Advertisement

The Role of Dynamical Instabilities and Fluctuations in Hearing

  • J. Balakrishnan
Part of the Understanding Complex Systems book series (UCS)

Abstract

The process of hearing can be understood as one arising through the action of a number of nonlinear elements operating near dynamical instabilities in an environment subject to fluctuations. The sound detector in the inner ear, the mechanoelectrical transducer hair cell can be modelled as a forced Hopf oscillator. When such a system is additionally equipped with a regulatory feedback mechanism which ensures that the system always remains self tuned to operate very close to the bifurcation, then the presence of weak noise can assist in enhancing hugely the amplification of weak stimuli. The fast variable gets phase-locked with the external stimulus for all values of the signal amplitude, showing that the phenomenon is distinct from stochastic resonance. Drawing upon some interesting results obtained for a generic nonlinear system, some speculations can be made in the context of hearing. We suggest a plausible explanation for the hitherto unexplained source of the peaks in the spontaneous otoacoutic emission spectra of various organisms.

Keywords

Dynamical instabilities Fluctuations Hearing Nonlinearities Self-tuning mechanism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Gold, Proc. R. Soc. B, 135, 492 (1948).Google Scholar
  2. 2.
    J. Zwislocki, J. Acoust. Soc. Am., 22, 778 (1950)CrossRefGoogle Scholar
  3. 3.
    O. F. Ranke, J. Acoust. Soc. Am., 22, 772 (1950)CrossRefGoogle Scholar
  4. 4.
    T. J. Goblick, Jr., & R. R. Pfeiffer, J. Acoust. Soc. Am., 46, 924 (1969)PubMedCrossRefGoogle Scholar
  5. 5.
    H. Duifhuis, J. Acoust. Soc. Am., 59, 408 (1976)PubMedCrossRefGoogle Scholar
  6. 6.
    E. Zwicker, Biol. Cybern., 35, 243 (1979)PubMedCrossRefGoogle Scholar
  7. 7.
    C. R. Steele & L. A. Taber, J. Acoust. Soc. Am., 65, 1001 (1979)PubMedCrossRefGoogle Scholar
  8. 8.
    D. O. Kim, C. E. Molnar & J. W. Mathews, J. Acoust. Soc. Am., 67, 1704 (1980)PubMedCrossRefGoogle Scholar
  9. 9.
    S. T. Neely, J. Acoust. Soc. Am., 78, 345 (1985)PubMedCrossRefGoogle Scholar
  10. 10.
    E. Zwicker, J. Acoust. Soc. Am., 80, 146 (1986)PubMedCrossRefGoogle Scholar
  11. 11.
    R. A. Eatock, D. P. Corey & A. J. Hudspeth, J. Neurosci., 7, 2821 (1987)PubMedGoogle Scholar
  12. 12.
    A. J. Hudspeth, Nature, 341, 397 (1989)PubMedCrossRefGoogle Scholar
  13. 13.
    J. A. Assad, N. Hacohen & D. P. Corey, PNAS, 86, 2918 (1989)Google Scholar
  14. 14.
    P. Dallos, J. Neurosci., 12, 4575 (1992)PubMedGoogle Scholar
  15. 15.
    J. A. Assad & D. P. Corey, J. Neurosci., 12, 3291 (1992)PubMedGoogle Scholar
  16. 16.
    A. J. Hudspeth & P. G. Gillespie, Neuron, 12, 1 (1994)PubMedCrossRefGoogle Scholar
  17. 17.
    A. C. Crawford & R. Fettiplace, J. Physiol., 312, 377 (1981)PubMedGoogle Scholar
  18. 18.
    G. A. Manley, J. Neurophysiol., 86, 541 (2001)PubMedGoogle Scholar
  19. 19.
    A. J. Hudspeth, Y. Choe, A. D. Mehta & P. Martin, PNAS, 97, 11765 (2000)PubMedCrossRefGoogle Scholar
  20. 20.
    F. Jaramillo, V. S. Markin & A. J. Hudspeth, Nature, 364, 527 (1993)PubMedCrossRefGoogle Scholar
  21. 21.
    D. P. Corey & A. J. Hudspeth, J. Neurosci., 3, 962 (1983)PubMedGoogle Scholar
  22. 22.
    M. A. Ruggero, Curr. Opin. Neurobiol., 2, 449 (1992)PubMedCrossRefGoogle Scholar
  23. 23.
    J. Howard & A. J. Hudspeth, PNAS, 84, 3064 (1987)PubMedCrossRefGoogle Scholar
  24. 24.
    J. Howard & A. J. Hudspeth, Neuron, 1, 189 (1988)PubMedCrossRefGoogle Scholar
  25. 25.
    W. Bialek, Ann. Rev. Biophys. Biophys. Chem., 16, 455 (1987)CrossRefGoogle Scholar
  26. 26.
    Y. Choe, M. O. Magnasco & A. J. Hudspeth, Proc. Natl. Acad. Sci. USA, 95, 15321 (1998)PubMedCrossRefGoogle Scholar
  27. 27.
    V.M. Eguiluz, M. Ospeck, Y. Choe, A.J. Hudspeth & M.O. Magnasco, Phys. Rev. Lett., 84, 5232 (2000)PubMedCrossRefGoogle Scholar
  28. 28.
    M. Ospeck, V. M. Eguiluz & M. O. Magnasco, Biophys. J., 80, 2597 (2001)PubMedCrossRefGoogle Scholar
  29. 29.
    S. Camalet, T. Duke, F. Jülicher & J. Prost, PNAS, 97, 3183 (2000)PubMedCrossRefGoogle Scholar
  30. 30.
    J. Guckenheimer & P. Holmes, Nonlinear Oscillations, Dynamical Systems & Bifurcations of Vector Fields, Springer-Verlag, (1983)Google Scholar
  31. 31.
    F. Jaramillo & K. Wiesenfeld, Nature Neurosci., 1, 384 (1998)PubMedCrossRefGoogle Scholar
  32. 32.
    L. Moreau & E. Sontag, Phys. Rev., E 68, 020901(R) (2003)Google Scholar
  33. 33.
    L. Moreau, E. Sontag & M. Arcak, Syst. Control Lett., 50, 229 (2003)CrossRefGoogle Scholar
  34. 34.
    A. Vilfan & T. Duke, Biophys. J., 85, 191 (2003)PubMedGoogle Scholar
  35. 35.
    J. Balakrishnan, J. Phys. A: Math. Gen., 38, 1627 (2005)CrossRefGoogle Scholar
  36. 36.
    C. Hemming & R. Kapral, Faraday Discuss., 120, 371 (2001)PubMedCrossRefGoogle Scholar
  37. 37.
    E. A. Lumpkin & A. J. Hudspeth, PNAS, 92, 10297 (1995)PubMedCrossRefGoogle Scholar
  38. 38.
    E. A. Lumpkin & A. J. Hudspeth, J. Neurosci., 18, 6300 (1998)PubMedGoogle Scholar
  39. 39.
    P. Martin & J. Hudspeth, PNAS, 96, 14306 (1999)PubMedCrossRefGoogle Scholar
  40. 40.
    C. Van den Broeck, M. Malek Mansour & F. Baras, J. Stat. Phys., 28, 557 (1982)Google Scholar
  41. 41.
    F. Baras, M. Malek Mansour & C. Van den Broeck, J. Stat. Phys., 28, 577 (1982)Google Scholar
  42. 42.
    P. Jung & P. Hänggi, Europhys. Lett. 8, 505 (1989)CrossRefGoogle Scholar
  43. 43.
    P. Jung & P. Hänggi, Phys. Rev. A 41, 2977 (1990)Google Scholar
  44. 44.
    L. Gammaitoni, P. Hänggi, P. Jung & F. Marchesoni, Rev. Mod. Phys., 70, 223 (1998)CrossRefGoogle Scholar
  45. 45.
    P. Jung & P. Hänggi, Phys. Rev. A 44, 8032 (1991)Google Scholar
  46. 46.
    S. S. Narayan & M. A. Ruggero, in Proceedings of the Symposium on Recent Development in Auditory Mechanics, eds. H. Wada, T. Takasaka, K. Ikeda, K. Ohyama, & T. Koike (World Scientific Publishing, US, UK, Singapore, 2000)Google Scholar
  47. 47.
    K. Wiesenfeld, J. Stat. Phys., 38, 1071 (1985)CrossRefGoogle Scholar
  48. 48.
    A. Neiman, P. I. Saparin & L. Stone, Phys. Rev. E 56, 270 (1997)Google Scholar
  49. 49.
    B. Ashok & J. Balakrishnan, (submitted) (2008)Google Scholar
  50. 50.
    P. M. Zurek, J. Acoust. Soc. Am., 69, 514 (1981)PubMedCrossRefGoogle Scholar
  51. 51.
    W. Denk & W. W. Webb, Hear. Res., 60, 89 (1992)PubMedCrossRefGoogle Scholar
  52. 52.
    C. Köppl, in Advances in Hearing Research, ed. G.A. Manley, C. Köppl, H. Fastl & H. Oeckinghaus, pp. 200–209 (World Scientific, Singapore, 1995Google Scholar
  53. 53.
    C. E. Stuart & A. J. Hudspeth, PNAS, 97, 454 (2000)CrossRefGoogle Scholar
  54. 54.
    M. C. Göpfert, A. D. L. Humphris, J. T. Albert, D. Robert & O. Hendrich, PNAS, 102, 325 (2005).PubMedCrossRefGoogle Scholar
  55. 55.
    B. Ashok, J. Balakrishnan & G. Ananthakrishna (in preparation) (2008)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • J. Balakrishnan
    • 1
  1. 1.School of PhysicsUniversity of Hyderabad, Central University P.OGachi BowliIndia

Personalised recommendations