Abstract
The process of hearing can be understood as one arising through the action of a number of nonlinear elements operating near dynamical instabilities in an environment subject to fluctuations. The sound detector in the inner ear, the mechanoelectrical transducer hair cell can be modelled as a forced Hopf oscillator. When such a system is additionally equipped with a regulatory feedback mechanism which ensures that the system always remains self tuned to operate very close to the bifurcation, then the presence of weak noise can assist in enhancing hugely the amplification of weak stimuli. The fast variable gets phase-locked with the external stimulus for all values of the signal amplitude, showing that the phenomenon is distinct from stochastic resonance. Drawing upon some interesting results obtained for a generic nonlinear system, some speculations can be made in the context of hearing. We suggest a plausible explanation for the hitherto unexplained source of the peaks in the spontaneous otoacoutic emission spectra of various organisms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
T. Gold, Proc. R. Soc. B, 135, 492 (1948).
J. Zwislocki, J. Acoust. Soc. Am., 22, 778 (1950)
O. F. Ranke, J. Acoust. Soc. Am., 22, 772 (1950)
T. J. Goblick, Jr., & R. R. Pfeiffer, J. Acoust. Soc. Am., 46, 924 (1969)
H. Duifhuis, J. Acoust. Soc. Am., 59, 408 (1976)
E. Zwicker, Biol. Cybern., 35, 243 (1979)
C. R. Steele & L. A. Taber, J. Acoust. Soc. Am., 65, 1001 (1979)
D. O. Kim, C. E. Molnar & J. W. Mathews, J. Acoust. Soc. Am., 67, 1704 (1980)
S. T. Neely, J. Acoust. Soc. Am., 78, 345 (1985)
E. Zwicker, J. Acoust. Soc. Am., 80, 146 (1986)
R. A. Eatock, D. P. Corey & A. J. Hudspeth, J. Neurosci., 7, 2821 (1987)
A. J. Hudspeth, Nature, 341, 397 (1989)
J. A. Assad, N. Hacohen & D. P. Corey, PNAS, 86, 2918 (1989)
P. Dallos, J. Neurosci., 12, 4575 (1992)
J. A. Assad & D. P. Corey, J. Neurosci., 12, 3291 (1992)
A. J. Hudspeth & P. G. Gillespie, Neuron, 12, 1 (1994)
A. C. Crawford & R. Fettiplace, J. Physiol., 312, 377 (1981)
G. A. Manley, J. Neurophysiol., 86, 541 (2001)
A. J. Hudspeth, Y. Choe, A. D. Mehta & P. Martin, PNAS, 97, 11765 (2000)
F. Jaramillo, V. S. Markin & A. J. Hudspeth, Nature, 364, 527 (1993)
D. P. Corey & A. J. Hudspeth, J. Neurosci., 3, 962 (1983)
M. A. Ruggero, Curr. Opin. Neurobiol., 2, 449 (1992)
J. Howard & A. J. Hudspeth, PNAS, 84, 3064 (1987)
J. Howard & A. J. Hudspeth, Neuron, 1, 189 (1988)
W. Bialek, Ann. Rev. Biophys. Biophys. Chem., 16, 455 (1987)
Y. Choe, M. O. Magnasco & A. J. Hudspeth, Proc. Natl. Acad. Sci. USA, 95, 15321 (1998)
V.M. Eguiluz, M. Ospeck, Y. Choe, A.J. Hudspeth & M.O. Magnasco, Phys. Rev. Lett., 84, 5232 (2000)
M. Ospeck, V. M. Eguiluz & M. O. Magnasco, Biophys. J., 80, 2597 (2001)
S. Camalet, T. Duke, F. Jülicher & J. Prost, PNAS, 97, 3183 (2000)
J. Guckenheimer & P. Holmes, Nonlinear Oscillations, Dynamical Systems & Bifurcations of Vector Fields, Springer-Verlag, (1983)
F. Jaramillo & K. Wiesenfeld, Nature Neurosci., 1, 384 (1998)
L. Moreau & E. Sontag, Phys. Rev., E 68, 020901(R) (2003)
L. Moreau, E. Sontag & M. Arcak, Syst. Control Lett., 50, 229 (2003)
A. Vilfan & T. Duke, Biophys. J., 85, 191 (2003)
J. Balakrishnan, J. Phys. A: Math. Gen., 38, 1627 (2005)
C. Hemming & R. Kapral, Faraday Discuss., 120, 371 (2001)
E. A. Lumpkin & A. J. Hudspeth, PNAS, 92, 10297 (1995)
E. A. Lumpkin & A. J. Hudspeth, J. Neurosci., 18, 6300 (1998)
P. Martin & J. Hudspeth, PNAS, 96, 14306 (1999)
C. Van den Broeck, M. Malek Mansour & F. Baras, J. Stat. Phys., 28, 557 (1982)
F. Baras, M. Malek Mansour & C. Van den Broeck, J. Stat. Phys., 28, 577 (1982)
P. Jung & P. Hänggi, Europhys. Lett. 8, 505 (1989)
P. Jung & P. Hänggi, Phys. Rev. A 41, 2977 (1990)
L. Gammaitoni, P. Hänggi, P. Jung & F. Marchesoni, Rev. Mod. Phys., 70, 223 (1998)
P. Jung & P. Hänggi, Phys. Rev. A 44, 8032 (1991)
S. S. Narayan & M. A. Ruggero, in Proceedings of the Symposium on Recent Development in Auditory Mechanics, eds. H. Wada, T. Takasaka, K. Ikeda, K. Ohyama, & T. Koike (World Scientific Publishing, US, UK, Singapore, 2000)
K. Wiesenfeld, J. Stat. Phys., 38, 1071 (1985)
A. Neiman, P. I. Saparin & L. Stone, Phys. Rev. E 56, 270 (1997)
B. Ashok & J. Balakrishnan, (submitted) (2008)
P. M. Zurek, J. Acoust. Soc. Am., 69, 514 (1981)
W. Denk & W. W. Webb, Hear. Res., 60, 89 (1992)
C. Köppl, in Advances in Hearing Research, ed. G.A. Manley, C. Köppl, H. Fastl & H. Oeckinghaus, pp. 200–209 (World Scientific, Singapore, 1995
C. E. Stuart & A. J. Hudspeth, PNAS, 97, 454 (2000)
M. C. Göpfert, A. D. L. Humphris, J. T. Albert, D. Robert & O. Hendrich, PNAS, 102, 325 (2005).
B. Ashok, J. Balakrishnan & G. Ananthakrishna (in preparation) (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer Science+Business Media B.V.
About this paper
Cite this paper
Balakrishnan, J. (2009). The Role of Dynamical Instabilities and Fluctuations in Hearing. In: Dana, S.K., Roy, P.K., Kurths, J. (eds) Complex Dynamics in Physiological Systems: From Heart to Brain. Understanding Complex Systems. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9143-8_15
Download citation
DOI: https://doi.org/10.1007/978-1-4020-9143-8_15
Publisher Name: Springer, Dordrecht
Print ISBN: 978-1-4020-9142-1
Online ISBN: 978-1-4020-9143-8
eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)