Spatial patterns and GIS habitat modelling of fish in two French Mediterranean coastal areas

  • Romain Crec’hriou
  • Patrick Bonhomme
  • Géraldine Criquet
  • Gwenaêl Cadiou
  • Philippe Lenfant
  • Guillaume Bernard
  • Erwan Roussel
  • Laurence Le Diréach
  • Serge Planes
Part of the Developments in Hydrobiology book series (DIHY, volume 203)


The spring and summer distribution of adults and larval fish stages of Sparids and Scorpaenids was studied in two sites in the western Mediterranean. Fish adults and larvae of those two taxa were identified and sorted according to their life stages in order to study their distribution and develop suitable habitat maps. Study areas were located on French coastal waters, the “Côte Bleue” Marine Park (CBMP) has an east-west orientation with substratum dominated by Posidonia beds and the Marine Reserve of Cerbe’re-Banyuls (MRCB) runs north-south and is dominated by rocky substrates. Generalised Additive Models (GAM) combined with Geographic Information System (GIS), were used to model the suitable habitats for fish larvae and adults. During spring months, waters exhibit low Sea Surface Temperatures (SST), low Photosynthetically Active Radiation (PAR), high values of Sea Surface Chlorophyll-a concentration (Chl-a), and mostly negative values of Sea Level Anomaly (SLA) indicating anticyclonic eddies. During summer months, waters have higher values of SST, lower values of Chl-a and positive values of SLA indicating cyclonic eddies. The results revealed different environmental responses in the distribution of fish adults and larvae in the CBMP and MRCB. Suitable habitats for adult were mainly dependent on the substrate types (Posidonia meadows and sand) and they were found close to the coast, whereas fish larvae were dependent on environmental cues (Chl-a, SLA, SST) with a sparse spatial distribution.


Fish Adults Larvae Suitable habitat Essential fish habitat GAM GIS Western Mediterranean 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akaike, H., 1973. Information theory and an extension of the maximum likelihood principle. In Petrov, B. N. & F. Csaki (eds), Proceedings of the 2nd International Symposium on Information Theory. Publishing House of the Hungarian Academy of Sciences, Budapest: 268–281.Google Scholar
  2. Akaike, H., 1974. A new look at the statistical identification model. IEEE Transactions on Automatic Control 19: 716–723.CrossRefGoogle Scholar
  3. Alemany, F., S. Deudero, B. Morales-Nin, J. L. Lopez-Jurado, J. Jansa, M. Palmer & I. Palomera, 2006. Influence of physical environmental factors on the composition and horizontal distribution of summer larval fish assemblages off Mallorca island (Balearic archipelago, western Mediterranean). Journal of Plankton Research 28: 473–487.CrossRefGoogle Scholar
  4. Bakun, A., 2006. Fronts and eddies as key structures in the habitat of marine fish larvae: opportunity, adaptive response and competitive advantage. Scientia Marina 70: 105–122.CrossRefGoogle Scholar
  5. Bell, J. D., 1983. Effects of depth and marine reserve fishing restrictions on the structure of a rocky reef fish assemblage in the North-Western Mediterranean Sea. Journal of Applied Ecology 20: 357–369.CrossRefGoogle Scholar
  6. Boudouresque, C. F., G. Bernard, P. Bonhomme, E. Charbonnel, G. Diviacco, A. Meinesz, G. Pergent, C. Pergent-Martini, S. Ruitton & L. Tunesi, 2006. Preservation et conservation des herbiers a Posidonia oceanica. RAMOGE Publication: 1–202.Google Scholar
  7. Brown A. M., J. M. Bellido, V. D. Valavanis, A. Giraldez, 2006. Spatio-temporal shifts in the distribution of the Spanish Mediterranean pelagic community in relation to environmental influences. Proceedings of the ICES Annual Science Conference 2006, Sept. 19–23, 2006, Maastricht, The Netherlands. ICES CM 2006/O:13.Google Scholar
  8. Catalán, I. A., J. P. Rubín, G. Navarro & L. Prieto, 2006. Larval fish distribution in two different hydrographic situations in the Gulf of Cádiz. Deep Sea Research Part II: Topical Studies in Oceanography 53: 1377–1390.CrossRefGoogle Scholar
  9. Del Pilar Ruso, Y. & J. T. Bayle Sempere, 2006. Diel and vertical movements of preflexion fish larvae assemblages associated with Posidonia oceanica beds. Scientia Marina 70: 399–406.Google Scholar
  10. Deudero, S., G. Morey, A. Frau, J. Moranta & I. Isabel Moreno, 2008. Temporal trends of littoral fishes at deep Posidonia oceanica seagrass meadows in a temperate coastal zone. Journal of Marine Systems 70: 182–195.CrossRefGoogle Scholar
  11. Eastwood, P. D., G. J. Meaden & A. Grioche, 2001. Modelling spatial variations in spawning habitat suitability for the sol Solea solea using regression quantiles and GIS procedures. Marine Ecological Progress Series 224: 251–266.CrossRefGoogle Scholar
  12. European Commission, 2001. Green Paper: The Future of the Common Fisheries Policy. COM (2001): 135.Google Scholar
  13. Fischer, W., M. L. Bauchot & M. Schneider, 1987. Fiches FAO d’identification des espe’ces pour les besoins de la pêche. (Révision 1). Méditerranée et mer Noire. Zone de pêche 37(2): 761–1530.Google Scholar
  14. Fogarty, M. J., 1999. Essential habitat, marine reserves and fishery management. Trends in Ecology & Evolution 14: 133–134.CrossRefGoogle Scholar
  15. Francour, P., 1997. Fish assemblages of Posidonia oceanica beds at Port-Cros (France, NW Mediterranean): Assessment of composition and long term fluctuations by visual census. Marine Ecology 18: 157–173.CrossRefGoogle Scholar
  16. Francour, P., 2000. Evolution spatio-temporelle à long terme des peuplements de poissons des herbiers à Posidonia oceanica de la réserve naturelle de Scandola (Corse, Méditerranée nord-occidentale). Cybium 24: 85–95.Google Scholar
  17. Garcia-Charton, J. A. & A. Perez-Ruzafa, 1998. Correlation between habitat structure and a rocky reef fish assemblage in the southwest Mediterranean. Marine Ecology 19: 111–128.CrossRefGoogle Scholar
  18. Garcia-Charton, J. A. & A. Perez-Ruzafa, 2001. Spatial pattern and the habitat structure of a Mediterranean rocky reef fish local assemblage. Marine Biology 138: 917–934.CrossRefGoogle Scholar
  19. Garcia-Charton, J. A., A. Perez-Ruzafa, P. Saanchez-Jerez, J. T. Bayle-Sempere, O. Renones & D. Moreno, 2004. Multiscale spatial heterogeneity, habitat structure, and the effect of marine reserves on Western Mediterranean rocky reef fish assemblages. Marine Biology 144: 161–182.CrossRefGoogle Scholar
  20. Garcia-Rubies, A. & E. Macpherson, 1995. Substrate use and temporal pattern of recruitment in juvenile fishes of the Mediterranean littoral. Marine Biology 124: 35–42.CrossRefGoogle Scholar
  21. Guidetti, P., 2000. Differences among fish assemblages associated with nearshore Posidonia oceanica Seagrass beds, rocky-algal reefs and unvegetated sand habitats in the Adriatic Sea. Estuarine. Coastal and Shelf Science 50: 515–529.CrossRefGoogle Scholar
  22. Guisan, A. & N. E. Zimmermann, 2000. Predictive habitat distribution models in ecology. Ecological Modelling 135: 147–186.CrossRefGoogle Scholar
  23. Harmelin, J. G., 1987. Structure et variabilité de l’ichthyofaune d’une zone rocheuse protégée en Méditerranée (Parc National de Port — Cros, France). Marine Ecology 8: 263–284.CrossRefGoogle Scholar
  24. Harmelin, J. G., F. Bachet & F. Garcia, 1995. Mediterranean Marine reserves: Fish indices as tests of protection efficiency. Marine Ecology 16: 233–250.CrossRefGoogle Scholar
  25. Harmelin-Vivien, M. L., 1984. Ichtyofaune des Herbiers de Posidonies du Parc Naturel Regional de Corse. In Boudouresque, C. F., A. Jeudy de Grissac & J. Olivier (eds), First International Workshop on Posidonia oceanica Beds. GIS Posidonie, Marseille: 291–301.Google Scholar
  26. Harmelin-Vivien, M. L., R. A. Kaim-Malka, M. Ledoyer & S. S. Jacob-Abraham, 1989. Food partitioning among Scorpaenid fishes in Mediterranean seagrass beds. Journal of Fish Biology 34: 715–734.CrossRefGoogle Scholar
  27. Hastie, T. J. & R. J. Tibshirani, 1990. Generalized Additive Models. Chapman & Hall, London.Google Scholar
  28. Koubbi, P., C. Loots, G. Cotonnec, X. Harlay, A. Grioche, S. Vaz, C. Martin, M. Walkey & A. Carpentier, 2006. Spatial patterns and GIS habitat modelling of Solea solea, Pleuronectesflesus and Limanda limanda fish larvae in the eastern English Channel during the spring. Scientia Marina 70: 147–157.CrossRefGoogle Scholar
  29. La Mesa, M., G. La Mesa & M. Micalizzi, 2005. Age and growth of Madeira scorpionfish, Scorpaena maderensis Valenciennes, 1833, in the central Mediterranean. Fisheries Research 74: 265–272.CrossRefGoogle Scholar
  30. Le Pape, O., F. Chauvet, S. Mahevas, P. Lazure, D. Guerault & Y. Desaunay, 2003. Quantitative description of habitat suitability for the juvenile common sole (Solea solea, L.) and contribution of different habitats to the adult population in the Bay of Biscay (France). Journal of Sea Research 50: 139–149.CrossRefGoogle Scholar
  31. Le Pape, O., L. Baulier, A. Cloarec, J. Martin, F. Le Loc’h & Y. Desaunay, 2007. Habitat suitability for juvenile common sole (Solea solea, L.) in the Bay of Biscay (France): A quantitative description using indicators based on epibenthic fauna. Journal of Sea Research 57: 126–136.CrossRefGoogle Scholar
  32. Lloret, J. & S. Planes, 2003. Condition, feeding and reproductive success of white seabream (Diplodus sargus) as indicators of habitat quality and the effect of protection in the northwestern Mediterranean. Marine Ecology Progress Series 248: 197–208.CrossRefGoogle Scholar
  33. Macpherson, E., A. Gordoa & A. García-Rubies, 2002. Biomass size spectra in littoral fishes in protected and unprotected areas in the NW Mediterranean. Estuarine Coastal and Shelf Science 55: 777–788.CrossRefGoogle Scholar
  34. Masó, M., A. Sabatés & M. P. Olivar, 1998. Short-term physical and biological variability in the shelf-slope region of the NW Mediterranean during the spring transition period. Continental Shelf Research 18: 661–675.CrossRefGoogle Scholar
  35. Mariani, S., 2006. Life-history-and ecosystem-driven variation in composition and residence pattern of seabream species (Perciformes: Sparidae) in two Mediterranean coastal lagoons. Marine Pollution Bulletin 53: 120–127.CrossRefGoogle Scholar
  36. Maynou, F., 1998. The application of geostatistics in mapping and assessment of demersal resources. Nephrops norvegicus (L.) in the northwestern Mediterranean: A case study. Scienta Marina 62: 117–133.Google Scholar
  37. NMFS, 1996. Magnuson-Stevens Fishery Conservation and Management Act: As amended through October 11, 1996. U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, NOAA Technical Memorandum NMFS-F/SPO 23: 121.Google Scholar
  38. Olivar, M. P. & A. Sabates, 1997. Vertical distribution of fish larvae in the NW Mediterranean Sea in spring. Marine Biology 129: 289–300.CrossRefGoogle Scholar
  39. Olivar, M. P., I. A. Catalán, M. Emelianov & M. L. Fernández de Puelles, 2003. Early stages of Sardina pilchardus and environmental anomalies in the northwestern Mediterranean. Estuarine Coastal and Shelf Science 54: 609–619.CrossRefGoogle Scholar
  40. Pajuelo, J. G. & J. M. Lorenzo, 1998. Population biology of the common pandora Pagellus erythrinus (Pisces: Sparidae) off the Canary Islands. Fisheries Research 36: 75–86.CrossRefGoogle Scholar
  41. Parsons, T. R. & P. J. Harrison, 2000. Introduction. In Harrison, P. J. & T. R. Parsons (eds), Fisheries Oceanography. An Integrative Approach to Fisheries Ecology and Management. Oxford, Blackwell Science: 347.Google Scholar
  42. Petitgas, P., 1996. Geostatistics and their applications to fisheries survey data. In Moksness, E. & B. A. Megrey (eds), Computers in Fisheries Research. Chapman & Hall, London: 113–141.Google Scholar
  43. Petrakis, G. & K. I. Stergiou, 1995. Weight-length relationships for 33 fish species in Greek waters. Fisheries Research 21: 465–469.CrossRefGoogle Scholar
  44. Planes, S., E. Macpherson, F. Biagi, A. Garcia-Rubies, J. Harmelin, M. Harmelin-Vivien, J. Y. Jouvenel, L. Tunesi, L. Vigliola & R. Galzin, 1999. Spatio-temporal variability in growth of juvenile sparid fishes from the Mediterranean littoral zone. Journal of the Marine Biological Association of the United Kingdom 79: 137–143.CrossRefGoogle Scholar
  45. Rufino, M. M., F. Maynou, P. Abello & F. Sarda, 2006. Spatial and environmental factors affecting the distribution of the main decapod crustacean prey species in the NW Mediterranean. Hydrobiologia 555: 129–141.CrossRefGoogle Scholar
  46. Sabates, A., 1990. Distribution pattern of larval fish populations in the Northwestern Mediterranean. Marine Ecology Progress series 59: 75–82.CrossRefGoogle Scholar
  47. Sabates, A. & P. Olivar, 1996. Variation of larval fish distributions associated with variability in the location of a shelf-slope front. Marine Ecology Progress series 135: 11–20.CrossRefGoogle Scholar
  48. Sabatés, A., M. P. Olivar, J. Salat, I. Palomera & F. Alemany, 2007. Physical and biological processes controlling the distribution of fish larvae in the NW Mediterranean. Progress in Oceanography 74: 355–376.CrossRefGoogle Scholar
  49. Santos, R. S., S. Hawkins, L. R. Monteiro, M. Alves & E. J. Isidro, 1995. Case studies and reviews. Marine research, resources and conservation in the Azores. Aquatic Conservation: Marine Freshwater Ecosystem 5: 311–354.CrossRefGoogle Scholar
  50. Santos, M. N., M. B. Gaspar, P. Vasconcelos & C. C. Monteiro, 2002. Weight-length relationships for 50 selected fish species of the Algarve coast (southern Portugal). Fisheries Research 59: 289–295.CrossRefGoogle Scholar
  51. Stelzenmüller, V., F. Maynou, S. Ehrich & G. P. Zauke, 2004. Spatial analysis of twaite shad, Alosa fallax (Lacepe’de, 1803), in the Southern North Sea: Application of nonlinear geostatistics as a tool to search for special areas of conservation. International Review of Hydrobiology 89: 337–351.CrossRefGoogle Scholar
  52. Stelzenmüller, V., S. Ehrich & G. P. Zauke, 2005. Effects of survey scale and water depth on the assessment of spatial distribution patterns of selected fish in the northern North Sea showing different levels of aggregation. Marine Biology Research 1: 375–387.CrossRefGoogle Scholar
  53. Stelzenmüller, V., S. Ehrich & G. P. Zauke, 2006. Analysis of meso scaled spatial distribution of the dab (Limanda limanda) in the German Bight: Does the type of fishing gear employed matter? Fisheries Science 72: 95–104.CrossRefGoogle Scholar
  54. Stelzenmüller, V., F. Maynou & P. Martin, 2007. Spatial assessment of benefits of a coastal Mediterranean Marine Protected Area. Biological Conservation 136: 571–583.CrossRefGoogle Scholar
  55. Stergiou, K. I. & K. Erzini, 2002. Comparative fixed gear studies in the Cyclades (Aegean Sea): Size selectivity of small-hook longlines and monofilament gill nets. Fisheries Research 58: 25–40.CrossRefGoogle Scholar
  56. Stobart, B., J. A. García-Charton, C. Espejo, E. Rochel, R. Goñi, O. Reñones, A. Herrero, R. Crec’hriou, S. Polti, C. Marcos, S. Planes & A. Pérez-Ruzafa, 2007. A baited underwater video technique to assess shallow-water Mediterranean fish assemblages: Methodological evaluation. Journal of Experimental Marine Biology and Ecology 345: 158–174.CrossRefGoogle Scholar
  57. Stoner, A. W., J. P. Manderson & J. P. Pessutti, 2001. Spatially explicit analysis of estuarine habitat for juvenile winter flounder: Combining generalized additive models and geographic information systems. Marine Ecological Progress Series 213: 253–271.CrossRefGoogle Scholar
  58. Stoner, A. W., M. L. Spencer & C. H. Ryer, 2007. Flatfishhabitat associations in Alaska nursery grounds: Use of continuous video records for multi-scale spatial analysis. Journal of Sea Research 57: 137–150.CrossRefGoogle Scholar
  59. Tremblay, M. & M. Sinclair, 1984. Timing of spawning of Atlantic herring (Clupea harengus harengus) populations and the match-mismatch theory. Canadian Journal of Fisheries and Aquatic Sciences 41: 1055–1065.CrossRefGoogle Scholar
  60. Valavanis, V. D., S. Georgakarakos, A. Kapantagakis, A. Palialexis & I. Katara, 2004. A GIS environmental modeling approach to essential fish habitat designation. Ecological Modelling 178: 417–427.CrossRefGoogle Scholar
  61. Vanderklift, M. A. & C. A. Jacoby, 2003. Patterns in fish assemblages 25 years after major seagrass loss. Marine Ecology Progress Series 247: 225–235.CrossRefGoogle Scholar
  62. Vigliola, L., M. L. Harmelin-Vivien, F. Biagi, R. Galzin, A. García-Rubies, J. G. Harmelin, J. Y. Jouvenel, L. Le Direach-Bousier, E. Macpherson & L. Tunesi, 1998. Spatial and temporal patterns of settlement among sparid fishes of the genus Diplodus in the northwestern Mediterranean. Marine Ecology Progress Series 168: 45–56.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Romain Crec’hriou
    • 1
  • Patrick Bonhomme
    • 2
  • Géraldine Criquet
    • 1
  • Gwenaêl Cadiou
    • 2
  • Philippe Lenfant
    • 1
  • Guillaume Bernard
    • 2
  • Erwan Roussel
    • 1
  • Laurence Le Diréach
    • 2
  • Serge Planes
    • 1
  1. 1.Laboratoire Ecosyste’mes Aquatiques Tropicaux et Méditerranéens, UMR 5244 CNRS-EPHE-UPVD Biologie et Ecologie tropicale et méditerranéenne CBETMUniversité de PerpignanPerpignanFrance
  2. 2.Centre d’Océanologie de MarseilleParc Scientifique et Technologique de LuminyMarseilleFrance

Personalised recommendations