lok, J. C. Maan, A. E. Filippov, and F. M. Peeters, Phase transitions in individual sub-micrometre superconductors, Nature390, 259–262 (1997).

    Article  ADS  Google Scholar 

  9. Y. Guo, Y. -F. Zhang, X. -Y. Bao, T. -Z. Han, Z. Tang, L. -X. Zhang, W. -G. Zhu, E. G. Wang, Q. Niu, Z. Q. Qiu, J. -F. Jia, Z. -X. Zhao, and Q. -K. Xue, Superconductivity modulated by quantum size effects, Science306, 1915–1917 (2004).

    Article  ADS  Google Scholar 

  10. Z. Zhao, C. Y. Han, W. -K. Kwok, H. -H. Wang, U. Welp, J. Wang, and G. W. CrabtreeTuning the architecture of mesostructures by electrodeposition, J. Am. Chem. Soc.126, 2316–2317 (2004).

    Article  Google Scholar 

  11. M. V. Moody, J. L. Paterson, and R. L. Ciali, High-resolution dc-voltage-biased ac conductance bridge for tunnel junction measurements, Rev. Sci. Instrum.50, 903–908 (1979).

    Article  ADS  Google Scholar 

  12. P. -A. Probst and A. Jaquier, Multiple-channel digital lock-in amplifier with PPM resolution, Rev. Sci. Instrum.65(3), 747–750 (1994).

    Article  ADS  Google Scholar 

  13. A. Restelli, R. Abbiati, and A. Geraci, Digital field programmable gate array-based lock-in amplifier for high-performance photon counting applications, Rev. Sci. Instrum.76, 093112 (2005).

    Article  ADS  Google Scholar 

  14. A. Rydh, Calorimetry of Sub-Microgram Grains, in Encyclopedia of Materials: Science and Technology, 2006 Online Update, edited by K. H. J. Buschow, M. C. Flemings, R. W. Cahn, P. Veyssi`ere, E. J. Kramer, and S. Mahajan (Elsevier, Oxford, 2006). Available online athttp://www.sciencedirect.com/science/referenceworks/0080431526.

  15. P. F. Sullivan and G. Seidel, Steady-state, ac-temperature calorimetry, Phys. Rev.173, 679–685 (1968).

    Article  ADS  Google Scholar 

  16. L. Wu, B. Zhou, C. W. Garland, T. Bellini, and D. W. Schaefer, Heat-capacity study of nematic-isotropic and nematic-smectic-A transitions for octylcyanobiphenyl in silica aerogels, Phys. Rev.E 51, 2157–2165 (1995).

    ADS  Google Scholar 

  17. Z. Kutnjak, S. Kralj, G. Lahajnar, and S. Zumer, Calorimetric study of octyl-cyanobiphenyl liquid crystal confined to a controlled-pore glass, Phys. Rev.E 68, 021705 (2003).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Rydh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this paper

Cite this paper

Rydh, A. et al. (2008). Emerging Measurement Techniques For Studies Of Mesoscopic Superconductors. In: Bonča, J., Kruchinin, S. (eds) Electron Transport in Nanosystems. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9146-9_10

Download citation

Publish with us

Policies and ethics