Advertisement

Any process in nature involves to a certain extent some type of energy transfer. From an engineering point of view, certain processes of energy transfer are undesired but still inevitable, as, for instance, energy dissipation in electromechanical systems; whereas other processes are desired and highly beneficial to the design objectives, the classical example from mechanical engineering being the addition of a vibration absorber to a machine for eliminating unwanted disturbances.

Targeted energy transfers (TETs), where energy of some form is directed from a source (donor) to a receiver (recipient) in a one-way irreversible fashion, govern a broad range of physical phenomena. One basic example of TET in nature, is resonance-driven solar energy harvesting governing photosythesis (Jenkins et al., 2004), where energy from the Sun is captured by photobiological antenna chro-mophores and is then transferred to reaction centers through a series of interactions between chromophore units (van Amerongen et al., 2000; Renger et al., 2001). In addition, basic problems in biopolymers concern energy self-focusing, localization and transport (Kopidakis et al., 2001), with applications in photosynthesis (Hu et al., 1998) and bioenergetic processes (Julicher et al., 1997).

Keywords

Energy Transfer Fluorescence Resonance Energy Transfer Resonance Energy Transfer Internal Resonance Ambient Vibration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allcock, P., Jenkins, R.D., Andrews, D.L., Laser assisted resonance energy transfer, Chem. Phys. Lett. 301, 228–234, 1999CrossRefGoogle Scholar
  2. Andrews, D.L., An accretive mechanism for blue-shifted fluorescence in strongly pumped systems: Resonance energy transfer with Raman emission, J. Raman Spectrosc. 31, 791–796, 2000CrossRefGoogle Scholar
  3. Andrews, D.L., Bradshaw, D.S., Optically nonlinear energy transfer in light-harvesting dendrimers, J. Chem. Phys. 121(5), 2445–2454, 2004CrossRefGoogle Scholar
  4. Arnold, V.I., Proof of A.N. KolmogorovŠs theorem on the preservation of quasi-periodic motions under small perturbations of the Hamiltonian, Russ. Math. Surv. 18(5), 9–36, 1963aCrossRefGoogle Scholar
  5. Arnold, V.I., Small divisor problems in classical and celestial mechanics, Russ. Math. Surv. 18(6), 85–192, 1963bCrossRefGoogle Scholar
  6. Arnold, V.I., Instability of dynamical systems with several degrees of freedom, Sov. Math. Dokl. 5, 581–585, 1964Google Scholar
  7. Arnold, V.I., Mathematical Methods of Classical Mechanics, Springer-Verlag, Berlin/New York, 1980Google Scholar
  8. Arnold, V.I., Dynamical Systems III, Encyclopedia of Mathematical Sciences, Vol. 3, Springer-Verlag, Berlin/New York, 1988Google Scholar
  9. Aubry, S., Kopidakis, G., Morgante, A.M., Tsironis, G.P., Analytic conditions for targeted energy transfer between nonlinear oscillators or discrete breathers, Physica B 296(1–3), 222–236, 2001CrossRefGoogle Scholar
  10. Balakrishnan, V., Van den Broeck, C., Analytic calculation of energy transfer and heat flux in a one-dimensional system, Phys. Rev. E 72, DOI: 10.1103/PhysRevE.72.046141, 2005CrossRefGoogle Scholar
  11. Barrow-Green, J., Poincaré and the three-body problem, in History of Mathematics, Vol. 11, American Mathematical Society, 1996Google Scholar
  12. Berlin, A.A., Gendelman, O.V., Mazo, M.A., Manevitch, L.I., Sinelnikov, N.N., On solid-liquid transition in plane disc systems, J. Phys. Condens. Matter 11, 4583–4596, 1999CrossRefGoogle Scholar
  13. Berlin, A.A., Gendelman, O.V., Mazo, M.A., Manevitch, L.I., Balabaev, N.K., Melting of crystals composed of elastic and Lennard—Jones particles, Dokl. Phys. Chem. 382(4–6), 66–69, 2002CrossRefGoogle Scholar
  14. Bohr, T., Jensen, M.S., Paladin, G., Vulpani, A., Dynamical Systems Approach to Turbulence, Cambridge University Press, Cambridge, UK, 1998MATHGoogle Scholar
  15. Boivin, N., Pierre, C., Shaw, S.W., Nonlinear modal analysis of structural systems featuring internal resonances, J. Sound Vib. 182, 336–341, 1995CrossRefGoogle Scholar
  16. Brink, J., Teukolsky, S., Wasserman, I., Nonlinear couplings of R-modes: Energy transfer and saturation amplitudes at realistic timescales, Phys. Rev. D 70(12), 121501, 2004CrossRefGoogle Scholar
  17. Cardullo, R.A., Parpura, V., Fluorescence resonance energy transfer microscopy: Theory and instrumentation, Meth. Cell Biol. 72, 415–430, 2003CrossRefGoogle Scholar
  18. Cornwell, P.J., Goethhal, J., Kowko, J., Damianakis, M., Enhancing power harvesting using a tuned auxiliary structure, J. Intell. Mat. Sys. Struct. 16, 825–834, 2005CrossRefGoogle Scholar
  19. Daniels, G.J., Jenkins, R.D., Bradshaw, D.S., Andrews, D.L., Resonance energy transfer: The unified theory revisited, J. Chem. Phys. 119(4), 2264–2274, 2003CrossRefGoogle Scholar
  20. Dauxois, T., Litvak-Hinenzon, A., MacKay, R., Spanoudaki, A. (Eds.), Energy Localization and Transfer, World Scientific, Singapore, 2004Google Scholar
  21. Dodaro, F.A., Herman, M.F., Comparison of theoretical methods for resonant vibration -Ű Vibration energy transfer in liquids, J. Chem. Phys. 108(7), 2903–2911, 1998CrossRefGoogle Scholar
  22. Esser, B., Hennig, D., Energy transfer in an asymmetric nonlinear dimmer model, Z. Phys. B 83, 285–293, 1991CrossRefGoogle Scholar
  23. Gendelman, O.V., Savin, A.V., Heat conduction in a one-dimensional chain of hard disks with substrate potential, Phys. Rev. Lett. 92(7), DOI: 10.1103/PhysRevLett.92.074301, 2004CrossRefGoogle Scholar
  24. Gendelman, O.V., Manevitch, L.I., Manevitch, O.L., Solitonic mechanism of structural transition in polymer-clay nanocomposites, J. Chem. Phys. 119(2), 1066–1069, 2003CrossRefGoogle Scholar
  25. Ginzburg, V.V., Manevitch, L.I., On the theory of melting polymer crystals, Colloid Polym. Sci. 269, 867–872, 1991CrossRefGoogle Scholar
  26. Ginzburg, V.V., Gendelman, O.V., Manevitch, L.I., Simple ‘kink’ model of melt intercalation in polymer-clay nanocomposites, Phys. Rev. Lett. 86(22), 5073–5075, 2001CrossRefGoogle Scholar
  27. Guckenheimer, J., Holmes, P., Nonlinear Oscillations, Dynamical System, and Bifurcation of Vector Fields, Springer-Verlag, New York, 1983Google Scholar
  28. Hu, X., Damjanovic, A., Ritz, T., Schulten, K., Architecture and mechanism of the light-harvesting apparatus of purple bacteria, Proc. Nat. Acad. Sciences USA 95(11), 5935–5941, 1998CrossRefGoogle Scholar
  29. Hwang, Y.-C., Chen, W., Yates, M.V., Use of fluorescence resonance energy transfer for rapid detection of enteroviral infection in vivo, Appl. Envir. Microbiology 72(5), 3710–3715, 2006CrossRefGoogle Scholar
  30. Jenkins, R.D., Andrews, D.L., Four-center energy transfer and interaction pairs: Molecular quantum electrodynamics, J. Chem. Phys. 116(15), 6713–6724, 2002CrossRefGoogle Scholar
  31. Jenkins, R.D., Andrews, D.L., Multi-chromophore excitons and resonance energy transfer: Molecular quantum electrodynamics, J. Chem. Phys. 118(8), 3470–3479, 2003CrossRefGoogle Scholar
  32. Jenkins, R.D., Daniels, G.J., Andrews, D.L., Quantum pathways for resonance energy transfer, J. Chem. Phys. 120(24), 11442–11448, 2004CrossRefGoogle Scholar
  33. Jiang, D., Pierre, C., Shaw, S.W., The construction of nonlinear normal modes for systems with internal resonances, Int. J. Nonlinear Mech. 40, 729–746, 2005MATHCrossRefGoogle Scholar
  34. Julicher, F., Ajdari, A., Prost, J., Modeling molecular motors, Rev. Mod. Phys. 69(4), 1269–1281, 1997CrossRefGoogle Scholar
  35. Kerschen, G., Peeters, M., Golinval, J.C., Vakakis, A.F., Nonlinear normal modes, Part I: A useful framework for the structural dynamicist, Mech. Syst. Signal Proc., 2008 (submitted)Google Scholar
  36. Kevrekidis, P.G., Dimitriev, S.V., Takeno, S., Bishop, A.R., Aifantis, E.C., Rich example of geometrically induced nonlinearity: From rotobreathers and kinks to moving localized modes and resonant energy transfer, Phys. Rev. E 70, DOI: 10.1103/PhysRevE.70.066627, 2004Google Scholar
  37. Kim, J.S., Durst, R.D., Fonck, R.J., Technique for the experimental estimation of nonlinear energy transfer in fully developed turbulence, Phys. Plasmas 3(11), 3998–4009, 1996CrossRefGoogle Scholar
  38. Kim, S., Clark, W.W., Wang, Q.-M., Piezoelectric energy harvesting with a clamped circular plate: Analysis, J. Intel. Mat. Sys. Struct. 16, 847–854, 2005CrossRefGoogle Scholar
  39. King, M.E., Vakakis, A.F., An energy-based approach to computing resonant nonlinear normal modes, J. Appl. Mech. 63, 810–819, 1995CrossRefMathSciNetGoogle Scholar
  40. Kopidakis, G., Aubry, S., Tsironis, G.P., Targeted energy transfer through discrete breathers in nonlinear systems, Phys. Rev. Lett. 87(16), DOI: 10.1103/PhysRevLett87.165501, 2001Google Scholar
  41. Kurs, A., Karalis, A., Moffatt, R., Joannopoulos, J.D., Fisher, P., Soljacic, M., Wireless power transfer via strongly coupled magnetic resonances, Science 317, 83–86, 2007CrossRefMathSciNetGoogle Scholar
  42. Lacarbonara, W., Rega, G., Nayfeh, A.H., Resonant nonlinear normal modes, Part I: Analytical treatment for structural one dimensional systems, Int. J. Nonlinear Mech. 38, 851–872, 2003MATHCrossRefMathSciNetGoogle Scholar
  43. Lesieutre, G.A., Ottman, G.K., Hofmann, H.F., Damping as a result of piezoelectric energy harvesting, J. Sound Vib. 269, 991–1001, 2004CrossRefGoogle Scholar
  44. Malatkar, P., Nayfeh, A.H., On the transfer of energy between widely spaced modes in structures, Nonl. Dyn. 31, 225–242, 2003MATHCrossRefGoogle Scholar
  45. Maniadis, P., Kopidakis, G., Aubry, S., Classical and quantum targeted energy transfer between nonlinear oscillators, Physica D 188, 153–177, 2004MATHCrossRefGoogle Scholar
  46. Maniadis, P., Aubry, S., Targeted energy transfer by Fermi resonance, Physica D 202(3–4), 200– 217, 2005MATHCrossRefMathSciNetGoogle Scholar
  47. Meessen, A., Working principle of an EM cancer detector, Institut de Physique, Univer-sité Catholique de Louvain, Belgium, http://www.meessen.net/AMeessen/EMcancerDet2.pdf, 2000Google Scholar
  48. Memboeuf, A., Aubry, S., Targeted energy transfer between a rotor and a Morse oscillator: A model for selective chemical dissociation, Physica D 207, 1–23, 2005CrossRefMathSciNetGoogle Scholar
  49. Morgante, A.M., Johansson, M., Aubry, S., Breather Ú phonon resonances in finite lattices: Phantom breathers?, J. Phys. A 35, 4999–5021, 2002MATHCrossRefMathSciNetGoogle Scholar
  50. Musumeci, F., Brizhik, L.S., Ho, M.-W., Energy and Information Transfer in Biological Systems, World Scientific, Singapore, 2003Google Scholar
  51. Nayfeh, A.H., Mook, D.T., Nonlinear Oscillations, John Wiley & Sons, New York, 1995Google Scholar
  52. Nayfeh, A.H., Nonlinear Interactions: Analytical, Computational and Experimental Methods, Wiley Interscience, New York, 2000MATHGoogle Scholar
  53. Nayfeh, S.A., Nayfeh, A.H., Nonlinear interactions between two widely spaced modes — External excitation, Int. J. Bif. Chaos 3, 417–427, 1993MATHCrossRefGoogle Scholar
  54. Nayfeh, S.A., Nayfeh, A.H., Energy transfer from high- to low-frequency modes in a flexible structure via modulation, J. Vib. Acoust. 116, 203–207, 1994CrossRefGoogle Scholar
  55. Nayfeh, A.H., Mook, D.T., Energy transfer from high-frequency to low-frequency modes in structures, J. Vib. Acoust. 117, 186–195, 1995CrossRefGoogle Scholar
  56. Nistazakis, H.E., Kevrekidis, P.G., Malomed, B.A., Frantzeskakis, D.J., Bishop, A.R., Targeted transfer of solitons in continua and lattices, Phys. Rev. E 66, 015601, 2002CrossRefMathSciNetGoogle Scholar
  57. Oh, K., Nayfeh, A.H., High- to low-frequency modal interactions in a cantilever composite plate, J. Vib. Acoust. 120, 579–587, 1998CrossRefGoogle Scholar
  58. Pilipchuk, V.N., The calculation of strongly nonlinear systems close to vibration-impact systems, Prikl. Mat. Mech. (PMM) 49, 572–578, 1985MATHMathSciNetGoogle Scholar
  59. Pilipchuk, V.N., A transformation for vibrating systems based on a non-smooth periodic pair of functions, Dokl. AN Ukr. SSR Ser. A 4, 37–40, 1988 [in Russian]Google Scholar
  60. Pilipchuk, V.N., Analytic study of vibrating systems with strong nonlinearities by employing sawtooth time transformations, J. Sound Vib. 192(1), 43–64, 2006CrossRefMathSciNetGoogle Scholar
  61. Pilipchuk, V.N, Vakakis A.F., Azeez, M.A.F., Study of a class of subharmonic motions using a non-smooth temporal transformation (NSTT), Physica D 100, 145–164, 1997MATHCrossRefMathSciNetGoogle Scholar
  62. Pilipchuk, V.N., Vakakis A.F., Study of the oscillations of a nonlinearly supported string using non-smooth transformations, J. Vib. Acoust. 120, 434–440, 1998CrossRefGoogle Scholar
  63. Poincaré, H., Les Methodes Nouvelles de la Mecanique Celeste, Gauthier-Villars, Paris, 1899MATHGoogle Scholar
  64. Renger, T., May, V., Kühn, O., Ultrafast excitation energy transfer dynamics in photosynthetic pigment — Protein complexes, Phys. Rep. 343, 137–254, 2001CrossRefGoogle Scholar
  65. Roundy, S., On the effectiveness of vibration-based energy harvesting,J. Intell. Mat. Sys. Struct. 16, 809–823, 2005CrossRefGoogle Scholar
  66. Spector, A.A., Effectiveness, active energy produced by molecular motors, and nonlinear capacitance of the cochlear outer hair cell, J. Biomech. Eng. 127, 391–399, 2005CrossRefGoogle Scholar
  67. Spire, A., Leon, J., Nonlinear absorption in discrete systems, J. Phys. A 37, 9101–9108, 2004MATHCrossRefMathSciNetGoogle Scholar
  68. Stephen, N.G., On energy harvesting from ambient vibration, J. Sound Vib. 293, 409–425, 2006CrossRefGoogle Scholar
  69. Tran, C.V., Nonlinear transfer and spectral distribution of energy in α turbulence, Physica D 191, 137–155, 2004MATHCrossRefMathSciNetGoogle Scholar
  70. Vakakis, A.F., Manevitch, L.I., Mikhlin Yu.V., Pilipchuk, V.N., Zevin, A.A., Normal Modes and Localization in Nonlinear Systems, Wiley Interscience, New York, 1996MATHGoogle Scholar
  71. Vakakis, A.F. (Ed.), Normal Modes and Localization in Nonlinear Systems, Kluwer Academic Publishers, 2002 [also, Special Issue of Nonlinear Dynamics 25(1–3), 2001]Google Scholar
  72. Van Amerongen, H., Valkunas, L., an Grondelle, R., Photosynthetic Excitons, World Scientific, Singapore, 2000Google Scholar
  73. Vedruccio, C., Meessen, A., EM cancer detection by means of nonlinear resonance interaction, in Proceedings of Progress in Electromagnetics Research Symposium (PIERS2004), Pisa, Italy, March 28–31, 2004Google Scholar
  74. Verhulst, F., Methods and Applications of Singular Perturbations, Springer-Verlag, Berlin/New York, 2005MATHGoogle Scholar
  75. Wang, P.K.C., Unidirectional energy transfer in nonlinear wave-wave interactions, J. Math. Phys. 14(7), 911–915, 1973CrossRefGoogle Scholar
  76. Wang, Z., Carter, J.A., Lagutchev, A., Koh, Y.K., Seong, N.-H., Cahill, D.G., Dlott D.D., Ultrafast flash thermal conductance of molecular chains, Science 317, 787–790, 2007CrossRefGoogle Scholar
  77. Wiggins, S., Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer-Verlag, New York, 1990MATHGoogle Scholar
  78. Xu, Q.-H., Wang S., Korystov, D., Mikhailovsky, A., Bazan, G.C., Moses, D., Heeger, A.J., The fluorescence resonance energy transfer (FRET) gate: A time-resolved study, Proc. Nat. Acad. Sci. USA 102(3), 530–535, 2005CrossRefGoogle Scholar
  79. Yesilkaya, H., Meacci, F., Niemann, S., Hillemann, D., Rüsch-Gerdes, S., LONG DRUG Study Group, Barer, M.R., Andrew, P.W., Oggioni, M.R., Evaluation of molecular-beacon, Taq-Man, and fluorescence resonance energy transfer probes for detection of antibiotic resistance-conferring single nucleotide polymorphisms in mixed Mycobacterium tuberculosis DNA extracts, J. Clin. Microbiol. 44(10), 3826–3829, 2006CrossRefGoogle Scholar
  80. Zaslavskii G.M., Hamiltonian Chaos and Fractional Dynamics, Oxford University Press, Oxford, 2005Google Scholar

Copyright information

© Springer Science+Business Media, B.V 2008

Personalised recommendations