Identification of hake distribution pattern and nursery grounds in the Hellenic seas by means of generalized additive models

  • George Tserpes
  • Chrissi-Yianna Politou
  • Panagiota Peristeraki
  • Argyris Kallianiotis
  • Costas Papaconstantinou
Part of the Developments in Hydrobiology book series (DIHY, volume 203)


A time series of hake abundance data obtained from the “MEDITS” experimental surveys carried out in the Greek seas from 1996 to 2006 have been modeled by means of Generalized Additive Models (GAMs), as functions of spatial and temporal variables, including sampling position (latitude-longitude interaction), depth, and year. All variables were highly significant but most of the variation was explained by the sampling position and the depth. Total abundance was higher in the 100–450 m depth zone, while juveniles showed preference for shallower waters, being more abundant from 100 to 320 m. Model predictions were used to generate density distributions maps, which revealed that total abundance is relatively higher in the western part of the Aegean Sea and in the eastern part of the Cretan Sea, while its maximum values are expected in the Saronikos Gulf. Nursery grounds are restricted in specific regions with the most important of them being in the Saronikos Gulf and its surrounding area.


Hake Mediterranean Distribution Nursery Generalized Additive Models 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bertrand, J. A., L. Gil de Sola, C. Papaconstantinou, G. Relini & A. Souplet, 2000. An international bottom trawl survey in the Mediterranean: the MEDITS programme. In Bertrand, J. A. & G. Relini (eds), Demersal Resources in the Mediterranean. Actes de Colloques 26, Ifremer, Plouzané France: 76–93.Google Scholar
  2. Bertrand, J. A., L. Gil de Sola, C. Papaconstantinou, G. Relini & A. Souplet, 2002. The general specifications of the Medits surveys. Scientia Marina 66: 9–17.Google Scholar
  3. Bigelow, K. A., C. H. Boggs & X. He, 1999. Environmental effects on swordfish and blue shark catch rates in the US North Pacific longline fishery. Fisheries Oceanography 8: 178–198.CrossRefGoogle Scholar
  4. Borchers, D. L., S. T. Buckland, I. G. Priede & S. Ahmadi, 1997. Improving the precision of the daily egg production method using generalised additive models. Canadian Journal Fisheries Aquatic Science 54: 2727–2742.CrossRefGoogle Scholar
  5. Campillo, A., Y. Aldebert, J. L. Bigot & B. Liorzou, 1991. Repartition des principales especes commerciales du Golfe du Lion en fonction des saisons (et plus particulierement des groupes 0 et 1). FAO Fisheries Report 447: 103–118.Google Scholar
  6. Cleveland, W. S. & S. J. Devlin, 1988. Locally-weighted regression: an approach to regression analysis by local fitting. Journal of American Statistical Association 83: 596–610.CrossRefGoogle Scholar
  7. Davis, J. C., 1986. Statistics and Data Analysis in Geology. John Wiley and Sons, New York.Google Scholar
  8. Daskalov, G., 1999. Relating fish recruitment to stock biomass and physical environment in the Black Sea using generalized additive models. Fisheries Research 41: 1–23.CrossRefGoogle Scholar
  9. Golden Software, 2002. SURFER Version 8. Golden Software Inc., Golden, Colorado.Google Scholar
  10. Hastie, T. J. & R. J. Tibshirani, 1990. Generalized Additive Models. Chapman and Hall, London: 335 pp.Google Scholar
  11. Inada, T., 1981. Studies on the Merlucciid fish. Far Seas Fisheries Research Laboratory Bulletin 18: 1–172.Google Scholar
  12. Lo Brutto, S., M. Arculeo, A. Mauro, M. Scalisi, M. Cammarata & N. Parrinello, 1998. Allozymic variation in Mediterranean hake Merluccius merluccius (Gadidae). Italian Journal of Zoology 65: 49–52.CrossRefGoogle Scholar
  13. Maravelias, C. D. & C. Papaconstantinou, 2003. Size-related habitat use, aggregation patterns and abundance of anglerfish (Lophius budegassa) in the Mediterranean Sea determined by generalized additive modeling. Journal of Marine Biological Association of the United Kingdom 83: 1171–1178.CrossRefGoogle Scholar
  14. Maravelias, C. D. & C. Papaconstantinou, 2006. Geographic, seasonal and bathymetric distribution of demersal fish species in the eastern Mediterranean. Journal Applied Ichthyology 22: 35–42.CrossRefGoogle Scholar
  15. Maravelias, C. D., E. V. Tsitsika & C. Papaconstantinou, 2007. Environmental influences on the spatial distribution of European hake (Merluccius merluccius) and red mullet (Mullus barbatus) in the Mediterranean. Ecological Research 22: 678–685.CrossRefGoogle Scholar
  16. Oliver, P. & E. Massutí, 1995. Biology and fisheries of western Mediterranean hake (M. merluccius). In Alheit, J. & T. J. Pitcher (eds), Hake. Fisheries, Ecology and Markets. Fish and Fisheries Series 15. Chapman & Hall, London: 181–202.Google Scholar
  17. Orsi Relini, L., M. Cappanera & F. Florentino, 1989. Spatialtemporal distribution and growth of Merluccius merluccius recruits in the Ligurian Sea. Observations on the 0 Group. Cybium 13: 263–270.Google Scholar
  18. Orsi Relini, L., C. Papaconstantinou, S. Jukic-Peladic, A. Souplet, L. Gilde Sola, C. Piccinetti, S. Kavadas & M. Rossi, 2002. Distribution of the Mediterranean hake populations (Merluccius merluccius smiridus Rafinesque, 1810) (Osteichthyes: Gadiformes) based on six years monitoring by trawl-surveys: some implications for management. Scientia Marina 66: 21–38.CrossRefGoogle Scholar
  19. Papaconstantinou, C. & H. Farrugio, 2000. Fisheries in the Mediterranean. Mediterranean Marine Science 1: 5–18.Google Scholar
  20. Papaconstantinou, C. & K. I. Stergiou, 1995. Biology and fisheries of eastern Mediterranean hake (M. merluccius). In Alheit, J. & T. J. Pitcher (eds), Hake. Fisheries, Ecology and Markets. Fish and Fisheries Series 15. Chapman & Hall, London: 149–180.Google Scholar
  21. Pla, C., A. Vila & J. L. Garcia-Marin, 1991. Differentiation de stocks de merlu (Merluccius merluccius) par I’analyse genetique: comparation de plusiers populations mediterraneennes et atlantiques du littoral espagnol. FAO Fisheries Report 447: 87–93.Google Scholar
  22. Recasens, L., A. Lombarte, B. Morales-Nin & G. J. Torres, 1998. Spatiotemporal variation in the population structure of the European hake in the NW Mediterranean. Journal Fish Biology 53: 387–401.CrossRefGoogle Scholar
  23. Roldan, M. I., J. L. Garcia-Marin, M. F. Utter & C. Pla, 1998. Population genetic structure of European hake, Merluccius merluccius. Heredity 81: 327–334.CrossRefGoogle Scholar
  24. Tserpes, G. & P. Peristeraki, 2002. Trends in the abundance of demersal species in the southern Aegean Sea. Scientia Marina 66: 243–252.Google Scholar
  25. Tserpes, G., J. Haralabous & C. Maravelias, 2007. A non-equilibrium surplus production model approach utilizing MEDITS data. GFCM Workshop on Trawl Survey Based Monitoring Fishery System in the Mediterranean, Rome, 26–28 March 2007. Scholar
  26. Tsimenides, N., C. Papaconstantinou & C. Daoulas, 1978. Age and growth of hake (Merluccius merluccius) in the Saronikos and Thermaikos gulfs. Thalassographica 2: 27–56.Google Scholar
  27. Vassilopoulou, V. & C. Papaconstantinou, 1987. Distribution and catches per unit effort of the hake and the red mullet in the western coasts of Greece. FAO Fisheries Report 394: 174–180.Google Scholar
  28. Venables, W. N. & B. D. Ripley, 1997. Modern Applied Statistics with S-PLUS, 2nd edn. Springer, New York.Google Scholar
  29. Vignaux, M., 1996. Analysis of spatial structure in fish distribution using commercial catch and effort data from the New Zealand hoki fishery. Canadian Journal of Fisheries and Aquatic Science 53: 963–973.CrossRefGoogle Scholar
  30. Walsh, A. & P. Kleiber, 2001. Generalized additive model and regression tree analyses of blue shark (Prionace glauca) catch rates by the Hawaii-based commercial longline fishery. Fisheries Research 53: 115–131.CrossRefGoogle Scholar
  31. Whitehead, P. J. P., M. L. Bauchot, J. C. Hureau, J. Nielsen & E. Tortonese, 1984. Fishes of the North-eastern Atlantic and the Mediterranean, Vol. II. UNESCO, Paris.Google Scholar
  32. Ye, Y., M. A. Hisaini & A. A. Baz, 2001. Use of generalized linear models to analyse catch rates having zero values: the Kuwait driftnet fishery. Fisheries Research 53: 151–168.CrossRefGoogle Scholar
  33. Zupanovic, S. & I. Jardas, 1986. A contribution to the study of biology and population dynamics of the Adriatic hake, Merluccius merluccius (L). Acta Adriatica 27: 97–146.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • George Tserpes
    • 1
  • Chrissi-Yianna Politou
    • 2
  • Panagiota Peristeraki
    • 1
  • Argyris Kallianiotis
    • 3
  • Costas Papaconstantinou
    • 2
  1. 1.Hellenic Centre for Marine ResearchInstitute of Marine Biological ResourcesGreece
  2. 2.Hellenic Centre for Marine ResearchInstitute of Marine Biological ResourcesAghios KosmasGreece
  3. 3.Fisheries Research Institute-NAGREFN. PeramosGreece

Personalised recommendations