Skip to main content
  • 3046 Accesses

The genetic algorithm (GA) has found wide acceptance in many fields, ranging from economics through engineering. In the environmental sciences, some disciplines are using GAs regularly as a tool to solve typical problems; while in other areas, they have hardly been assessed for use in research projects. The key to using GAs in environmental sciences is to pose the problem as one in optimization. Many problems are quite naturally optimization problems, such as the many uses of inverse models in the environmental sciences. Other problems can be manipulated into optimization form by careful definition of the cost function, so that even nonlinear differential equations can be approached using GAs (Karr et al. 2001; Haupt 2006). Although optimization is usually accomplished with more traditional techniques, using a genetic algorithm allows cost functions that are not necessarily differentiable or continuous (Marzban and Haupt 2005).

Chapter 5 of this volume provides an introduction to genetic algorithms and some basic examples that demonstrate their use. Chapter 14 describes a specific problem in optimization in which a GA proved useful — using field monitored contaminant concentration data coupled with a transport and dispersion model to backcalculate source and meteorological information. The purpose of this current chapter is to review some of the broad range of applications of genetic algorithms to environmental science problems, to present a few examples of how a GA might be applied to some problems, and to suggest how they may be useful in future research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aly, A. H., & Peralta, R. C. (1999a). Comparison of a genetic algorithm and mathematical programming to the design of groundwater cleanup systems. Water Resources Research, 35(8), 2415–2425

    Article  Google Scholar 

  • Aly, A. H., & Peralta, R. C. (1999b). Optimal design of aquifer clean up systems under uncertainty using a neural network and a genetic algorithm. Water Resources Research, 35(8), 2523–2532

    Article  Google Scholar 

  • Babb, D. M., Verlinde, J., & Albrecht, B. A. (1999). Retrieval of cloud microphysical parameters from 94-GHz radar Doppler power spectra. Journal of Atmospheric and Oceanic Technology, 16, 489–503

    Article  Google Scholar 

  • Barth, H. (1992). Oceanographic experiment design II: Genetic algorithms. Journal of Oceanic and Atmospheric Technology, 9, 434–443

    Article  Google Scholar 

  • Bishop, C. M. (1996). Neural networks for pattern recognition (pp. 482). Oxford: Clarendon Press

    Google Scholar 

  • Boschetti, F., Dentith, M. C., & List, R. D. (1995). A staged genetic algorithm for tomographic inversion of seismic refraction data. Exploration Geophysics, 26, 331–335

    Article  Google Scholar 

  • Boschetti, F., Dentith, M. C., & List, R. D. (1996). Inversion of seismic refraction data using genetic algorithms. Geophysics, 61, 1715–1727

    Article  Google Scholar 

  • Boschetti, F., Dentith, M. C., & List, R. (1997). Inversion of potential field data by genetic algorithms. Geophysical Prospecting, 45, 461–478

    Article  Google Scholar 

  • Boyd, J. B. (1986). Solitons from sine waves: Analytical and numerical methods for nonintegrable solitary and cnoidal waves. Physica, 21D, 227–246

    Google Scholar 

  • Branstator, G., & Haupt, S. E. (1998). An empirical model of barotropic atmospheric dynamics and its response to tropical forcing. Journal of Climate, 11, 2645–2667

    Article  Google Scholar 

  • Chan Hilton, A. B., & Culver, T. B. (2000). Constraint handling for genetic algorithms in optimal remediation design. Journal of Water Resources Planning and Management, 126(3), 128–137

    Article  Google Scholar 

  • Cartwright, H. M., & Harris, S. P. (1993). Analysis of the distribution of airborne pollution using gas. Atmospheric Environment, 27A, 1783–1791

    CAS  Google Scholar 

  • Charbonneau, P. (1995). Genetic algorithms in astronomy and astrophysics. The Astrophysical Journal Supplement Series, 101, 309–334

    Article  Google Scholar 

  • Chunduru, R. K., Sen, M. K., Stoffa, P. L., & Nagendra, R. (1995). Non-linear inversion of resistivity profiling data for some regular geometrical bodies. Geophysical Prospecting, 43, 979–1003

    Article  Google Scholar 

  • Chunduru, R. K., Sen, M. K., & Stoffa, P. L. (1997). Hybrid optimization for geophysical inversion. Geophysics, 62(4), 1196–1207

    Article  Google Scholar 

  • Daley, R. (1991). Atmospheric data assimilation (457 pp.). Cambridge: Cambridge University Press

    Google Scholar 

  • Fang, H., Liang, S., & Kuusk, A. (2003). Retrieving leaf area index using a genetic algorithm. Remote Sensing of Environment, 85, 257–270

    Article  Google Scholar 

  • Fayad, H. (2001). Application of neural networks and genetic algorithms for solving conjunctive water use problems. Ph.D. dissertation, Utah State University, Logan, UT, 152 pp

    Google Scholar 

  • Garcia-Orellan, C. J., Macias-Macias, M., Serrano-Perez, A., Gonzalez-Velasco, H. M., & Gallardo-Caballero, R. (2002). A comparison of PCA, ICA and GA selected features for cloud field classification. Journal of Intelligent and Fuzzy Systems, 12, 213–219

    Google Scholar 

  • Gonzalez, A., Perez, J. C., Herrera, F., Rosa, F., Wetzel, M. A., Borys, R. D., et al. (2002). Stratocumulus properties retrieval method from NOAA-AVHRR data based on the discretization of cloud parameters. International Journal of Remote Sensing, 23, 627–645

    Article  Google Scholar 

  • Hart, J., Hunt, I., & Shankararaman, V. (1998). Environmental management systems — A role for AI? in Workshop Binding Environmental Sciences and Artificial Intelligence (BESAI'98), edited by U. Cortés and M. Sànchez-Marrè, pp. 1–10

    Google Scholar 

  • Hassan, R. A., & Crossley, W. A. (2003). Multi-objective optimization for communication satellites with a two-branch tournament genetic algorithm. Journal of Spacecraft Rockets, 40(2), 266–272

    Article  Google Scholar 

  • Hasselman, K. (1988). Pips and pops: The reduction of complex dynamical systems using principal interaction and oscillation patterns. Journal of Geophysical Research, 93, 11015–11021

    Article  Google Scholar 

  • Haupt, S. E. (2006). Nonlinear empirical models of dynamical systems. Computers and Mathematics with Applications, 51, 431–440

    Article  Google Scholar 

  • Haupt, S. E., & Boyd, J. P. (1988). Modeling nonlinear resonance: A modification to the stokes' perturbation expansion. Wave Motion, 10, 83–98

    Article  Google Scholar 

  • Jervis, M., Sen, M. K., & Stoffa, P. L. (1996). Prestack migration velocity estimation using nonlinear methods. Geophysics, 60, 138–150

    Article  Google Scholar 

  • Kalnay, E. (2003). Atmospheric modeling, data assimilation and predictability (pp. 136–204). Cambridge: Cambridge University Press

    Google Scholar 

  • Karr, C. L., Yakushin, I., & Nicolosi, K. (2001). Solving inverse initial-value, boundary value problem via GA. Engineering Applications of Artificial Intelligence, 13, 625–633

    Article  Google Scholar 

  • Kim, S., Lee, H., Kim, J., Kim, C., Ko, J., Woo, H., et al. (2002). Genetic algorithms for the application of Activated Sludge Model No. 1. Water Science and Technology, 45(4–5), 405–411

    CAS  Google Scholar 

  • Kishtawal, C. M., Basu, S., Patadia, F., & Thapliyal, P. K. (2003). Forecasting summer rainfall over India using genetic algorithm. Geophysical Research Letters, 30, 2203. Doi:10.1029/2003GL018504

    Article  Google Scholar 

  • Kondrashov, D., Kravtsov, S., Robertson, A. W., & Ghil, M. (2005). A hierarchy of data-based ENSO models.Journal of Climate 184404–4424

    Article  Google Scholar 

  • Koza, J. R. (1992). Chapter 10: The genetic programming paradigm: Genetically breeding populations of computer programs to solve problems. In B. Soucek (Ed.),Dynamic, genetic, and chaotic programming (pp. 203–321), The Sixth Generation. New York: Wiley

    Google Scholar 

  • Lakshmanan, V. (2000). Using a genetic algorithm to tune a bounded weak echo region detection algorithm.Journal of Applied Meteorology 39222–230

    Article  Google Scholar 

  • Loughlin, D. H., Ranjithan, S. R., Baugh, J. W., Jr., & Brill, E. D., Jr. (2000). Application of genetic algorithms for the design of ozone control strategies.Journal of the Air & Waste Management Association 501050–1063

    Google Scholar 

  • Lorenz, E. N. (1963). Deterministic nonperiodic flow.Journal of the Atmospheric Sciences 20130–141

    Article  Google Scholar 

  • McCullagh, J., Choi, B., & Bluff, K. (1999). Genetic synthesis of a neural network for rainfall and temperature estimations.Australian Journal for Intelligent Information Processing System 5(3), 187–193

    Google Scholar 

  • McKinney, D. C., & Lin, M. D. (1993). Genetic algorithm solution of ground water management models.Water Resources Research 30(6), 3775–3789

    Google Scholar 

  • Marzban, C., & Haupt, S. E. (2005). On genetic algorithms and discrete performance measures.AMS 4th Conference on Artificial IntelligenceSan Diego, CA, paper 1.1

    Google Scholar 

  • Marzban, C., & Witt, A. (2000).Bayesian neural networks for severe hail prediction. A report. Available athttp://www. nhn.ou.edu/\~{}marzban/hda\_class.pdf

  • Marzban, C., & Witt, A. (2001). A Bayesian neural network for hail size prediction.Weather Forecasting 16(5), 600–610

    Article  Google Scholar 

  • Marzban, C. (1998). Bayesian probability and scalar performance measures in Gaussian models.Journal of Applied Meteorology 3772–82

    Article  Google Scholar 

  • Menke, W. (1984). Geophysical data analysis: Discrete inverse theory. New York: Academic Press

    Google Scholar 

  • Minister, J. B. H., Williams, N. P., Masters, T. G., Gilbert, J. F., & Haase, J. S. (1995). Application of evolutionary programming to earthquake hypocenter determination. In Evolutionary programming: Proceedings of the Fourth Annual Conference on Evolutionary Programming, pp. 3–17

    Google Scholar 

  • Mohan, S., & Loucks, D. P. (1995). Genetic algorithms for estimating model parameters. Integrated Water Resources Planning for the 21st century, Proceedings of the 22nd Annual Conference, ASCE, Cambridge, MA

    Google Scholar 

  • Mulligan, A. E., & Brown, L. C. (1998). Genetic algorithms for calibrating water quality models. Journal of Environmental Engineering, 202–211

    Google Scholar 

  • Penland, C. (1989). Random forcing and forecasting using principal oscillation pattern analysis. Monthly Weather Review, 117, 2165–2185

    Article  Google Scholar 

  • Penland, C., & Ghil, M. (1993). Forecasting northern hemisphere 700 mb geopotential height anomalies using empirical normal modes. Monthly Weather Review, 121, 2355–2372

    Article  Google Scholar 

  • Penland, C., & Magorian, T. (1993). Prediction of NINO3 sea-surface temperatures using linear inverse modeling. Journal of Climate, 8, 1067–1076

    Article  Google Scholar 

  • Penland, C., & Matrosova, L. (1994). A balance condition for stochastic numerical models with application to the El Nino-Southern Oscillation. Journal of Climate, 7, 1352–1372

    Article  Google Scholar 

  • Popov, M., He, S., & Thottappillil, R. (2000). Reconstruction of lightning currents and return stroke model parameters using remote electromagnetic fields. Journal of Geophysical Research, 105, 24469–24481

    Article  Google Scholar 

  • Porsani, M. J., Stoffa, P. L., Sen, M. K., & Chunduru, R. K. (2000). Fitness functions, genetic algorithms and hybrid optimization in seismic waveform inversion. Journal of Seismic Exploration, 9, 143–164

    Google Scholar 

  • Porto, V. W., Fogel, D. B., & Fogel, L. J. (1995). Alternative neural network training methods. IEEE Expert System, June, 10(3), 16–22

    Article  Google Scholar 

  • Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (1999). Numerical recipes in C (pp. 994). Cambridge: Cambridge University Press

    Google Scholar 

  • Recknagel, F. (2001). Applications of machine learning to ecological modelling. Ecological Modelling, 146, 303–310

    Article  Google Scholar 

  • Ritzel, B. J., Eheart, J. W., & Rajithan, S. (1994). Using genetic algorithms to solve a multiple objective groundwater pollution containment problem. Water Resources Research, 30(5), 1589–1603

    Article  CAS  Google Scholar 

  • Rogers, L. L., & Dowla, F. U. (1994). Optimization of ground-water remediation using artificial neural networks with parallel solute transport modeling. Water Resources Research, 30(2), 457–481

    Article  CAS  Google Scholar 

  • Sen, M. K., & Stoffa, P. L. (1992a). Rapid sampling of model space using genetic algorithms: Examples from seismic waveform inversion. Geophysical Journal International, 108, 281–292

    Article  Google Scholar 

  • Sen, M. K., & Stoffa, P. L. (1992b). Genetic inversion of AVO. Geophysics: The Leading Edge of Exploration, 11(1), 27–29

    Article  Google Scholar 

  • Sen, M. K., & Stoffa, P. L. (1996). Bayseian inference, gibbs' sampler and uncertainty estimation in geophysical inversion. Geophysical Prospecting, 44, 313–350

    Article  Google Scholar 

  • Sen, Z., & Oztopal, A. (2001). Genetic algorithms for the classification and prediction of precipitation occurrence. Hydrological Sciences, 46(2), 255–268

    Article  Google Scholar 

  • Shieh, H.-J., & Peralta, R. C. (1997). Optimal system design of in-situ bioremediation using genetic annealing algorithm. In Ground Water: An Endangered Resource, Proceedings of Theme C, Water for a Changing Global Community, 27th Annual Congress of the International Association of Hydrologic Research, pp. 95–100

    Google Scholar 

  • Simpson, A. R., Dandy, G. C., & Murphy, L. J. (1994). Genetic algorithms compared to other techniques for pipe optimization. Journal of Water Resources Planning and Management, 120(4), 423–443

    Article  Google Scholar 

  • Vrugt, J. A., Gupta, H. V., Bastidas, L. A., Bouten, W., & Sorooshian, S. (2003). Effective and efficient algorithm for multiobjective optimization of hydrologic models. Water Resources Research, 39(8), 1214. Doi:10.1029/ 2002WR001746

    Google Scholar 

  • Yashimura, K., & Watanabe, S. (1982). Chaotic behavior of nonlinear evolution equation with fifth order dispersion. Journal of the Physical Society of Japan, 51, 3028–3035

    Article  Google Scholar 

  • Yin, C., Liu, X., Guo, W., Lin, T., Wang, X., & Wang, L. (2002). Prediction and application in QSPR of aqueous solubility of sulfur-containing aromatic esters using GA-based MLR with quantum descriptors. Water Research, 36, 2975–2982

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sue Ellen Haupt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V

About this chapter

Cite this chapter

Haupt, S.E. (2009). Environmental Optimization: Applications of Genetic Algorithms. In: Haupt, S.E., Pasini, A., Marzban, C. (eds) Artificial Intelligence Methods in the Environmental Sciences. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9119-3_18

Download citation

Publish with us

Policies and ethics