Spatial Planning as a Complementary Tool to Abate the Effects of Atmospheric Ammonia Deposition at the Landscape Scale

  • Ulrike Dragosits
  • Mark R. Theobald
  • Chris J. Place
  • Helen M. ApSimon
  • Mark A. Sutton

Ammonia (NH3) is emitted mainly from agricultural practices, with NH3 concentrations decreasing rapidly away from sources (e.g. Sutton et al. 1998; Pitcairn et al. 1998, 2003). As a consequence there is a high spatial variability in N deposition and its ecological effects in agricultural landscapes (e.g. Dragosits et al. 2002, 2005, 2006), in addition to differences in sensitivity to additional nitrogen between habitat types (e.g. Fangmeier et al. 1994; Pitcairn et al. 1998, 2003; Mitchell et al. 2004).

This variability (Fig. 18.1) points to the potential to include locally tailored abatement measures as part of strategies to protect sensitive vegetation from NH3 deposition (Dragosits et al. 2006).


Nature Reserve Critical Load Spatial Planning Ammonia Emission Abatement Measure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acherman B., Bobbink R. (eds.) (2003) Empirical Critical Loads for Nitrogen. Proceedings of the Expert Workshop, Berne. 11 –13 November 2002. Environmental Documentation No. 164. Swiss Agency for the Environment, Forests and Landscape (SAEFL), Berne, Switzerland.Google Scholar
  2. Bleeker A., Erisman J.W. (1998) Spatial planning as a tool for decreasing nitrogen loads in nature areas. Environ. Pollut. 102(Suppl. 1), 649 –655.CrossRefGoogle Scholar
  3. Bull K.R. (1991) The critical loads/levels approach to gaseous pollutant emission control. Environ. Pollut. 69, 105 –123.CrossRefGoogle Scholar
  4. Bull K.R. (1995) Critical loads—possibilities and constraints. Water Air Soil Pollut. 85, 201 –212.CrossRefGoogle Scholar
  5. Dragosits U., Theobald M.R., Place C.J., Lord E., Webb J., Hill J., ApSimon H.M., Sutton M.A. (2002) Ammonia emission, deposition and impact assessment at the field scale: a case study of sub-grid spatial variability. Environ. Pollut. 117, 147 –158.CrossRefGoogle Scholar
  6. Dragosits U., Theobald M.R., Place C.J., Smith J.U., Sozanska M., Brown L., Scholefield D., Del Prado A., Angus A., Hodge I.D., Webb J., Whitehead P.G., Fowler D., Sutton M.A. (2005) Interaction of nitrogen pollutants at the landscape level and abatement strategies. In: Zhu Z., Minami K., Xing G. (eds.) 3rd International Nitrogen Conference: contributed papers, Nanjing, China, 12 –16 October 2004. Science Press USA Inc., pp. 30 –34 [ISBN 1-933100-10-9].Google Scholar
  7. Dragosits U., Theobald M.R., Place C.J., ApSimon H.M., Sutton M.A. (2006) The potential for spatial planning at the landscape level to mitigate the effects of atmospheric ammonia deposition. Environ. Sci. Policy 9, 626 –638.CrossRefGoogle Scholar
  8. Fangmeier A., Hadwiger-Fangmeier A., van der Eerden L., Jaeger H.J. (1994) Effects of atmospheric ammonia on vegetation—a review. Environ. Pollut. 86, 43 –82.CrossRefGoogle Scholar
  9. Hill J. (1998) Applications of Computational Modelling to Ammonia Dispersion from Agricultural Sources. Ph.D. thesis. Imperial College, Centre for Environmental Technology, University of London, London.Google Scholar
  10. Lekkerkerk L. (1998) Implications of Dutch ammonia policy on the livestock sector. Atmos. Environ. 32 (Ammonia Special Issue (3) ), 581 –587.CrossRefGoogle Scholar
  11. Mitchell R.J., Sutton M.A., Truscott A.M., Leith I.D., Cape J.N., Pitcairn C.E.R., van Dijk N. (2004) Growth and tissue nitrogen of epiphytic Atlantic bryophytes: effects of increased and decreased atmospheric N deposition. Funct. Ecol. 18, 322 –329.CrossRefGoogle Scholar
  12. Nilsson J., Grennfelt P. (eds.) (1988) Critical Loads for Sulphur and Nitrogen. Report of a Workshop Held in Skokloster, Sweden, 19 –24 March 1988. Nordic Council of Ministers, Copenhagen.Google Scholar
  13. Pitcairn C.E.R., Leith I.D., Sheppard L.J., Sutton M.A., Fowler D., Tang Y.S., Munro R.C., Wilson D. (1998) The effects of ammonia on the relationship between woodland flora and nitrogen deposition in the vicinity of livestock buildings. Environ. Pollut. 102(S1), 41 –48.CrossRefGoogle Scholar
  14. Pitcairn C.E.R., Fowler D., Leith I.D., Sheppard L.J., Sutton M.A., Kennedy V. , Okello E. (2003) Bioindicators of enhanced nitrogen deposition. Environ. Pollut. 126, 353 –361.CrossRefGoogle Scholar
  15. Smith R.I., Fowler D., Sutton M.A., Flechard C., Coyle M. (2000) Regional estimation of pollutant gas dry deposition in the UK: model description, sensitivity analysis and outputs. Atmos. Environ. 34, 3757 –3777.CrossRefGoogle Scholar
  16. Sutton M.A., Milford C., Dragosits U., Place C., Singles R., Smith R.I., Pitcairn C.E.R., Fowler D., Hill J., ApSimon H., Ross C., Hill R., Jarvis S.C., Pain B.F., Phillips V.R., Harrison R., Moss D., Webb J., Espenhahn S.E., Lee D.S., Hornung M., Ullyett J., Bull K.R., Emmet B.A., Lowe J., Wyers G.P. (1998) Dispersion, deposition and impacts of atmospheric ammonia: quantifying budgets and spatial variability at local scales. Environ. Pollut. 102, 349 –361.CrossRefGoogle Scholar
  17. Theobald M.R., Milford C., Hargreaves K.J., Sheppard L.J., Nemitz E., Tang Y.S., Phillips V.R., Sneath R., McCartney L., Harvey F.J., Leith I.D., Cape J.N., Fowler D., Sutton M.A. (2001) Potential for ammonia recapture by farm woodlands: design and application of a new experimental facility. In: Optimizing Nitrogen Management in Food and Energy Production and Environmental Protection: Proceedings of the Second International Nitrogen Conference on Science and Policy. The Scientific World 1(S2), 791 –801.Google Scholar
  18. Theobald M.R., Dragosits U., Place C.J., Smith J.U., Brown L., Scholefield D., Webb J., Whitehead P.G., Angus A., Hodge I.D., Fowler D., Sutton M.A. (2004a) Modelling nitrogen fluxes at the landscape scale. Water Air Soil Pollut.: Focus 4, 135 –142.Google Scholar
  19. Theobald M.R., Milford C., Hargreaves K.J., Sheppard L.J., Nemitz E., Tang Y.S., Dragosits U., McDonald A.G., Harvey F.J., Leith I.D., Sneath I.D., Williams A.G., Hoxey R.P., Quinn A.D., McCartney L., Sandars D.L., Phillips V.R., Blyth J., Cape J.N., Fowler D., Sutton M.A. (2004b) AMBER:Ammonia Mitigation by Enhanced Recapture. Impact of Vegetation and/or Other On-farm Features on Net Ammonia Emissions from Livestock Farms. Final Report on Project WA0719 to Defra (Land Management Improvement Division). CEH Edinburgh, 22 (+110, appendices).Google Scholar

Copyright information

© Springer Science + Business Media B.V. 2009

Authors and Affiliations

  • Ulrike Dragosits
    • 1
  • Mark R. Theobald
    • 1
  • Chris J. Place
    • 2
  • Helen M. ApSimon
    • 3
  • Mark A. Sutton
    • 1
  1. 1.Centre for Ecology & HydrologyBush EstatePenicuikUnited Kingdom
  2. 2.School of GeosciencesInstitute of Geography, Geography BuildingEdinburghUnited Kingdom
  3. 3.Imperial College LondonCentre for Environmental Policy, Faculty of Natural SciencesLondonUnited Kingdom

Personalised recommendations