Skip to main content

Crustacean Ecdysteroids and Their Receptors

  • Chapter
Ecdysone: Structures and Functions

Ecdysteroids in crustaceans differ substantially from those of their fellow arthropods, the insects. Crustacean ecdysteroids and ecdysteroid nuclear receptors are similar to those of insects, but differ in the number of hormones and in the number and structure of the receptor isoforms. Moreover, the control(s) of ecdysteroid synthesis by crustacean Y-organs is primarily inhibitory - through molt-inhibiting hormone (MIH) - whereas in insects ecdysteroid synthesis is positively stimulated by a very different neurosecretory hormone. The in vivo effects of ecdysteroids are less understood in crustaceans than in insects but appear to have some concordance. Ecdysteroid-responsive genes in crustaceans are just beginning to be uncovered and may have some identities to insect genes. The differences in ecdysteroid control between insects and crustaceans are thought to have evolved to accommodate the differences in life-histories seen in these diverse arthropod groups.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdu, U., Takac, P., Laufer, H., and Sagi, A. 1998. Effect of methyl farnesoate on late larval development and metamorphosis in the prawn Macrobrachium rosenbergii (Decapoda, Palaemonidae): a juvenoid-like effect? Biol. Bull. 195:112–119.

    CAS  Google Scholar 

  • Asazuma, H., Nagata, S., Kono, M., and Nagasawa, H. 2007. Molecular cloning and expression analysis of ecdysone receptor and retinoid X receptor from the kuruma prawn, Marsupenaeus japonicus. Comp. Biochem. Phys. B 148:139–150.

    Google Scholar 

  • Beckett, B.R. and Petkovich, M. 1999. Evolutionary conservation in retinoid signalling and metabolism. Am. Zool. 39:783–795.

    CAS  Google Scholar 

  • Billas, I.M., Iwema, T., Garnier, J.M., Mitschler, A., Rochel, N., and Moras, D. 2003. Structural adaptability in the ligand-binding pocket of the ecdysone hormone receptor. Nature 426:91–96.

    PubMed  CAS  Google Scholar 

  • Bliss, D.E., and Welsh, J.H. 1952. The neurosecretory system of brachyuran crustaceans. Biol. Bull. 103: 157–169.

    Google Scholar 

  • Borst, D.W., Laufer, H., Landau, M., Chang, E.S., Hertz, W.A., Baker, F.C., and Schooley, D.A. 1987. Methyl farnesoate and its role in crustacean reproduction and development. Insect Biochem. 17:1123–1127.

    CAS  Google Scholar 

  • Borst, D.W., Ogan, J., Tsukimura, B., Claerhout, T., and Holford, K.C. 2001. Regulation of the crustacean mandibular organ. Am. Zool. 41:430–441.

    CAS  Google Scholar 

  • Bouwmeester, T., Bauch, A., Ruffner, H., Angrand, P.O., Bergamini, G., Croughton, K., Cruciat, C., Eberhard, D., Gagneur, J., Ghidelli, S., Hopf, C., Huhse, B., Mangano, R., Michon, A.M., Schirle, M., Schlegl, J., Schwab, M., Stein, M.A., Bauer, A., Casari, G., Drewes, G., Gavin, A.C., Jackson, D.B., Joberty, G., Neubauer, G., Rick,J., Kuster, B., and Superti-Furga, G. 2004. A physical and functional map of the human TNF-alpha/NF-kappa B signal transduction pathway. Nat. Cell Biol. 6:97–105.

    PubMed  CAS  Google Scholar 

  • Brockes, J.P. 1997. Amphibian limb regeneration: rebuilding a complex structure. Science 276:81–87.

    PubMed  CAS  Google Scholar 

  • Byard, E., Shivers, R., and Aiken, D. 1975. The mandibular organ of the lobster, Homarus americanus. Cell Tissue Res. 162:13–22.

    PubMed  CAS  Google Scholar 

  • Carlisle, D. 1954. On the hormonal inhibition of moulting in decapod Crustacea. II. The terminal anecdysis in crabs. J. Mar. Biol. Assoc. UK 36:291–307.

    Google Scholar 

  • Chan, S.-M., Rankin, S., and Keeley, L. 1988. Characterization of the molt stages of Penaeus vannamei: setogenesis and hemolymph levels of total protein, ecdysteroid and glucose. Biol. Bull. 174:185–192.

    Google Scholar 

  • Chan, S.-M., Chen, X.-G., and Gu, P.-L. 1998. PCR cloning and expression of the molt-inhibiting hormone for the crab (Charybdis feriatus). Gene 224:23–33.

    PubMed  CAS  Google Scholar 

  • Chang, E.S. 1985. Hormonal control of molting in decapod crustaceans. Am. Zool. 25:179–185.

    CAS  Google Scholar 

  • Chang, E.S., 1989. Endocrine regulation of molting in Crustacea. Rev. Aquat. Sci. 1:131–157.

    Google Scholar 

  • Chen, S.H., Lin, C.Y., and Kuo, C.M. 2005. In Silico analysis of crustacean hyperglycemic hormone family. Mar. Biotech. 7: 193–206.

    CAS  Google Scholar 

  • Chen, H.-Y., Watson, D., Chen, J.-C., Liu, H.-F., and Lee, C.-Y. 2007. Molecular characterization and gene expression pattern of two putative molt-inhibiting hormones from Litopenaeus vannamei. Gen. Comp. Endocrinol. 151:72–81.

    PubMed  CAS  Google Scholar 

  • Chung, A.C.-K., Durica, D.S., Clifton, S.W., Roe, B.A., and Hopkins, P.M. 1998a. Cloning of crustacean EcR and RXR gene homologs and elevation of RXR mRNA by retinoic acid. Mol. Cell. Endocrinol. 139, 209–227.

    CAS  Google Scholar 

  • Chung, A.C.-K., Durica, D.S., and Hopkins, P.M. 1998b. Tissue-specific patterns and steady-state concentrations of ecdysteroid receptor and retinoid-X receptor mRNA during the molt cycle of the fiddler crab, Uca pugilator. Gen. Comp. Endocrinol. 109, 375–389.

    CAS  Google Scholar 

  • Chung, J. and Webster, S. 2005. Dynamics of in vivo release of molt-inhibiting hormone and crustacean hyperglycemic hormone in the shore crab, Carcinus maenas. Endocrinology 146:5545–5551.

    PubMed  CAS  Google Scholar 

  • Conesa, A., Götz, S., García-Gómez, J.M., Terol, J., Talón, M., and Robles, M. 2005. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21: 3674–3676.

    PubMed  CAS  Google Scholar 

  • Dell, S., Sedlmeir, D., Bocking, D., and Dauphin-Villemant, C. 1999. Ecdysteroid biosynthesis in crayfish Y-organs: feedback regulation by circulating ecdysteroids. Arch. Insect Biochem. Physiol. 41:148–155.

    PubMed  CAS  Google Scholar 

  • Devaraj, H. and Natarajan, A. 2006. Molecular mechanism regulating molting in a crustacean. FEBS J. 273:839–846.

    PubMed  CAS  Google Scholar 

  • Drach, P. 1939. Mue et cycle d'intermue chez les Crustaces Decapodes. Ann. Inst. Ocearogr. Monaco 19:103–391.

    Google Scholar 

  • Dubrovsky, E.B. 2005. Hormonal cross talk in insect development. Trends Endocrinol. Met. 16:6–11.

    CAS  Google Scholar 

  • Durica, D.S. and Hopkins, P.M. 1996. Expression of the genes encoding the ecdysteroid and retinoid receptors in regenerating limb tissues of the fiddler crab, Uca pugilator. Gene 171:237–241.

    PubMed  CAS  Google Scholar 

  • Durica, D.S., Wu, X., Anilkumar, G., Hopkins, P.M., and Chung, A. C.-K. 2002. Characterizationof Crab EcR and RXR Homologs and Expression during Limb Regeneration and Oocyte Maturation. Mol. Cell. Endocrinol. 189:59–76.

    PubMed  CAS  Google Scholar 

  • Durica D.S., Kupfer, D., Najar, F., Lai, H., Tang, Y., Griffin, K., Hopkins, P.M., and Roe, B. 2006. EST library sequencing of genes expressed during early limb regeneration in the fiddler crab and transcriptional responses to ecdysteroid exposure in limb bud explants. Intgr. Comp. Biol. 46:948–964.

    CAS  Google Scholar 

  • Egea, P.F., Klaholz, B.P., and Moras, D. 2000. Ligand-protein interactions in nuclear receptors of hormones. FEBS Lett. 476:62–67.

    PubMed  CAS  Google Scholar 

  • Flint, R.W. 1972. Effects of eyestalk removal and ecdysterone infusion on molting in Homarus americanus. J. Fish. Res. Bd. Canada 29:1229–1233.

    CAS  Google Scholar 

  • Gilbert. L., Rybczynski, R., and Warren, J. 2002. Control and biochemical nature of the ecdyster-oidogenic pathway. Annu. Rev. Entomol. 47:883–916.

    PubMed  CAS  Google Scholar 

  • Gu, C., Castellino, A., Chan, J.Y., and Chao M.V. 1998. BRE: a modulator of TNF-alpha action. FASEB J. 12:1101–1108.

    PubMed  CAS  Google Scholar 

  • Gu, P.-L. and Chan, S.-M. 1998. Cloning of a cDNA encoding a putative molt-inhibiting hormone from the eyestalk of the sand shrimp, Metapenaeus ensis. Mol. Mar. Biol. Biotechnol. 7:214–220.

    PubMed  CAS  Google Scholar 

  • Gu, P.-L., Tobe, S., Chow, B.-K., Chu, K.-H., He. J.-G., and Chan, S.-M. 2002. Characterization of an additional molt inhibiting hormone-like neuropeptide from the shrimp Metapenaeus ensis. Peptides 23:1875–1883.

    PubMed  CAS  Google Scholar 

  • Guo, X., Xu, Q., Harmon, M., Jin, X., Laudet, V., Mangelsdorf, D.J., and Palmer, M.J. 1998. Isolation of two functional retinoid X receptor subtypes from the ixodid tick, Amblyomma americanum (L.). Mol. Cell. Endocrinol. 139:45–60.

    PubMed  CAS  Google Scholar 

  • Harmon M.A., Boehm, M.F., Heyman, R.A., and Mangelsdorf, D.J. 1995. Activation of mammalian retinoid X receptors by the insect growth regulator methoprene. Proc. Natl. Acad. Sci. USA 92:6157–6160.

    PubMed  CAS  Google Scholar 

  • Hayward, D.C., Bastiani, M.J., Trueman, J.W.H., Truman, J.W., Riddiford, L.M., and Ball, E.E. 1999. The sequence of Locusta RXR, homologous to Drosophila ultraspiracle, and its evolutionary implications. Dev. Genes Evol. 209:564–571.

    PubMed  CAS  Google Scholar 

  • Hopkins, P.M. 1982. Growth and regeneration patterns in the fiddler crab, Uca pugilator. Biol. Bull. 163:301–319.

    Google Scholar 

  • Hopkins, P.M. 1983. Patterns of serum ecdysteroids during induced and uninduced proecdysis in the fiddler crab, Uca pugilator. Gen. Comp. Endocrinol. 52:350–356.

    PubMed  CAS  Google Scholar 

  • Hopkins, P.M. 1986. Ecdysteroid titers and Y-organactivity during late anecdysis and proecdysis in the fiddler crab, Uca pugilator. Gen. Comp. Endocrinol. 63:362–373.

    PubMed  CAS  Google Scholar 

  • Hopkins, P.M. 1989a. Ecdysteroids and regeneration in the fiddler crab, Uca pugilator: multipleautotomy and circulating ecdysteroids. Am. Zool. 29:125A.

    Google Scholar 

  • Hopkins, P.M. 1989b. Ecdysteroids and regeneration in the fiddler crab, Uca pugilator. J. Exp. Zool. 252:293–299.

    CAS  Google Scholar 

  • Hopkins, P.M. 1992. Hormonal control of the molt cycle in the fiddler crab, Uca pugilator. Am. Zool. 32:450–458.

    CAS  Google Scholar 

  • Hopkins, P.M. 1993. Regeneration of walking legs in the fiddler crab Uca pugilator. Am. Zool. 33:348–356.

    Google Scholar 

  • Hopkins, P.M. 2001. Limb regeneration in the fiddler crab, Uca pugilator: hormonal and growth factor control. Am. Zool. 41:389–398.

    CAS  Google Scholar 

  • Hopkins, P.M. and Durica, D.S. 1995. Effects of all-trans retinoic acid on regenerating limbs of the fiddler crab, Uca pugilator. J. Exp. Zool. 272:455–463.

    CAS  Google Scholar 

  • Hopkins, P.M., Bliss, D.E., Sheehan, S.W., and Boyer, J.R. 1979. Limb growth-controlling factors in the crab Gecarcius lateralis with special reference to the lib growth-inhibiting factor. Gen. Comp. Endocrinol. 39:192–207.

    PubMed  CAS  Google Scholar 

  • Hopkins, P.M., Chung, A.C.-K., and Durica, D.S. 1999. Limb Regeneration in the crab Uca pugilator: histological, physiological and molecular considerations. Am. Zool. 39:513–526.

    Google Scholar 

  • Hopkins, P.M., Durica, D., and Washington, T. 2008. RXR isoforms and endogenous retinoids in the fiddler crab, Uca pugilator. Comp. Biochem. Physiol. Part A. In Press.

    Google Scholar 

  • Hsu, Y.-W., Messinger, D., Chung, J., Webster, S., Inglesia, H., and Christie, A. 2006. Members of the crustacean hyperglycemic hormone (CHH) peptide family are differentially distributed both between and within the neuroendocrine organs of Cancer crabs: implication for differential release and pleiotropic function. J. Exp. Biol. 209:3241–3256.

    PubMed  CAS  Google Scholar 

  • Jo, Q.-T., Laufer, H., Biggers, W.J., and Kang, H.S. 1999. Methyl farnesoate induced ovarian maturation in the spider crab, Libinia emarginata. Invertebr. Reprod. Dev. 36:79–85.

    CAS  Google Scholar 

  • Jones, G. and Sharp, P.A. 1997. Ultraspiracle: an invertebrate nuclear receptor for juvenile hormones. Proc. Natl. Acad. Sci. USA 94, 13499–13503.

    PubMed  CAS  Google Scholar 

  • Jones, G., Wozniak, M., Chu, Y., Dhar, S., and Jones, D. 2001. Juvenile hormone III-dependent con-formational changes of the nuclear receptor ultraspiracle. Insect Biochem. Mol. Biol. 32:33–49.

    PubMed  Google Scholar 

  • Jones, G., Jones, D., Teal, P., Sapa, A., and Wozniak, M. 2006. The retinoid-X receptor ortholog, ultraspiracle, binds with nanomolar affinity to an endogenous morphogenetic ligand. FEBS J. 273:1–14.

    Google Scholar 

  • Kapitskaya, M., Wang, S., Cress, D.E., Dhadialla, T.S., and Raikhel, A.S. 1996. The mosquito ultraspiracle homologue, a partner of ecdysteroid receptor heterodimer: cloning and characterization of isoforms expressed during vitellogenesis. Mol. Cell. Endocrinol. 121:119–132.

    PubMed  CAS  Google Scholar 

  • Karim, F.D., and Thummel, C.S. 1992. Temporal coordination of regulatory gene expression by the steroid hormone ecdysone. EMBO J. 11: 4083–4093.

    PubMed  CAS  Google Scholar 

  • Karlson P., 1996. On the hormonal control of insect metamorphosis: a historical review. Int. J. Dev. Biol. 40:93–96.

    PubMed  CAS  Google Scholar 

  • Kato, Y., Kobayashi, K., Oda, S., Tatarazako, N., Watanabe, H., and Iguchi, T. 2007. Cloning and characterization of the ecdysone receptor and ultraspiracle protein from the water flea, Daphnia magna. J. Endocrinol. 193:183–194.

    PubMed  CAS  Google Scholar 

  • Kim, H.W., Lee, S.G., and Mykles, D.L. 2005. Ecdysteroid-responsive genes, RXR and E75, in the tropical land crab, Gecarcinus lateralis: differential tissue expression of multiple RXR isoforms generated at three alternative splicing sites in the hinge and ligand-binding domains. Mol. Cell. Endocrinol. 242:80–95.

    PubMed  CAS  Google Scholar 

  • Klein, J., Mangerich, S., deKleijn, D., Keller, R., and Weidemann, W. 1993. Molecular cloning of crustacean putative molt-inhibiting hormone (MIH) precursor. FEBS Lett. 334:139–142.

    PubMed  CAS  Google Scholar 

  • Koelle, M.R., Talbot, W.S., Segraves, W.A., Bender, M.T., Cherbas, P., and Hogness, D.S. 1991. The Drosophila EcR gene encodes an ecdysone receptor, a new member of the steroid receptor superfamily. Cell 67:59–77.

    PubMed  CAS  Google Scholar 

  • Krungkasem, C., Ohira, T., Yand, W.J., Abdullah, R., Nagasawa, H., and Aida, K. 2002. Identification of two distinct molt-inhibiting hormone-related peptides from the giant tiger prawn, Penaeus monodon. Mar. Biotechnol. 4:132–140.

    PubMed  CAS  Google Scholar 

  • Kuballa, A., Guyatt, K., Dixon, B., Thaggard, H., Ashton, A., Paterson, B., Merritt, D., and Elizur, A. 2007. Isolation and expression analysis of multiple isoforms of putative farnesoic acid O-methyltransferase in several crustacean species. Gen. Comp. Endocrinol. 150:48–58.

    PubMed  CAS  Google Scholar 

  • Lachaise, F. and Lafont, R. 1984. Ecdysteroid metabolism in a crab: Carcinus maenas L. Steroids 43: 459–464.

    Google Scholar 

  • Lachaise, F., Hubert, M., Webster, S.G., and Lafont, R. 1988. Effect of moult-inhibiting hormone on ketodiol conversion by crab Y-organs. J. Insect Physiol. 34:557–562.

    CAS  Google Scholar 

  • Lachaise, F., Carpentier, G., Sommé, G., Colardeau, J. and Beydon, P. 1989. Ecdysteroid synthesis by crab Y-organs. J. Exp. Zool. 252: 283–292.

    CAS  Google Scholar 

  • Lachaise, F., Goudeau, M., Carpentier, G., Saidi, B., and Goudeau, H. 1992. Eyestalk ablation in female crabs: effects on egg characteristics. J. Exp. Zool. 261:86–96.

    Google Scholar 

  • Lachaise, F., Roux, A., Hubert, M., and Lafont, R. 1993. The molting gland of crustaceans: localization, activity, and endocrine control (A review). J. Crustacean Biol. 13:198–234.

    Google Scholar 

  • Lachaise, R., Meister, M. F., Hetru, C., and Lafont, R. 1986. Studies on the biosynthesis of ecdys-one by the Y-organs of Carcinus maenas. Mol. Cell. Endocrinol. 45:253–261.

    PubMed  CAS  Google Scholar 

  • Lafont, R. and Mathieu, M. 2007. Steroids in aquatic invertebrates. Ecotoxicology 16:109–130.

    PubMed  CAS  Google Scholar 

  • Lago-Leston, A., Ponce, E., and Munoz, E. 2007. Cloning and expression of hyperglycemic (CHH) and molt-inhibiting (MIH) hormone mRNA from the eyestalk of shrimps of Litopenaeus vannamei grown in different temperatures and salinity conditions. Aquaculture 270:343–357.

    CAS  Google Scholar 

  • Laufer, H. and Biggers, W.J. 2001. Unifying concepts learned from methyl farnesoate for invertebrate reproduction and post-embryonic development. Am. Zool. 41:442–457.

    CAS  Google Scholar 

  • Laufer, H., Biggers, W.J., and Ahl, J.S., 1998. Stimulation of ovarian maturation in the crayfish Procambarus clarkii by methyl farnesoate. Gen. Comp. Endocrinol. 111:113–118.

    PubMed  CAS  Google Scholar 

  • Lee, K., Elton, T., Bej, A., Watts, S., and Watson, D. 1995. Molecular cloning of a cDNA encoding putative molt-inhibiting hormone from the blue crab, Callinectes sapidus. Biochem. Biophys. Res. Commun. 209:1126–1131.

    PubMed  CAS  Google Scholar 

  • Lee, K., Watson, D., and Roer, R. 1998. Molt-inhibiting hormone mRNA levels and ecdyster-oid titer during a molt cycle of the blue crab, Callinectes sapidus. Biochem. Biophys. Res. Commun. 249:624–627.

    PubMed  CAS  Google Scholar 

  • Lee, K., Kim, H.-W., Gomez, A., Chang, E., Covi, J., and Mykles, D. 2007a. Molt-inhibiting hormone from the tropical land crab, Gecarcinus lateralis: cloning, tissue expression, and expression of biologically active recombinant peptide in yeast. Gen. Comp. Endocrinol. 150:505–513.

    CAS  Google Scholar 

  • Lee, S., Bader, B., Chang, E., and Mykles, D. 2007b. Effects of elevated ecdysteroid on tissue expression of three guanylyl cyclases in the tropical land crab Gecarcinus lateralis; possible roles of neuropeptide signaling in the molting gland. J. Exp. Biol. 210:3245–3254.

    CAS  Google Scholar 

  • Li, L., Thomas, R.M., Suzuki, H., De Brabander, J.K., Wang, X., and Harran, P.G. 2004. A small molecule Smac mimic potentiates TRAIL- and TNFαted cell death. Science 305: 1471–1474

    PubMed  CAS  Google Scholar 

  • Maden, M. 2000. The role of retinoic acid in embryonic and post-embryonic development. Proc. Nutr. Soc. 59:65–73.

    PubMed  CAS  Google Scholar 

  • Maestro, O., Cruz, J., Pascual, N., Martin, D., and Belles, X. 2005. Differential expression of two RXR/ultraspiracle isoforms during the life cycle of the hemimetabolous insect Blattella germanica (Dictyoptera, Blattellidae). Mol. Cell. Endocrinol. 239:27–37.

    Google Scholar 

  • Maki, A., Sawatsubashi, S., Ito, S., Shirode, Y., Suzuki, E., Zhao, Y., Yamagata, K., Kouzmenko, A., Takeyama, K., and Kato, S. 2004. Juvenile hormones antagonize ecdysone actions through co-repressor recruitment to EcR/USP heterodimers. Biochem. Biophys. Res. Commun. 320:262–267.

    PubMed  CAS  Google Scholar 

  • Marco, H., Stoeva, S., Voelter, W., and Gade, G. 2000. Characterization and sequence elucidation of a novel peptide with molt-inhibiting activity from the South African spiny lobster, Jasus lalandii. Peptides 21:1313–1321.

    PubMed  CAS  Google Scholar 

  • Martin-Creuzburg, D., Westerlund, S., and Hoffmann, K. 2007. Ecdysteroid levels in Daphnia magna during a molt cycle: determination by radioimmunassay (RIA) and liquid chromatog-raphy-mass spectrometry (LC-MS). Gen. Comp. Endocrinol. 151:66–71.

    PubMed  CAS  Google Scholar 

  • Mattson, M.P. and Spaziani, E. 1986. Regulation of Y-organ ecdysteroidogenesis by molt-inhibiting hormone in crabs: involvement of cyclic AMP-mediated protein synthesis. Gen. Comp. Endocrinol. Sept; 63:414–423.

    CAS  Google Scholar 

  • McCarthy, J.F. 1979. Ponasterone A: a new ecdysteroid from the embryos and serum of brachy-uran crustaceans. Steroid 34:799–806.

    CAS  Google Scholar 

  • McCarthy, J.F. and Skinner, D.M. 1977. Interruption of proecdysis by autotomy of partially regenerated limbs in the land crab, Gecarcinus lateralis. Dev. Biol. 61:299–310.

    PubMed  CAS  Google Scholar 

  • McVean, A. 1984. Autotomy. InD.E. Bliss (ed.), The Biology of Crustacea, pp. 107–132. Academic, New York.

    Google Scholar 

  • Means, A.L. and Gudas, L.J. 1995. The roles of retinoids in vertebrate development. Annu. Rev. Biochem. 64:201–233.

    PubMed  CAS  Google Scholar 

  • Meister, M.F., Brandtner, H.M., Koolman, J., and Hoffmann, J.A. 1987. Conversion of a radi-olabelled putative ecdysone precursor, 2,22,25-trideoxyecdysone (5B-ketodiol) in larvae and pupae of Calliphora vicina. Int. J. Invertebr. Reprod. Dev. 12:13–28.

    CAS  Google Scholar 

  • Mu, X. and LeBlanc, G. 2004. Cross communication between signaling pathways: juvenoid hor mones modulate ecdysteroid activity in a crustacean. J. Exp. Zool. 301A:793–801.

    CAS  Google Scholar 

  • Nagaraju, G., Prasad, G., and Reddy, P. 2005. Isolation and characterization of mandibular organ inhibiting hormone from the eyestalks of freshwater crab, Oziotelphusa senex senex. Int. J. Appl. Sci. Eng. 3:61–68.

    Google Scholar 

  • Nagaraju, G., Reddy, P.R, and Reddy, P.S 2006. In vitro methyl farnesoate secretion by mandibular organs isolated from different molt and reproductive stages of the crab Oziotelphusa senex senex. Fish. Sci. 72:410–414.

    CAS  Google Scholar 

  • Nakatsuji, T. and Sonobe, H. 2004. Regulation of ecdysteroid secretion from the Y-organ by moltinhibiting hormone in the American crayfish, Procambarus clarkii. Gen. Comp. Endocrinol. 135:358–364.

    PubMed  CAS  Google Scholar 

  • Nakatsuji, T., Keino, H., Tamura, K., Yoshimura, S., Kawakami, T., Aimoto, S., and Sonobe, H. 2000. Changes in the amounts of the molt-inhibiting hormone in sinus glands during the molt cycle of the American crayfish, Procambarus clarkii. Zool. Sci. 17:1129–1136.

    PubMed  CAS  Google Scholar 

  • Nakatsuji, T., Han, D.-W., Jablonsky, M., Harville, S., Muccio, D., Watson, D. 2006. Expression of crustacean (Callinectes sapidus) molt-inhibiting hormone in Escherichia coli: characterization of the recombinant peptide and assessment of its effects on cellular signaling pathways in Y-organs. Mol. Cell. Endocrinol. 253:96–104.

    PubMed  CAS  Google Scholar 

  • Naya, Y., Kishida, K., Sugiyama, M., Murata, M., Miki, W., Ohnishi, M., and Nakanishi, K. 1988. Endogenous inhibitor of ecdysone synthesis in crabs. Experientia 44:50–52.

    PubMed  CAS  Google Scholar 

  • Ohira, T., Watanabe, T., Nagasawa, H., and Aida, K. 1997. Molecular cloning of a molt-inhibiting hormone cDNA from the kuruma prawn Penaeus japonicus. Zool. Sci. 14:785–789.

    PubMed  CAS  Google Scholar 

  • Okumura, T., Kamba, M., Sonobe, H., and Aida, K. 2003. In vitro secretion of ecdysteroids by Y-organ during molt cycle and evidence for secretion of 3-dehydroecdysone in the giant freshwater prawn, Macrobrackium rosenbergii (Crustacea: Decapoda: Caridea). Invertebr. Repro. Dev. 44:1–8.

    CAS  Google Scholar 

  • Okumura, T., Ohira, T., Katayama, H., and Nagasawa, H. 2005. In vivo effects of a recombinant molt-inhibiting hormone on molt interval and hemolymph ecdysteroid levels in the kuruma prawn, Marsupenaeus japonicus. Zool. Sci. 22:317–320.

    PubMed  CAS  Google Scholar 

  • Oro, A.E., McKeown, M., and Evans, R.M., 1990. Relationship between the product of the Drosophila ultraspiracle locus and the vertebrate retinoid X receptor. Nature 347:298–301.

    PubMed  CAS  Google Scholar 

  • Oro, A.E., Mckeown, M., and Evans, R.M. 1992. The Drosophila retinoid X receptor homolog ultraspiracle functions in both female reproduction and eye morphogenesis. Development 115:449–462.

    PubMed  CAS  Google Scholar 

  • Rao, K.R. 1965. Isolation and partial characterization of the moult-inhibiting hormone of the crustacean eyestalk. Experientia 21:593–596.

    Google Scholar 

  • Rees, H.H. 1985. Biosynthesis of ecdysone. In G.A. Kerkut and L.I. Gilbert (eds.), Comprehensive insect physiology, biochemistry and pharmacology, vol. 7, pp. 249–293. Pergamon Press, Oxford.

    Google Scholar 

  • Renaud, J.P. and Moras, D. 2000. Structural studies on nuclear receptors. Cell. Mol. Life Sci. 57:1748–1769.

    PubMed  CAS  Google Scholar 

  • Riddiford, L.M., Cherbas, P., and Truman, J.W., 2001. Ecdysone receptors and their biological actions. Vitam. Horm. 60:1–73.

    CAS  Google Scholar 

  • Richards, D., Applebaum, S., and Gilbert, L. 1989. Developmental regulation of juvenile biosynthesis by the ring gland of Drosophila. J. Comp. Physiol. B 159:383–387.

    Google Scholar 

  • Riddiford, L.M., Hiruma, K., Zhou, X., and Nelson, C.A. 2003. Insights into the molecular basis of the hormonal control of molting and metamorphosis from Manduca sexta and Drosophila melanogaster. Insect Biochem. Mol. Biol. 12:1327–1338.

    Google Scholar 

  • Segraves, W.A. and Hogness, D.S. 1990. The E75 ecdysone 75B early puff in Drosophila codes two new members of the steroid receptor superfamily. Gene Dev. 4:204–219.

    PubMed  CAS  Google Scholar 

  • Siaussat, D., Bozzolan, F., Queguiner, I., Porcheron, P., and Debernard, S. 2004. Effects of juvenile hormone on 20-hydroxyecdysone-inducible EcR, HR3, E75 gene expression in imaginal wing cells of Plodia interpunctella Lepidoptera. Eur. J. Biochem. 14:3017–3027.

    Google Scholar 

  • Skinner, D.M. 1985. Molting and regeneration. In D.E. Bliss (ed.), The Biology of Crustacea, pp. 43–146. Academic, New York.

    Google Scholar 

  • Smith, W.A. and Sedlmeier, D. 1990. Neurohormonal control of ecdysone production: comparison of insects and crustaceans. Invertebr. Reprod. Dev. 18:77–90.

    CAS  Google Scholar 

  • Sochasky, J.B., Aiken, D.E., and Watson, N.H.F. 1972. Y-organ, molting gland, and mandibular organ. A problem in decapod crustacean. Can. J. Zool. 50: 993–997.

    Google Scholar 

  • Sonobe, H., Kamba, M., Ohta, K., Ikeda, M., and Naya, Y. 1991. In vitro secretion of ecdysteroids by Y-organs of the crayfish, Procambarus clarkii. Cell. Mol. Life Sci. 47:948–952.

    CAS  Google Scholar 

  • Soumoff, C. and O'Connor, J.D. 1982. Repression of Y-organ secretory activity by molt-inhibiting hormone in the crab Pachygrapsus crassipes. Gen. Comp. Endocrinol. 48:432–439.

    PubMed  CAS  Google Scholar 

  • Soyez, D. 1997. Occurrence and diversity of neuropeptides from the crustacean hyperglycemic hormone family in arthropods. Ann. N.Y. Acad. Sci. 814:319–323.

    PubMed  CAS  Google Scholar 

  • Spaziani, E., Rees, H.H., Wang, W.L., and Watson, R.D. 1989. Evidence that Y-organs of the crab Cancer antennarius secrete 3-dehydroecdysone. Mol. Cell. Endocrinol. 66:17–25.

    PubMed  CAS  Google Scholar 

  • Subramoniam, T., 2000. Crustacean ecdysteroids in reproduction and embryogenesis. Comp. Biochem. Physiol. 125:135–156.

    CAS  Google Scholar 

  • Sun, P.S. 1994. Molecular cloning and sequence analysis of a cDNA encoding a molt-inhibiting hormone-like neuropeptide from the white shrimp Penaeus vannamei. Mol. Mar. Biol. Biotechnol. 3: 1–6.

    PubMed  Google Scholar 

  • Swevers, L., Cherbas, L., Cherbas, P., and Iatrou, K. 1996. Bombyx EcR (BmEcR) and Bombyx USP (BmCF1) combine to form a functional ecdysone receptor. Insect Biochem. Mol. Biol. 26:217–221.

    PubMed  CAS  Google Scholar 

  • Talbot, W.S., Swyryd, E.A., and Hogness, D.S., 1993. Drosophila tissues with different metamorphic responses to ecdysone express different ecdysone receptor isoforms. Cell 73:1323–1337.

    PubMed  CAS  Google Scholar 

  • Tamone, S.L. and Chang, E.S. 1993. Methyl fanesoate stimulate ecdysteroid secretion from Y-organs in vitro. Gen. Comp. Endocrinol. 89:425–432.

    PubMed  CAS  Google Scholar 

  • Thomas, H.E., Stunnenberg, H.G., and Stewart, A.F. 1993. Heterodimerization of the Drosophila ecdysone receptor with retinoid X receptor and ultraspiracle. Nature 362: 471–475.

    PubMed  CAS  Google Scholar 

  • Tobe, S.S., Young, D.A., Khoo, H.W. 1989. Production of methyl farnesoate by the mandibular organs of the mud crab, Scylla serrata: validation of a radiochemical assay. Gen. Comp. Endocrinol. 73(3):342–353.

    PubMed  CAS  Google Scholar 

  • Tuberty, S.R., and Mckenney, Jr., C.L. 2005. Ecdysteroid responses of estuarine crustaceans exposed through complete larval development to juvenile hormone agonist insecticides. Int. Comp. Biol. 45: 106–117.

    CAS  Google Scholar 

  • Umphrey, H., Lee, K., Watson, D., and Spaziani, E. 1998. Molecular cloning of a cDNA encoding molt-inhibiting hormone of the crab, Cancer magister. Mol. Cell. Endocrinol. 136:145–149.

    PubMed  CAS  Google Scholar 

  • Wainwright, G., Webster, S., Wilkinson, M., Chung, J., and Rees, H. 1996. Structure and significance of mandibular organ-inhibiting hormone in the crab, Cancer pagurus. Involvement in a multihormonal regulation of growth and reproduction. J. Biol. Chem. 271:12749–12754.

    PubMed  CAS  Google Scholar 

  • Wang, Y., Hayes, T., Holman, G., Chavez, A. and Keeley, L. 2000. Primary structure of CHH/MIH/ GIH-like peptides in sinus gland extracts from Penaeus vannamei. Peptides 21:477–484.

    PubMed  CAS  Google Scholar 

  • Wang, S-F., Li, C., Sun, G., Zhu, J., and Raikhel, A.S. 2002. Differential expression and regulation by 20-hydroxyecdysone of mosquito ecdysteroid receptor isoforms A and B. Mol. Cell. Endocrinology 196: 29–42.

    CAS  Google Scholar 

  • Warren, J.T., Petryk, A., Marques, G., Parvy, J.-P., Shinoda, T., Itoyama, K., Kobayashi, J., Jarcho, M., Li, Y., O'Connor, M., Dauphin-Villemant, C., and Gilbert, L. 2004. Phantom encodes the 25-hydroxylase of Drosophila melaongaster and Bombyx mori: a P450 enzyme critical in ecdysone biosynthesis. Insect Biochem. Mol. Biol. 34:991–1010.

    PubMed  CAS  Google Scholar 

  • Watson, D. and Spaziani, E. 1985. Biosynthesis of ecdysteroids from cholesterol by crab Y-organs and eyestalk suppression of cholesterol uptake and secretory activity in vitro. Gen. Comp. Endocrinol. 59:140–148.

    PubMed  CAS  Google Scholar 

  • Watson, D., Lee, K., Qui, S., Luo, M., Unphrey, H., Roer, R., and Spaziani, E. 2001. Molecular cloning, expression, and tissue distribution of crustacean molt-inhibiting hormone. Am. Zool. 41L:407–417.

    Google Scholar 

  • Webster, S.G. and Keller, R. 1986. Purification, characterization and amino acid composition of the putative moult-inhibiting hormone (MIH) of Carcinus maenas (Crustacea, Decapoda). J. Comp. Physiol. B 156:617–624/Mol. Cell. Endocrinol. 66:17–25.

    CAS  Google Scholar 

  • Webster, S. 1991. Amino acid sequence of putative moult-inhibitng hormone from the crab Carinus maenas. Proc. Biol. Sci. 244:247–252.

    PubMed  CAS  Google Scholar 

  • Wu, X., Hopkins, P.M., Palli, S.R., and Durica, D.S. 2004. Crustacean retinoid-X receptor iso-forms: distinctive DNA binding and receptor-receptor interaction with a cognate ecdysteroid receptor. Mol. Cell. Endocrinol. 218:21–38.

    PubMed  CAS  Google Scholar 

  • Xu, Y., Fang, F., Chu, Y., Jones, D., and Jones, G. 2002. Activation of transcription through the ligand-binding pocket of the orphan nuclear receptor ultraspiracle. Eur. J. Biochem. 269:6026–6036.

    PubMed  CAS  Google Scholar 

  • Yang, W.-J. and Rao, K. 2001. Cloning of precursors for two MIH/VIH-related peptides in the prawn Macrobrachium rosenbergii. Biochem. Biophys. Res. Commun. 289:407–413.

    PubMed  CAS  Google Scholar 

  • Yang, W.-J., Aida, K., Terauchi, A., Sonobe, H., and Nagasawa, H. 1996. Amino acid sequence of a peptide with molt-inhibiting activity from the kuruma prawn penaeus japonicus. Peptides 17:197–202.

    PubMed  CAS  Google Scholar 

  • Yao, T.P., Forman, B.M., Jiang, Z., Cherbas, L., Chen, J.D., McKeown, M., Cherbas, P., and Evans, R.M. 1993. Functional ecdysone receptor is the product of EcR and ultraspiracle genes. Nature 366:476–479.

    PubMed  CAS  Google Scholar 

  • Yu, X., Chang, E., and Mykles, D. 2002. Characterization of limb autotomy factor-proecdysis (LAFpro) isolated from limb regenerates that suspends molting in the land crab, Gecarcinus lateralis. Biol. Bull. 202:204–212.

    PubMed  CAS  Google Scholar 

  • Zeleny, C. 1905. Compensatory regulation. J. Exp. Zool. 2:1–102.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Hopkins, P.M. (2009). Crustacean Ecdysteroids and Their Receptors. In: Smagghe, G. (eds) Ecdysone: Structures and Functions. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9112-4_3

Download citation

Publish with us

Policies and ethics